# The Metric Dimension of Graph with Pendant Edges 

H. Iswadi $^{1,2}$, E.T. Baskoro $^{2}$, R. Simanjuntak ${ }^{2}$, A.N.M. Salman ${ }^{2}$<br>${ }^{2}$ Combinatorial Mathematics Research Group<br>Faculty of Mathematics and Natural Science, Institut Teknologi Bandung<br>Jalan Ganesha 10 Bandung 40132, Indonesia.<br>Email: hazrul@students.itb.ac.id, \{ebaskoro, rino, msalman\}@math.itb.ac.id


#### Abstract

For an ordered set $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ of vertices and a vertex $v$ in a connected graph $G$, the representation of $v$ with respect to $W$ is the ordered $k$-tuple $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$ where $d(x, y)$ represents the distance between the vertices $x$ and $y$. The set $W$ is called a resolving set for $G$ if every two vertices of $G$ have distinct representations. A resolving set containing a minimum number of vertices is called a basis for $G$. The dimension of $G$, denoted by $\operatorname{dim}(G)$, is the number of vertices in a basis of $G$. In this paper, we determine the dimensions of some corona graphs $G \odot K_{1}$, $G \odot \overline{K_{m}}$, for any graph $G$ and $m \geq 2$, and a graph with pendant edges more general than corona graphs $G \odot \overline{K_{m}}$.


## 1 Introduction

In this paper we consider finite, simple, and connected graphs. The vertex and edge sets of a graph $G$ are denoted by $V(G)$ and $E(G)$, respectively. We refer the general graph theory notations and terminologies are not described in this paper to the book Graphs and Digraphs [6].

The distance $d(u, v)$ between two vertices $u$ and $v$ in a connected graph $G$ is the length of a shortest $u-v$ path in $G$. For an ordered set $W=$ $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\} \subseteq V(G)$ of vertices, we refer to the ordered $k$-tuple $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$ as the (metric) representation of $v$ with respect to $W$. The set $W$ is called a resolving set for $G$ if $r(u \mid W)=$ $r(v \mid W)$ implies that $u=v$, for all $u, v \in G$. A resolving set of minimum

[^0]cardinality for a graph $G$ is called a minimum resolving set or a basis for $G$. The metric dimension $\operatorname{dim}(G)$ is the number of vertices in a basis for $G$.

The beginning papers for the idea of a resolving set (and of a minimum resolving set) were written by Slater in [10] and [11]. Slater introduced the concept of a resolving set for a connected graph $G$ under the term location set. He called the cardinality of a minimum resolving set the location number of $G$. Independently, Harary and Melter [8] introduced the same concept but used the term metric dimension, rather than location number.

Chartrand et. al. [5] determined the bounds of the metric dimensions for any connected graphs and determined the metric dimensions of some well known families of graphs such as trees, paths, and complete graphs. Buczkowski et. al. [1] stated the existence of a graph $G$ with $\operatorname{dim}(G)=k$ or a $k$-dimensional graph, for every integer $k \geq 2$. They also determined dimensions of wheels. Chappell et. al. [4] considered relationships between metric dimension with other parameters in a graph. Another researchers in $[2,7]$ determined the metric dimension of cartesian products of graphs and Cayley digraphs. In the following, we present some known results.

Theorem A ([2, 7]). Let $G$ be a connected graph of order $n \geq 2$.
(i.) $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$
(ii.) $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$
(iii.) For $n \geq 3, \operatorname{dim}\left(C_{n}\right)=2$
(iv.) For $n \geq 4$, $\operatorname{dim}(G)=n-2$ if and only if $G=K_{r, s},(r, s \geq 1)$, $G=K_{r}+\overline{K_{s}},(r \geq 1, s \geq 2)$, or $G=K_{r}+\left(K_{1} \cup K_{s}\right),(r, s \geq 1)$
(v.) If $T$ is a tree that is not a path, then $\operatorname{dim}(T)=\sigma(T)-e x(T)$, where $\sigma(T)$ denotes the sum of the terminal degrees of the major vertices of $T$, and ex $(T)$ denotes the number of the exterior major vertices of $T$.

