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Abstract

For an ordered set W = {w1, w2, · · · , wk} of vertices and a vertex v in a
connected graph G, the representation of v with respect to W is the or-
dered k-tuple r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)) where d(x, y)
represents the distance between the vertices x and y. The set W is
called a resolving set for G if every vertex of G has a distinct repre-
sentation. A resolving set containing a minimum number of vertices is
called a basis for G. The metric dimension of G, denoted by dim(G),
is the number of vertices in a basis of G. A graph G corona H, G⊙H,
is defined as a graph which formed by taking n copies of graphs H1,
H2, · · · , Hn of H and connecting i-th vertex of G to the vertices of Hi.
In this paper, we determine the metric dimension of corona product
graphs G⊙H, the lower bound of the metric dimension of K1 +H and
determine some exact values of the metric dimension of G⊙H for some
particular graphs H.

Keywords and phrases: Resolving set, metric dimension, basis, corona
product graph.

2000 Mathematics Subject Classifications: 05C12

1 Introduction

In this paper we consider finite and simple graphs. The vertex and edge sets of
a graph G are denoted by V (G) and E(G), respectively. For a further reference
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please see Chartrand and Lesniak [4].

The distance dG(u, v) between two vertices u and v in a connected graph
G is the length of a shortest u − v path in G. The distance is only denoted
by d(x, y) if we know the context of the graph G. For an ordered set W =
{w1, w2, · · · , wk} ⊆ V (G) of vertices, we refer to the ordered k-tuple r(v|W )
= (d(v, w1), d(v, w2), · · · , d(v, wk)) as the (metric) representation of v with
respect to W. The set W is called a resolving set for G if r(u|W ) = r(v|W )
implies u = v for all u, v ∈ G. A resolving set with minimum cardinality is
called a minimum resolving set or a basis. The metric dimension of a graph
G, dim(G), is the number of vertices in a basis for G. To determine whether
W is a resolving set for G, we only need to investigate the representations of
the vertices in V (G)\W , since the representation of each wi ∈ W has ’0’ in
the ith-ordinate; and so it is always unique. If d(u, x) ̸= d(v, x), we shall say
that vertex x distinguishes the vertices u and v and the vertices u and v are
distinguished by x Likewise, if r(u|S) ̸= r(v|S), we shall say that the set S
distinguishes vertices u and v.

The first papers discussing the notion of a (minimum) resolving set were
written by Slater [19] and Harary and Melter [8]. Garey and Johnson [7] have
proved that the problem of computing the metric dimension for general graphs
is NP -complete. The metric dimension of amalgamation of cycle and complete
graphs are widely investigated in [11, 12]. Manuel et al. [16, 15] determined
the metric dimension of graphs which are designed for multiprocessor inter-
connection networks. Some researchers defined and investigated the family of
graphs related to their metric dimension. Hernando et al. [9] investigated the
extremal problem of the family of connected graphs with metric dimension
β and diameter, and Javaid et al. [13] for the family of regular graphs with
constant metric dimension.

Chartrand et al. [5] has characterized all graphs having metric dimensions
1, n − 1, or n− 2. They also determined the metric dimensions of some well-
known families of graphs such as paths, cycles, complete graphs, and trees.
Their results can be summarized as follows

Theorem A [5] Let G be a connected graph of order n ≥ 2.

(i) dim(G) = 1 if and only if G = Pn.

(ii) dim(G) = n− 1 if and only if G = Kn.

(iii) For n ≥ 4, dim(G) = n − 2 if and only if G = Kr,s, (r, s ≥ 1), G =
Kr +Ks, (r ≥ 1, s ≥ 2), or G = Kr + (K1 ∪Ks), (r, s ≥ 1).

(iv) For n ≥ 3, dim(Cn) = 2.
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(v) If T is a tree other than a path, then dim(T ) = σ(T )−ex(T ), where σ(T )
denotes the sum of the terminal degrees of the major vertices of T , and
ex(T ) denotes the number of the exterior major vertices of T .

