Correspondence Wim J. Quax w.j.quax@rug.nl

PA0305 of *Pseudomonas aeruginosa* is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily

Mariana Wahjudi,^{1,2}† Evelina Papaioannou,¹† Oktavia Hendrawati,¹ Aart H. G. van Assen,¹ Ronald van Merkerk,¹ Robbert H. Cool,¹ Gerrit J. Poelarends¹ and Wim J. Quax¹

¹Department of Pharmaceutical Biology, University of Groningen, 9713AV Groningen, The Netherlands

²Faculty of Technobiology, University of Surabaya, Indonesia

The Pseudomonas aeruginosa PAO1 genome has at least two genes, pvdQ and quiP, encoding acylhomoserine lactone (AHL) acylases. Two additional genes, pa1893 and pa0305, have been predicted to encode penicillin acylase proteins, but have not been characterized. Initial studies on a pa0305 transposon insertion mutant suggested that the gene is not related to the AHL growth phenotype of P. aeruginosa. The close similarity (67%) of pa0305 to HacB, an AHL acylase of Pseudomonas syringae, prompted us to investigate whether the PA0305 protein might also function as an AHL acylase. The pa0305 gene has been cloned and the protein (PA0305) has been overproduced, purified and subjected to functional characterization. Analysis of the purified protein showed that, like β -lactam acylases, PA0305 undergoes post-translational processing resulting in α - and β -subunits, with the catalytic serine as the first amino acid of the β -subunit, strongly suggesting that PA0305 is a member of the N-terminal nucleophile hydrolase superfamily. Using a biosensor assay, PA0305his was shown to degrade AHLs with acyl side chains ranging in length from 6 to 14 carbons. Kinetics studies using N-octanoyl-L-homoserine lactone (C_R -HSL) and N-(3-oxo-dodecanovl)-L-homoserine lactone (3-oxo- C_{12} -HSL) as substrates showed that the enzyme has a robust activity towards these two AHLs, with apparent K_{cat}/K_m values of 0.14×10⁴ M⁻¹ s⁻¹ towards C₈-HSL and 7.8×10⁴ M⁻¹ s⁻¹ towards 3-oxo-C₁₂-HSL. Overexpression of the pa0305 gene in P. aeruginosa showed significant reductions in both accumulation of 3-oxo-C12-HSL and expression of virulence factors. A mutant P. aeruginosa strain with a deleted pa0305 gene showed a slightly increased capacity to kill Caenorhabditis elegans compared with the P. aeruginosa PAO1 wild-type strain and the PAO1 strain carrying a plasmid overexpressing pa0305. The harmful effects of the $\Delta pa0305$ strain on the animals were most visible at 5 days post-exposure and the mortality rate of the animals fed on the $\Delta pa0305$ strain was faster than for the animals fed on either the wild-type strain or the strain overexpressing pa0305. In conclusion, the pa0305 gene encodes an efficient acylase with activity towards longchain homoserine lactones, including 3-oxo-C12-HSL, the natural quorum sensing signal molecule in *P. aeruginosa*, and we propose to name this acylase HacB.

Accepted 28 February 2011

Revised 17 February 2011

Received 20 July 2010

INTRODUCTION

Pseudomonas aeruginosa is an opportunistic pathogen, often detected in immune-compromised patients and

hospital-acquired infections. A high percentage of cystic fibrosis patients acquire chronic *P. aeruginosa* infections leading to high mortality rates within this group (Lyczak *et al.*, 2000; Tatterson *et al.*, 2001). *P. aeruginosa* employs a complex network of quorum sensing (QS) systems necessary to control expression of density-dependent genes, including genes encoding virulence factors. Induction of these genes depends on production, secretion and detection of the 3-oxo- C_{12} -HSL and the C₄-HSL signal molecules [full abbreviations for all the acylhomoserine lactones (AHLs) used in this study are given in Table 1]. The high

[†]These authors contributed equally to this work.

Abbreviations: AHL, acylhomoserine lactone; BrMMC, 4-bromomethoxy-7-methyl coumarin; HSL, homoserine lactone; QS, quorum sensing; RLU, relative light units.

A supplementary figure, illustrating detection of AHLs with TLC, is available with the online version of this paper.

resistance of this bacterium to common antibiotics has been linked to biofilm formation and to the regulation of the QS system (de Kievit, 2009). Inhibition of QS, a process referred to as quorum quenching, is thought to provide means of fighting *P. aeruginosa* infections (Papaioannou *et al.*, 2009).