Let $G$ and $H$ be two given graphs with $G$ having $n$ vertices, the corona product $G \odot H$ is defined as a graph with

$$
\begin{aligned}
& V(G \odot H)=V(G) \cup \bigcup_{i \in V(G)} V\left(H_{i}\right), \\
& E(G \odot H)=E(G) \cup \bigcup_{i \in V(G)}\left(E\left(H_{i}\right) \cup\left\{i u_{i} \mid u_{i} \in V\left(H_{i}\right)\right\}\right),
\end{aligned}
$$

where $H_{i} \cong H$, for all $i \in V(G)$. If $H \cong \overline{K_{m}}, G \odot H$ is equal to the graph produced by adding $n$ pendant edges to every vertex of $G$. Especially, if $H \cong K_{1}, G \odot H$ is equal to the graph produced by adding one pendant edge to every vertex of $G$. Buczkowski et. al. in [1] proved that if $G^{\prime}$ is a graph obtained by adding a pendant edge to a nontrivial connected graph $G$, then

$$
\operatorname{dim}(G) \leq \operatorname{dim}\left(G^{\prime}\right) \leq \operatorname{dim}(G)+1
$$

Therefore, for $G \odot K_{1}$ we have:

$$
\operatorname{dim}(G) \leq \operatorname{dim}\left(G \odot K_{1}\right)
$$

If $G \cong K_{1}$ and $H \cong C_{n}, G \odot H$ is equal to wheel $W_{n}=K_{1}+C_{n}$. If $G \cong K_{1}$ and $H \cong P_{n}, G \odot H$ is equal to fan $F_{n}=K_{1}+P_{n}$. Buczkowski et. al. and Caceres et. al. in [1, 3], determined the dimensions of wheels and fans, namely: $\operatorname{dim}\left(W_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor$, for $n \notin\{3,6\}$, and $\operatorname{dim}\left(F_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor$, for $n \notin\{1,2,3,6\}$.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The Cartesian products $G_{1} \times G_{2}$ is the new graph whose vertex set is $V_{1} \times V_{2}$ and two vertices $\left(x_{1}, x_{2}\right)$ and ( $y_{1}, y_{2}$ ) being adjacent in $G_{1} \times G_{2}$ if and only if either $x_{1}=y_{1}$ and $x_{2} y_{2} \in E_{2}$ or $x_{2}=y_{2}$ and $x_{1} y_{1} \in E_{1} . K_{1}$ or $P_{1}$ is a unit with respect to the Cartesian product. In other words, $H \times G=G$ and $G \times H=G$ for any graph $G$, with $H=K_{1}$ or $P_{1}$. Caceres et. al. [3] determined the metric dimension of some cartesian product graphs, namely: $\operatorname{dim}\left(P_{m} \times P_{n}\right)=2, \operatorname{dim}\left(P_{m} \times K_{n}\right)=n-1$, for $n \geq 3$, and

$$
\operatorname{dim}\left(P_{m} \times C_{n}\right)= \begin{cases}2, & \text { if } n \text { odd } \\ 3, & \text { if } n \text { even }(m \neq 1)\end{cases}
$$

In this paper, we determine the dimensions of some corona graphs in $G \odot K_{1}$ and $G \odot \overline{K_{m}}$, for any graph $G$ and $m \geq 2$. We also consider the dimension of a graph with pendant edges more general than corona graphs $G \odot \overline{K_{m}}$ obtained from graph $G$ by adding a (not necessarily the same) number of pendant edges to every vertex of $G$.