Saenpholphat and Zhang in [17] have discussed the notion of distance similar
in a graph. The neighbourhood N(v) of a vertex v in a graph G is all of vertices
in a graph G which adjacent to v. The closed neighbourhood N [v] of a vertex
v in a graph G is N(v) ∪ v. Two vertices u and v of a connected graph G are
said to be distance similar if d(u, x) = d(v, x) for all x ∈ V (G)−{u, v}. They
observed the following properties.

Proposition B Two vertices u and v of a connected graph G are distance
similar if and only if (1) uv /∈ E(G) and N(u) = N(v) or (2) uv ∈ E(G) and
N [u] = N [v].

Proposition C Distance similarity in a connected graph G is an equivalence
relation on V (G).

Proposition D If U is a distance similar equivalence class of a connected
graph G, then U is either independent in G or in G.

Proposition E If U is a distance similar equivalence class in a connected
graph G with |U | = p ≥ 2, then every resolving set of G contains at least p− 1
vertices from U .

Other researchers also considered the metric dimension of the graphs formed
by operations of graph such as joint, Cartesian, and composition product of
graphs. Caceres et al. in [2] stated the results of metric dimension of joint
graphs. Caceres et al. in [3] investigated the characteristics of Cartesian
product of graphs. Saputro et al. in [18] determined the metric dimension of
Composition product of graphs. Iswadi et al. in [10] investigated the metric
dimension of corona product G ⊙ K1 for some particular graph G. In this
paper, we continue and determine a general result of the metric dimension of
corona product of graphs for any graph G and H. Furthermore, we determine
the exact value of the metric dimension of corona product of the graph G with
n-ary tree T .
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2 Corona Product of Graphs

Let G be a connected graph of order n and H (not necessarily connected) be a
graph with |H| ≥ 2. A graph G corona H, G⊙H, is defined as a graph which
formed by taking n copies of graphs H1, H2, · · · , Hn of H and connecting
i-th vertex of G to the vertices of Hi. Throughout this section, we refer to
Hi as a i-th copy of H connected to i-th vertex of G in G ⊙ H for every
i ∈ {1, 2, · · · , n}.

We extend the idea of distance similar. Let G be a connected graph. Two
vertices u and v in a subgraph H of G are said to be distance similar with
respect to H if d(u, x) = d(v, x) for all x ∈ V (G) − V (H). We observed this
following fact for the graph of G⊙H.

Observation 1. Let G be a connected graph and H be a graph with order at
least 2. Two vertices u, v in Hi is distance similar with respect to Hi.

We also have a distance property of two vertices x and y in H or in Hi

subgraph G⊙H. A vertex u ∈ G is called a dominant vertex if d(u, v) = 1 for
other vertices v ∈ G.

Lemma 1. Let G be a connected graph and H be a graph with order at least
2. If H contains a dominant vertex v then dH(x, y) = dG⊙H(x, y), for every x,
y in H or in a subgraph Hi of G⊙H.

Proof. Let v be a dominant vertex of H and x, y be in H. If xy ∈ E(H) then
dH(x, y) = 1 = dG⊙H(x, y). If xy /∈ E(H) then dH(x, y) = dH(x, v)+dH(v, y) =
2 = dG⊙H(x, v) + dG⊙H(v, y) = dG⊙H(x, y). Then, dH(x, y) = dG⊙H(x, y), for
every x, y in H. By using similar reason with two previous sentences, we also
have a conclusion dG⊙H(x, y) = dH(x, y), for every x, y in Hi.

By using the similar reason with the proof of Lemma 1, we can prove this
following lemma.

Lemma 2. Let G be a connected graph and H be a graph with order at least
2. Then dK1+H(x, y) = dG⊙H(x, y), for every x, y in a subgraph H of K1 +H
or in a subgraph Hi of G⊙H.

By using Observation 1, we have the following lemma.

Lemma 3. Let G be a connected graph of order n and H be a graph with order
at least 2.
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(i) If S is a resolving set of G ⊙ H then V (Hi) ∩ S ̸= ∅ for every i ∈
{1, . . . , n}.

