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Abstract

For an ordered set W = {w1, w2, · · · , wk} of vertices and a vertex

v in a connected graph G, the representation of v with respect to

W is the ordered k-tuple r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk))

where d(x, y) represents the distance between the vertices x and y.

The set W is called a resolving set for G if every two vertices of G

have distinct representations. A resolving set containing a minimum

number of vertices is called a basis for G. The dimension of G,

denoted by dim(G), is the number of vertices in a basis of G. In this

paper, we determine the dimensions of some corona graphs G⊙K1,

and G⊙Km for any graph G and m ≥ 2, and a graph with pendant

edges more general than corona graphs G⊙Km.
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