## 2 Results

In Theorem 1, we will determine the metric dimension of $C_{n} \odot K_{1}$. This class of graph is known as the sun graphs $\operatorname{Sun}(n)$. Let $B=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ is a basis of $\operatorname{Sun}(n), v$ is a vertex in $G$ and $u$ is a pendant vertex of $v$ in $\operatorname{Sun}(n)$. If the representation of vertex $v \in \operatorname{Sun}(n)$ by $B$ is $r(v \mid B)=$ $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$, then $r(u \mid B)=\left(d\left(v, w_{1}\right)+1, d\left(v, w_{2}\right)+\right.$ $\left.1, \cdots, d\left(v, w_{k}\right)+1\right)$, for $u \notin B$. It is easy to show that $\operatorname{dim}(\operatorname{Sun}(3))=$ $\operatorname{dim}(\operatorname{Sun}(4))=\operatorname{dim}(\operatorname{Sun}(5))=2$, and $\operatorname{dim}(\operatorname{Sun}(6))=3$. For $n \geq 7$, the dimension of $\operatorname{Sun}(n)$ is 2 for odd $n$ and 3 for even $n$.

Theorem 1. For $n \geq 7$,

$$
\operatorname{dim}(\operatorname{Sun}(n))= \begin{cases}2, & n \text { is odd }, \\ 3, & n \text { is even } .\end{cases}
$$

Proof Let $\operatorname{Sun}(n)=C_{n} \odot K_{1}$, where $C_{n}: v_{1}, v_{2}, \cdots, v_{n}$, and let $u_{i}$ is a pendant vertex of $v_{i}$, for $n \geq 7$.

Case $1 n=2 l+1$ for some integer $l \geq 3$. First, we show $\operatorname{dim}(\operatorname{Sun}(n))$ $\leq 2$ by constructing a resolving set in $\operatorname{Sun}(n)$ with 2 vertices. Choose a resolving set $B=\left\{u_{1}, u_{l}\right\}$. The representation of vertices $v^{\prime}$ s by $B$ are

$$
\begin{aligned}
& r\left(v_{k} \mid B\right)=(k, l-k+1), \text { for } 1 \leq k \leq l, \\
& r\left(v_{l+1} \mid B\right)=(l+1,2), \\
& r\left(v_{k} \mid B\right)=(n-k+2, k-l+1), \text { for } l+2 \leq k \leq n-1, \\
& r\left(v_{n} \mid B\right)=(2, l+1)
\end{aligned}
$$

By inspection directly, for every pair $u$ and $v \in V(\operatorname{Sun}(n))-B$, and $u \neq v$, $r(u \mid B) \neq r(v \mid B)$. So, $B$ is a resolving set. Then, by using Theorem $\mathrm{A}(i)$, $\operatorname{dim}(\operatorname{Sun}(n))=2$.

Case $2 n=2 l$ for some integer $l \geq 4$. We will show that $\operatorname{dim}(\operatorname{Sun}(n)) \geq$ 3. By Theorem A $(i)$, we only need show that $\operatorname{dim}(\operatorname{Sun}(n)) \neq 2$. Suppose that $\operatorname{dim}(\operatorname{Sun}(n))=2$. Let $B=\{x, y\}$ is a resolving set of $\operatorname{Sun}(n)$.
Subcase $2.1 x, y \in\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. By symmetry, we can assume that $\left(x=v_{1}\right.$ and $\left.y=v_{l+1}\right)$ or $\left(x=v_{1}\right.$ and $y=v_{k}$, with $\left.2 \leq k \leq l\right)$. If $x=v_{1}$ and $y=v_{l+1}$ then $r\left(v_{2} \mid B\right)=(1, l-1)=r\left(v_{n} \mid B\right)$, a contradiction. If $x=v_{1}$ and $y=v_{k}, 2 \leq k \leq l$, then $r\left(u_{k} \mid B\right)=(k, 1)=r\left(v_{k+1} \mid B\right)$, a contradiction.

Subcase 2.2 $x, y \in\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$. Again by symmetry, if $x=u_{1}$ and $y=u_{k}$, with $2 \leq k \leq l-1$, then $r\left(u_{k+1} \mid B\right)=(k+2,3)=r\left(v_{k+2} \mid B\right)$, a contradiction. If $x=u_{1}$ and $y=u_{l}$ then $r\left(u_{l-1} \mid B\right)=(l, 3)=r\left(v_{l+2} \mid B\right)$, a contradiction. If $x=u_{1}$ and $y=u_{l+1}$ then $r\left(v_{2} \mid B\right)=(2, l)=r\left(v_{n} \mid B\right)$, a contradiction.