(ii) If B is a basis of G⊙H then V (G) ∩B = ∅.

Proof. (i) Suppose there exists i ∈ {1, . . . , n} such that V (Hi) ∩ S = ∅. Let
x, y ∈ V (Hi). By using Observation 1, dG⊙H(x, u) = dG⊙H(y, u) for every
u ∈ S, a contradiction.
(ii) Suppose that V (G) ∩ B ̸= ∅. We will show that S ′ = B − V (G) is a
resolving set for G⊙H. From (i), it is clear that S ′ ̸= ∅. Let x, y two different
vertices in G⊙H. We have four cases:
Case 1: x, y ∈ V (Hi) for every i ∈ {1, . . . , n}. By using (i), there are some
v ∈ V (Hi) ∩ S ′ such that d(x, v) ̸= d(y, v).
Case 2: x ∈ V (Hi) and y ∈ V (Hj), for every i ̸= j ∈ {1, . . . , n}. Let
v ∈ V (Hi) ∩ S ′. We have d(x, v) ≤ 2 < 3 ≤ d(y, v).
Case 3: x, y ∈ V (G). Let x = vi, for some i ∈ {1, . . . , n} and v ∈ V (Hi) ∩ S ′.
We have d(x, v) = 1 < d(y, x) + d(x, v) = d(y, v).
Case 4: x ∈ V (Hi) for some i ∈ {1, . . . , n} and y ∈ V (G). Let y = vj
for some j ∈ {1, . . . , n}. There exist v ∈ V (Hj) ∩ S ′ such that d(x, v) =
d(x, vi) + d(vi, vj) + d(vj, v) > d(vj, v) = d(y, v).
Then S ′ is a resolving set for G⊙H where |S ′| < |B|. We have a contradiction
with B is a basis of G⊙H.

The following theorem determine the metric dimension of the graph G
corona H.

Theorem 1. Let G be a connected graph, H be a graph with order at least 2.
Then

dim(G⊙H) =

{
|G|dim(H), if H contains a dominant vertex;
|G|dim(K1 +H), otherwise.

Proof. Let B be a basis of G ⊙ H. Let Hi be a i-th copy of H connected to
i-th vertex of G in G⊙H.
Case 1: H contains a dominant vertex.
Suppose that dim(G ⊙ H) < |G|dim(H). Let Bi = B ∩ V (Hi). Since B ∩
V (G) = ∅ (using Lemma 3 (ii)), there exist Bj such that |Bj| < dim(H). It
means that every two vertices ofHj can be distinguished by only vertices in Bj.
Therefore, Bj is a resolving set for Hj(∼= H), a contradiction. Hence, we have
dim(G⊙H) ≥ |G|dim(H). Now, we will prove that dim(G⊙H) ≤ |G|dim(H).
Let Wi be a basis of Hi. Set S =

∪n
i=1 Wi. We will show that S is a resolving

set of G⊙H. Since S ∩V (G) = ∅, by using the same technique in the proof of
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Lemma 3 (ii), we can prove that the set S is a resolving set of G⊙H. Hence,
dim(G⊙H) ≤ |S| = |

∪n
i=1 W | = |G|dim(H).

Case 2: H does not contain a dominant vertex.
This case is proved by a similar way to Case 1, by considering dim(K1 +H)
instead of dim(H) and applying Lemma 2 instead of Lemma 1. To prove
dim(G⊙H) ≤ |G|dim(K1 +H), we choose S ′ =

∪n
i=1 W

′
i , where W

′
i is a basis

of K1 +Hi.

In Theorem 1, the formula of the metric dimension of corona product of
graphs depends on the metric dimension of K1 +H. Caceres et.al. [2] stated
the lower bound of metric dimension of join graph G+H as follow.

Theorem B [2] Let G and H be a connected graph. Then

dim(G+K) ≥ dim(G) + dim(H).

By using this Caceres’s result we obtain the following corollary.

Corollary 1. For any connected graph H, we have

dim(K1 +H) ≥ dim(H) + 1.

The lower bound in Corollary 1 is sharp because H ∼= P2 fulfills the equality.
In [1], Buczkowski et. al. determined the metric dimension of the wheel graph
Wn = K1 + Cn. They stated that dim(W3) = 3, dim(W4) = dim(W5) = 2,
dim(W6) = 3, and if n ≥ 7, then dim(Wn) =

⌊
2n+2

5

⌋
. Caceres et.al. in [2] have

determined the metric dimension of the fan graph Fn = K1+Pn, dim(K1+P1)
= dim(P2) = 1, dim(K1 + Pi) = 2 for i ∈ {2, 3, 4, 5, 6}, and if n ≥ 7, then
dim(Fn) =

⌊
2n+2

5

⌋
.

These results and the idea of the distance similar of a dominating set in a
graph suggest the metric dimension of corona product of any graph G with
a complete graph Kn, the graph Cn, or the graph Pn. Since Kn contains a
dominant vertex, by using Theorem 1, we have this following corollary.

Corollary 2. Let Kn be a complete graph. For n ≥ 2,

dim(G⊙Kn) = |G|(n− 1).

Since Cn and Pn do not contain a dominant vertex for n ≥ 7 then by using
Theorem 1, we have this following corollary.

Corollary 3. Let G be a connected graph and H is isomorphic to Cn or Pn.
If n ≥ 7, then

dim(G⊙H) = |G|
⌊
2m+ 2

5

⌋
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For n = 3, 4, 5, and 6, dim(G ⊙ Cn) = k|G|, with k = 3, 2, 2, and
3,respectively. For n = 2, 3, 4, 5, and 6, dim(G ⊙ Pn) = q|G|, with q =
1, 2, 2, 2, and 2, respectively.

We have also known the metric dimension of K1 + Sn, where Sn is a star
with n pendants. Since the metric dimension of K1 + Sn is isomorphic to a
complete bipartite graph K2,n, by using Theorem A (iii), dim(K1 + Sn) = n.
Hence, we have the following corollary.

Corollary 4. Let Sn be a star graph, n ≥ 2. Then, we have

dim(G⊙ Sn) = |G|n.

3 Corona Product of a Graph and an n-ary

Tree

In the this section, we will determine the metric dimension of a joint graph
K1 + T , where T is a n-ary tree. Then by using Theorem 1, we obtain the
metric dimension of the corona product of G⊙ T .

For T ∼= K2, the joint graph K1 + T ∼= C3. All vertices in C3 are the
dominant vertices and dim(C3) = 2. For T ∼= Sn, form the previous section,
dim(K1 + Sn) = n.

Proposition 1. Let T be a tree other than a star. Then, K1 + T has exactly
one dominant vertex and every resolving set S of K1 + T is a subset of T .

Proof. Since Sn is the only tree with one dominant vertex then a joint graph
K1 + T , where T � K2 or Sn, only contain exactly one dominant vertex, i.e
the vertex of K1, say v. Let S be a resolving set of K1+T . Since v is the only
vertex of K1 + T at distance 1 to every vertex of T then the representation of
v with respect to S is unique. Hence, v /∈ S. So, S ⊆ T .

A rooted tree is a pair (T, r), where T is a tree and r ∈ V (T ) is a distin-
guished vertex of T called the root. In this paper, we simplify the notation of
a rooted tree by T . If xy ∈ E(T ) is an edge and the vertex x lies on the unique
path from y to the root, we say that x is the father of y and y is a child of x.
A complete n-ary tree T is a rooted tree whose every vertex, except the leaves,
has exactly n children.

The i-th level of an n-ary tree T , denoted by T i, is the set of vertices in T
at distance i from the root vertex. For u in T i, we said u be on the level i in
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an n-ary tree T . Then, the level 0, T 0, contains a single vertex r. The set of
children of a vertex u in T i−1 is denoted by T i

{u}, and so T i =
∪

u∈T i−1 T i
{u}.

The set of vertices at distance at most i and at least k from the root r is
denoted by T i

k =
∪i

j=k T
j.