Subcase $2.3 x \in\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ and $y \in\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ or reverse. Let be the previous one. If $x=u_{1}$ and $y=v_{1}$ then $r\left(v_{2} \mid B\right)=(2,1)=r\left(v_{n} \mid B\right)$, a contradiction. If $x=u_{1}$ and $y=v_{k}$, with $2 \leq k \leq l$, then $r\left(u_{k} \mid B\right)=$ $(k+1,1)=r\left(v_{k+1} \mid B\right)$, a contradiction. If $x=u_{1}$ and $y=v_{l+1}$, then $r\left(v_{2} \mid B\right)=(2, l-1)=r\left(v_{n} \mid B\right)$, a contradiction.

Therefore, $\operatorname{dim}(\operatorname{Sun}(n)) \geq 3$. Next, we will show that $\operatorname{dim}(\operatorname{Sun}(n)) \leq 3$. Choose a resolving set $B=\left\{u_{1}, u_{2}, u_{l}\right\}$, then the representation of vertices $v \in C_{n}$ by $B$ are

$$
\begin{aligned}
& r\left(v_{1} \mid B\right)=(1,2, l) \\
& r\left(v_{k} \mid B\right)=(k, k-1, l-k+1), \text { for } 2 \leq k \leq l \\
& r\left(v_{l+1} \mid B\right)=(l+1, l, 2)
\end{aligned}
$$

$$
r\left(v_{k} \mid B\right)=(n-k+2, n-k+3, k-l+1), \text { for } l+2 \leq k \leq n
$$

By inspection directly, for every pair $u$ and $v \in V(\operatorname{Sun}(n))-B$ and $u \neq v$, $r(u \mid B) \neq r(v \mid B)$. Therefore, $B$ is a resolving set, and so $\operatorname{dim}(\operatorname{Sun}(n))=3$.

In the next theorem, the dimension of $\left(P_{n} \times P_{m}\right) \odot K_{1}$ will be discussed. For small numbering $n$ and $m$, we have $\operatorname{dim}\left(\left(P_{1} \times P_{1}\right) \odot K_{1}\right)=\operatorname{dim}\left(P_{2}\right)$ $=1, \operatorname{dim}\left(\left(P_{2} \times P_{1}\right) \odot K_{1}\right)=\operatorname{dim}\left(P_{2}\right)=1$, and $\operatorname{dim}\left(\left(P_{2} \times P_{2}\right) \odot K_{1}\right)=$ $\operatorname{dim}(\operatorname{Sun}(n))=2$.

Theorem 2. For $n \geq 3$ and $1 \leq m \leq 2$, $\operatorname{dim}\left(\left(P_{n} \times P_{m}\right) \odot K_{1}\right)=2$.
Proof Let $v_{i j}=\left(v_{i}, v_{j}\right)$ be the vertices of $P_{n} \times P_{m} \subseteq\left(P_{n} \times P_{m}\right) \odot K_{1}$, where $v_{i} \in P_{n}, v_{j} \in P_{m}, 1 \leq i \leq n$, and $1 \leq j \leq m$. Let $u_{i j}$ be the pendant vertex of $v_{i j}$.

Case 1. $m=1$. By using Theorem A $(i)$, we only need to show that $\operatorname{dim}\left(\left(P_{n} \times P_{1}\right) \odot K_{1}\right) \leq 2$. Choose a resolving set $B=\left\{v_{11}, v_{n 1}\right\}$ in $\left(P_{n} \times\right.$ $\left.P_{1}\right) \odot K_{1}$. The representation of vertices $v \in\left(P_{n} \times P_{1}\right) \odot K_{1}$ by $B$ are $r\left(v_{i 1} \mid B\right)=(i-1, n-i)$, for $2 \leq i \leq n-1$, $r\left(u_{i 1} \mid B\right)=\left(d\left(v_{11}, v_{i 1}\right)+1, d\left(v_{n 1}, v_{i 1}\right)+1\right)$, for $1 \leq i \leq n$.
All of those representation are distinct. Therefore, $\operatorname{dim}\left(\left(P_{n} \times P_{1}\right) \odot K_{1}\right)=2$.
Case 2. $m=2$. Again, by Theorem A $(i)$, we only need to show that $\operatorname{dim}\left(\left(P_{n} \times P_{2}\right) \odot K_{1}\right) \leq 2$. Choose a resolving set $B=\left\{u_{11}, u_{12}\right\}$ in $\left(P_{n} \times\right.$ $\left.P_{2}\right) \odot K_{1}$. The representation of vertices $v \in\left(P_{n} \times P_{2}\right) \odot K_{1}$ by $B$ are
$r\left(v_{i 1} \mid B\right)=(i, i+1)$ and $r\left(v_{i 2} \mid B\right)=(i+1, i)$, for $1 \leq i \leq n$, $r\left(u_{i 1} \mid B\right)=\left(d\left(v_{i 1}, u_{11}\right)+1, d\left(v_{i 1}, u_{12}\right)+1\right)$
and $r\left(u_{i 2} \mid B\right)=\left(d\left(v_{i 2}, u_{11}\right)+1, d\left(v_{i 2}, u_{12}\right)+1\right)$, for $2 \leq i \leq n$.
All of those representation are distinct. Therefore, $\operatorname{dim}\left(\left(P_{n} \times P_{2}\right) \odot K_{1}\right)=$ 2.

Open problem 1. Find the dimension of $\left(P_{n} \times P_{m}\right) \odot K_{1}$, for $n \geq 3$ and $m \geq 3$.

Theorem 3. For $n \geq 3$ and $1 \leq m \leq 2$

$$
\operatorname{dim}\left(\left(K_{n} \times P_{2}\right) \odot K_{1}\right)= \begin{cases}n-1, & m=1 \\ n, & m=2\end{cases}
$$

Proof Let $v_{i j}=\left(v_{i}, v_{j}\right)$ is a vertex in $K_{n} \times P_{2}$, where $v_{i} \in K_{n}, v_{j} \in P_{2}$, $1 \leq i \leq n$, and $1 \leq j \leq 2$. Let $u_{i j}$ is a pendant vertex of $v_{i j}$.

Case 1. $m=1$. By a contradiction, we show $\operatorname{dim}\left(\left(K_{n} \times P_{1}\right) \odot K_{1}\right) \geq$ $n-1$. Suppose that $B$ is a basis of $\left(K_{n} \times P_{1}\right) \odot K_{1}$ with $|B|<n-1$. There are two vertices $v$ and $w \in K_{n} \times P_{1}$ such that $r(v \mid B)=r(w \mid B)$, a
contradiction. Now, we show $\operatorname{dim}\left(K_{n} \odot K_{1}\right) \leq n-1$ by choose a resolving set $B=\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\} \subseteq K_{n} \times P_{1}$ in $\left(K_{n} \times P_{1}\right) \odot K_{1}$. The representation of vertices $v \in\left(K_{n} \times P_{1}\right) \odot K_{1}$ by $B$ are

$$
\begin{aligned}
& r\left(v_{n 1} \mid B\right)=(1,1, \cdots, 1) \\
& r\left(u_{n} \mid B\right)=(2,2, \cdots, 2) \\
& r\left(u_{i 1} \mid B\right)=(\cdots, 2,1,2, \cdots), \text { for } 1 \leq i \leq n-1
\end{aligned}
$$

vertex $u_{i 1}$ is adjacent with $v_{i}$ and has distance 2 from all other vertices of $B$. All of those representations are distinct. Therefore, $\left.\operatorname{dim}\left(K_{n} \times P_{1}\right) \odot K_{1}\right)=$ $n-1$.