If all leaves of a complete n-ary tree T are on the same level l then T is
called a perfect complete n-ary tree with depth l, denoted by T (n, l). The
order of T (n, l) is n0 + n1 + · · · + nl, and the number of vertices on level i is
|T i(n, l)| = ni. From now on, we use the term n-ary tree for a perfect complete
n-ary. For n = 1, K1 + T (1, l) ∼= K1 + Pl+1 = Fl+1 and dim(K1 + T (1, l)) =⌊
2(l+1)+2

5

⌋
. For l = 1, K1 +T (n, 1) ∼= K1 +Sn = K2,n and dim(K1 +T (n, 1))=

n. So, we will determine the metric dimension of dim(K1 + T (n, l)) where
T (n, l) is an n-ary tree with the depth l for n ≥ 2 and l ≥ 2.

Lemma 4. Let S be a resolving set of a graph K1+T (n, l) and i ∈ {1, 2, · · · , l}.
If S ∩ T i+1(n, l) = ∅ then at least n− 1 vertices of T i

{u} must be in S for every

u in T i−1(n, l).

Proof. Suppose that there is a vertex u in T i−1(n, l) such that |T i
{u}(n, l)∩S| <

n − 1. Then there are two vertices x, y in T i−1(n, l) but not in S such that
they have the same distance (1 or 2) to every vertex of S, a contradiction.

Lemma 4 holds for i = l since all vertices u in T l(n, l) has no children. If
S ∩ T i+1(n, l) = ∅ then by using Lemma 4 we have at most one vertex x in
T i
{u}(n, l) but not in S for every u in T i−1(n, l).

Lemma 5. If S be a resolving set of a graph K1+T (n, l) and i ∈ {1, 2, · · · , l}
then at least ni − 1 vertices of T i+1

i−1 (n, l) must be in S.

Proof. Suppose that |T i+1
i−1 (n, l) ∩ S| < ni − 1 for some i. Then, we have

|T i(n, l)− S| = |T i(n, l)− (T i(n, l) ∩ S)|
≥ ni − (ni − 2− |T i+1(n, l) ∩ S| − |T i−1(n, l) ∩ S|)
= |T i+1(n, l) ∩ S|+ |T i−1(n, l) ∩ S|+ 2

There are two cases:
Case 1: |T i+1(n, l) ∩ S| = 0. There are two subcases.
Subcase 1.1: |T i−1(n, l) ∩ S| = 0.
In this case, |T i(n, l) − S| ≥ 2. Hence, we have at least two vertices x and y
in T i(n, l) which all of their parents and children are not in S. Then, x and y
have the same distance 2 to every vertex of S, a contradiction.
Subcase 1.2: |T i−1(n, l) ∩ S| ≠ 0.
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This means |T i(n, l)− S| ≥ |T i−1(n, l) ∩ S|+ 2. Since, by using Lemma 4, we
have at most one vertex x in T i

{u}(n, l) but not in S for every u in T i−1(n, l)

then |T i−1(n, l)∩S| vertices in T i−1(n, l)∩S must have at most |T i−1(n, l)∩S|
children in T i(n, l) − S. Then, there are at least two pairs of parent-child ux
and vy where u, v in T i−1(n, l) − S, x, y in T i(n, l) − S, and x ∈ T i

{u}(n, l),

y ∈ T i
{v}(n, l). So, x and y have the same distance 2 to every vertex of S, a

contradiction.
Case 2: |T i+1(n, l) ∩ S| ̸= 0. There are two subcases.
Subcase 2.1: |T i−1(n, l) ∩ S| = 0.
We have |T i(n, l) − S| ≥ |T i+1(n, l) ∩ S| + 2. Since a vertex w in T i+1 ∩ S
distinguishes two vertices x any y in T i(n, l) where one of them is the parent
of w and the other is not, then |T i+1(n, l)∩S| vertices of T i+1(n, l) distinguish
at most |T i+1(n, l) ∩ S| parents in T i(n, l) − S. Hence, we have at least two
vertices x and y in T i(n, l) which all of their parents and children are not in S.
Then, x and y have the same distance 2 to every vertex of S, a contradiction.
Subcase 2.2: |T i−1(n, l) ∩ S| ≠ 0.
In this subcase, |T i(n, l) − S| ≥ |T i+1(n, l) ∩ S| + |T i−1(n, l) ∩ S| + 2. By
using similar reason to Subcases 1.2 and 2.1, we have |T i−1(n, l) ∩ S| vertices
in T i−1(n, l)−S must have at most |T i−1(n, l)∩S| children in T i(n, l)−S and
|T i+1(n, l)∩S| vertices of T i+1(n, l) distinguish at most |T i+1(n, l)∩S| parents
in T i(n, l) − S. Then, we have at least two vertices x and y in T i(n, l) which
all of their parents and children are not in S. Then, x and y have the same
distance 2 to every vertex of S, a contradiction.

Lemma 5 is also hold for i = l since all vertices u in T l(n, l) has no children.
Lemma 4 and 5 give us a procedure to construct a resolving set S of T (n, l)
which have a minimal number of vertices. The procedure is done by applying
Lemma 4 and 5 from i = l up to i = 1 consecutively. The minimal condition of
a resolving set S in T (n, l) can be reached if we have as many possible T i(n, l)’s
such that T i(n, l) ∩ S = ∅ and the other levels fulfill Lemma 4 and 5.

Let S be a resolving set of K1 + T (n, l). By using Proposition 1, we have
S ⊆ T (n, l). For i = l, since all vertices of T l(n, l) have no children then, by
using Lemma 4 and 5, at least nl− 1 vertices of T l

l−1(n, l) must be in S. These
vertices can be distributed in levels T l(n, l) and T l−1(n, l) such that

|T l(n, l) ∩ S| = (n− 1) + · · ·+ (n− 1)︸ ︷︷ ︸
nl−1 times

= nl − nl−1

and |T l−1(n, l)∩S| = nl−1− 1 vertices. If we use this distribution, there exists
a vertex in T l(n, l) at distance 2 to every vertex of S. We denote this vertex
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by x(2,2,··· ,2).

To reach a minimal condition for S, we can assume that T l−2(n, l)∩ S = ∅.
By using this assumption, we can reapply Lemma 4 and 5 for i = l− 3. Thus,
we have at least nl−3 − 1 vertices of T l−3

l−4 (n, l) must be in S. Since x(2,2,··· ,2) is

in T l(n, l) then we must have at least nl−3 vertices of T l−2
l−4 (n, l) must be in S.

We then repeat this process up to level 0.

By using this procedure, we can construct a minimal resolving set of a
T (n, l). This resolving set will contain (nl−1)+nl−3+· · ·+ni =

∑t
j=0 n

l−3j−1
vertices, where l = 3t + i, i = 0, 1, 2. We will prove that this is indeed the
metric dimension of K1 + T (n, l), where T (n, l) is n-ary tree with a depth l,
as stated in the following theorem.

Theorem 2. For n, l ≥ 2, l = 3t + i, t ≥ 0, and i = 0, 1, 2, let T (n, l) be a
n-ary with a depth l. Then,

dim(K1 + T (n, l)) =
t∑

j=0

nl−3j − 1.

Proof. We will show that dim(K1 + T (n, l)) ≥
∑t

j=0 n
l−3j − 1. Let S be a

resolving set of K1 + T (n, l). By using Proposition 1, we have S ⊆ T (n, l).
Without losing the generalization, we put x2,2,··· ,2 in T l(n, l). We will show that
|S| ≥ (nl−1)+nl−3+· · ·+ni =

∑t
j=0 n

l−3j−1. Suppose that |S| <
∑t

j=0 n
l−3j−

1. By using Lemma 5, it suffices to show that |T i+1
i−1 (n, l) ∩ S| = ni − 1 for

some i ∈ {1, 2, · · · , l − 1} is impossible. If |T i+1
i−1 (n, l) ∩ S| = ni − 1 for some

i ∈ {1, 2, · · · , l − 1} then |T i − S| = |T i+1(n, l) ∩ S|+ |T i−1(n, l) ∩ S|+ 1. We
have these four possibilities:

(i.) |T i+1(n, l) ∩ S| = 0 and |T i−1(n, l) ∩ S| = 0.