Case 2. $m=2$. By contradiction, we will show that $\operatorname{dim}\left(\left(K_{n} \times P_{2}\right) \odot K_{1}\right)$ $\geq n$. Assume that $B$ is a basis of $\left(K_{n} \times P_{2}\right) \odot K_{1}$, with $|B|<n$. If $B \subseteq\left\{v_{11}, v_{21}, \cdots, v_{n 1}\right\}$ or $B \subseteq\left\{v_{12}, v_{22}, \cdots, v_{n 2}\right\}$, let be the previous one, then there exist $k \in\{1,2, \cdots, n\}$ such that $r\left(u_{k 1} \mid B\right)=\{2,2, \cdots, 2\}=$ $r\left(v_{k 2} \mid B\right)$, a contradiction. Otherwise, there exist $k, l \in\{1,2, \cdots, n\}$ such that $r\left(u_{k j} \mid B\right)=r\left(u_{l j} \mid B\right)$, for $1 \leq j \leq 2$, a contradiction too. We will show that $\operatorname{dim}\left(\left(K_{n} \times P_{2}\right) \odot K_{1}\right) \leq n$ by choosing a resolving set $B=$ $\left\{u_{11}, u_{21}, \cdots, u_{n 1}\right\}$. The representation of vertices $v \in\left(K_{n} \times P_{2}\right) \odot K_{1}$ by $B$ are

$$
r\left(v_{i 1} \mid B\right)=\{\cdots, 2,1,2, \cdots\}
$$

$v_{i 1}$ is adjacent with $u_{i 1}$ and have distance 2 with the others vertex in $B$,

$$
\begin{aligned}
& r\left(v_{i 2} \mid B\right)=\{\cdots, 3,2,3, \cdots\} \\
& r\left(u_{i 2} \mid B\right)=\{\cdots, 4,3,4, \cdots\}
\end{aligned}
$$

It makes all representations of vertices in $\left(K_{n} \times P_{2}\right) \odot K_{1}$ are distinct.
Open problem 2. Find the dimension of $\left(K_{n} \times P_{m}\right) \odot K_{1}$, for $n \geq 3$ and $m \geq 3$.

Next, we will use the idea of distance similar introduced by Saenpholphat and Zhang in [9] to determine the dimension of corona graph $G \odot \overline{K_{m}}$, for any graph $G$ and $m \geq 2$. Two vertices $u$ and $v$ of a connected graph $G$ are defined to be distance similar if $d(u, x)=d(v, x)$ for all $x \in V(G)-\{u, v\}$. Some of their properties can be found in the following observations.

Observation 1 ([9]). Two vertices $u$ and $v$ of a connected graph $G$ are distance similar if and only if (1) uv $\notin E(G)$ and $N(u)=N(v)$ or (2) $u v \in E(G)$ and $N[u]=N[v]$.

Observation 2 ([9]). Distance similarity in a connected graph $G$ is an equivalence relation on $V(G)$.

Observation 3 ([9]). If $U$ is a distance similar equivalence class of $a$ connected graph $G$, then $U$ is either independent in $G$ or in $\bar{G}$.

Observation 4 ([9]). If $U$ is a distance similar equivalence class in a connected graph $G$ with $|U|=p \geq 2$, then every resolving set of $G$ contains at least $p-1$ vertices from $U$.