(ii.) |T i+1(n, l) ∩ S| = 0 and |T i−1(n, l) ∩ S| ̸= 0.

(iii.) |T i+1(n, l) ∩ S| ̸= 0 and |T i−1(n, l) ∩ S| = 0.

(iV.) |T i+1(n, l) ∩ S| ̸= 0 and |T i−1(n, l) ∩ S| ̸= 0.

By using similar reason to the proof of Lemma 5, for all the above possibilities,
we have another vertex x(2,2,··· ,2) in T i(n, l) where i ∈ {1, 2, · · · , l − 1}, a

contradiction. Hence, we have dim(K1 + T (n, l)) ≥
∑t

j=0 n
l−3j − 1.

Now, we prove the upper bound. For l = 3t + i, i = 0, 1, 2, and j ∈
{0, 1, · · · , t}, set Wl−3j and Wl−1−3j as follow. Wl−3j = T l−3j(n, l) except one

vertex x in T l−3j
{u} (n, l) for every u in T l−3j−1

{u} (n, l) where j ∈ {0, 1, · · · , t},
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Wl−1 = T l−1(n, l) − {u}, and Wl−1−3j = T l−1−3j where j ∈ {1, · · · , t}. Then,
we set W =

∪t
j=0(Wl−3j ∪Wl−1−3j). We have

|W | =
t∑

j=0

|Wl−3j|+
t∑

j=0

|Wl−1−3j|

=
t∑

j=0

(nl−3j − nl−1−3j) + (nl−1 − 1) +
t∑

j=1

(nl−1−3j)

=
t∑

j=0

nl−3j − 1

We will prove that W is a resolving set of K1 + T (n, l). The vertex K1 has
distance 1 to every vertex of W , which is a unique representation with respect
to W . Since every vertex in T l−3j(n, l)−Wl−3j have distance 1 to their parent
in Wl−1−3j and 2 to other vertices of W , except for one vertex in T l(n, l)−Wl,
having a parent in T l−1(n, l). Thus, x have a unique representation with
respect to W for every x in T l−3j(n, l) −Wl−3j. For a vertex in T l(n, l), this
vertex has distance 2 to every vertex of S. This is also a unique representation
with respect to W . For a vertex in T l−1(n, l), this vertex have distance 1 to
each of their children in Wl. For every vertex z in T l−3j−2(n, l) has distance
1 uniquely to every their children in Wl−3j−2(n, l). Then, all of vertices in
K1 + T (n, l) have distinct representation with respect to W . Hence, W is a
resolving set ofK1+T (n, l). Therefore, dim(K1+T (n, l)) ≤

∑t
j=0 n

l−3j−1.

Let B be a basis of graph K1 + T (n, l), where T (n, l) is a n-ary tree with
a depth l, for n ≥ 2, l = 3t + i, t ≥ 0, and i = 0, 1, 2. From Lemma 4
and Theorem 2, we assume that a vertex x(2,2,··· ,2) in T l(n, l). There are nl

possibilities for the position of x(2,2,··· ,2) in T l(n, l). But these bases are unique
up to isomorphism. The position of x(2,2,··· ,2) can also be moved to level T l−3j,
j = 1, · · · , t. For each of these levels, the basis form a unique basis up to
isomorphism. Since there are t+ 1 ways to put x(2,2,··· ,2) in T (n, l) then there
are t+ 1 different bases of K1 + T (up to isomorphism).

Since a tree which is not isomorphic to K2 and Sn has no dominant vertices,
by using Theorem 1 and 2, we have the following corollary.

Corollary 5. For n, l ≥ 2, l = 3t + i, t ≥ 0, and i = 0, 1, 2, let G be a
connected graph and T (n, l) be a n-ary tree with a depth l. Then,

dim(G⊙ T (n, l)) = |G|

(
t∑

j=0

nl−3j − 1

)
.
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