Theorem 4. If $G \odot \overline{K_{m}}$, with $|G|=n$ and $m \geq 2$, $\operatorname{dim}\left(G \odot \overline{K_{m}}\right)=n(m-1)$.
Proof Let $G \odot \overline{K_{m}}$, where $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $\left(\overline{K_{m}}\right)_{i}: u_{1 i}$, $u_{2 i}, \cdots, u_{m i}$ is copy of $\overline{K_{m}}$ that joining with $v_{i}$. Let $d_{i j}$ be the distance between two vertices $v_{i}$ and $v_{j}$ in $G$. For every $i \in\{1,2, \cdots, n\}$, every pair vertices $u, v \in\left(\overline{K_{m}}\right)_{i}$ holds $d(u, x)=d(v, x)$ for all $x \in V\left(G \odot \overline{K_{m}}\right)-\{u, v\}$. Further, $\left(\overline{K_{m}}\right)_{i}$ is a distance similar equivalence class of $G \odot \overline{K_{m}}$. By using Observation 2, we have $\operatorname{dim}\left(G \odot \overline{K_{m}}\right) \geq n(m-1)$. Next, we will show that $\operatorname{dim}(G) \leq n(m-1)$. Let $B=\left\{B_{1}, B_{2}, \cdots, B_{n}\right\}$, where $B_{i}$ is a basis of $K_{1} \odot\left(\overline{K_{m}}\right)_{i}$. Without loss of generality, let $B_{i}=\left\{u_{1 i}, u_{2 i}, \cdots, u_{(m-1) i}\right\}$, for every $i \in\{1,2, \cdots, n\}$. The representation of another vertices in $G \odot \overline{K_{m}}$ are

$$
\begin{aligned}
& r\left(u_{m i} \mid B\right)=(\cdots, \underbrace{2,2, \cdots, 2}_{\text {coord. } u_{m i} \text { by } B_{i}}, \cdots), \\
& r\left(v_{i} \mid B\right)=(\cdots, \underbrace{1,1, \cdots, 1}_{\text {coord. } v_{i} \text { by } B_{i}}, \cdots) .
\end{aligned}
$$

It makes the representation of every vertex $v$ in $G$ by $B$ is unique. Then $B$ is a resolving set. So, $\operatorname{dim}(G) \leq n(m-1)$.

For corona product $G \odot H$, if $G \cong K_{1}$ and $H \cong \overline{K_{m}}, G \odot H$ is equal to star $\operatorname{Star}(m)=K_{1}+\overline{K_{m}}$. For this graph, if we use Theorem 4 then $\operatorname{dim}(\operatorname{Star}(m))=m-1$. This is the same result if we use Theorem A (iv) or Theorem A (v).

Now, we will determine of a graph with pendant edges more general than corona graphs $G \odot \overline{K_{m}}$. Let $G$ is a connected graph with order $n$. Let every vertex $v_{i}$ of $G$ is joining with $m_{i}$ number of pendant edges, $m_{i} \geq 2$ and $1 \leq i \leq n$.

Theorem 5. For $n \geq 2$,

$$
\operatorname{dim}(G)=\sum_{i=1}^{n}\left(m_{i}-1\right)
$$

Proof Similar prove with Theorem 4.
Open problem 3. Find the dimension of $G \odot \overline{K_{m}}$, with $|G|=n$ and $m \geq 1$.

## References

[1] P.S. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang, On $k$ dimensional graphs and their bases, Period. Math. Hungar., 46:1 (2003), 9-15.
[2] J. Caceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo, C. Seara, and D. R. Wood, On the metric dimension of cartesian products of graphs, Discrete Math., submitted.
[3] J. Caceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo, and C. Seara, On the metric dimension of some families of graphs, Electronic Notes in Discrete Math., 22 (2005), 129-133.
[4] G.G. Chappell, J. Gimbel, and C. Hartman, Bounds on the metric and partition dimensions of a graph, preprint.
[5] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99-113.
[6] G. Chartrand, and L. Lesniak, Graphs and Digraphs, 3rd ed., Chapman and Hall/CRC, 2000.
[7] M. Fehr, S. Gosselin, and O.R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math., 306 (2006), 31-41.
[8] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars. Combin., 2 (1976), 191-195.
[9] V. Saenpholphat and P. Zhang, Some results on connected resolvability in graphs, Congr. Numer., 158 (2002), 5-19.
[10] P.J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549-559.
[11] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22 (1988), 445-455.


[^0]:    ${ }^{1}$ Permanent address: Department of MIPA, Gedung TG lantai 6, Universitas Surabaya, Jalan Raya Kalirungkut Surabaya 60292, Indonesia