One of the ways quorum quenching in P. aeruginosa can be achieved is by degrading the 3-oxo-C₁₂-HSL and C₄-HSL signal molecules, which can occur via two different enzymes: acylases or lactonases. A number of studies reported the identification of acylases capable of degrading AHLs produced by Gram-negative bacteria. These acylases all belong to the Ntn-hydrolase superfamily. Ralstonia sp. strain XJ12B produces the AiiD acylase, degrading 3-oxo-C₁₀-HSL (Lin et al., 2003). P. aeruginosa PAO1 produces at least two AHL acylases, PA2385 (PvdQ) (Huang et al., 2003; Sio et al., 2006) and PA1032 (QuiP) (Huang et al., 2006), both of which have been experimentally proven to degrade longchain AHLs (Huang et al., 2006; Sio et al., 2006). The recently determined 3D crystal structure of PvdQ in complex with 3-oxo-C₁₂ has confirmed the Ntn-hydrolysis mechanism typical of this class of acylases (Bokhove et al., 2010). Interestingly, this enzyme has a large hydrophobic binding pocket that can accommodate the 3-oxo-C₁₂ acyl chain, which is consistent with the observed quenching of the 3-oxo-C12-HSL endogenous to P. aeruginosa.

In the *P. aeruginosa* PAO1 genome, besides pvdQ and quiP, two additional genes, pa1893 and pa0305, have been identified as genes encoding hypothetical penicillin acylase proteins belonging to the Ntn-hydrolase superfamily. The pa0305 gene is predicted to encode a 795 amino acid polypeptide that shows 26% sequence similarity to PvdQ and 29% similarity to QuiP. PA0305 also has 67% sequence similarity to HacB, an AHL acylase of *Pseudomonas syringae* that was initially annotated as penicillin acylase (Shepherd & Lindow, 2009). The function of the pa0305 gene and its product has not been experimentally tested to date, to our knowledge. Initial studies on a pa0305 transposon insertion

Table 1. Different acylhomoserine lactones (AHLs) used in this study

Full name of AHL	Abbreviation
N-Butanoyl-DL-homoserine lactone	C ₄ -HSL
N-Hexanoyl-DL-homoserine lactone	C ₆ -HSL
N - β -Ketocaproyl-DL-homoserine lactone	3-oxo-C ₆ -HSL
N-Heptanoyl-DL-homoserine lactone	C7-HSL
N-Octanoyl-DL-homoserine lactone	C ₈ -HSL
N-3-Oxo-octanoyl-L-homoserine lactone	3-oxo-C ₈ -HSL
N-Decanoyl-DL-homoserine lactone	C ₁₀ -HSL
N-3-Oxo-decanoyl-L-homoserine lactone	3-oxo-C ₁₀ -HSL
N-Dodecanoyl-DL-homoserine lactone	C ₁₂ -HSL
N-3-Oxo-dodecanoyl-L-homoserine lactone	3-oxo-C ₁₂ -HSL
N-Tetradecanoyl-DL-homoserine lactone	C ₁₄ -HSL
N-3-Oxo-tetradecanoyl-L-homoserine lactone	3-oxo-C ₁₄ -HSL

mutant strain did not demonstrate any defect in growth on C_{10} -HSL compared with the wild-type strain, thus suggesting that the gene is not involved in the metabolism of AHLs (Huang *et al.*, 2006).

PA0305 exhibits acylase activity towards AHLs

Based on the high sequence similarity between PA0305 and HacB, we reasoned that the PA0305 protein might also function as an AHL acylase. The aim of this study was to investigate whether PA0305 is able to degrade acylhomoserine lactones and whether it functions as a quorum quenching acylase. Herein, we report that the PA0305 protein of *P. aeruginosa* PAO1 degrades medium- to long-chain AHLs with high efficiency resulting in a reduction of production of quorum-sensing-dependent virulence factors in *P. aeruginosa*. We also, for the first time to our knowledge, report kinetic data for an AHL acylase.

METHODS

Bacterial strains and growth media. *Escherichia coli* and *P. aeruginosa* strains were routinely grown and maintained in Luria–Bertani (LB) broth (0.5 % sodium chloride, 1 % tryptone and 0.5 % yeast extract, buffered with 50 mM MOPS, pH 7.0), unless otherwise indicated. Where necessary, gentamicin (10 μ g ml⁻¹ for *E. coli* and 100 μ g ml⁻¹ for *P. aeruginosa*) and ampicillin (100 μ g ml⁻¹ for *E. coli* and 300 μ g ml⁻¹ for *P. aeruginosa*) were added to maintain the plasmids. AHLs (Table 1) used in this study were purchased from Sigma and Fluka.

Cloning of the pa0305 gene and expression in E. coli and P. aeruginosa. Chromosomal DNA was isolated from an overnight culture of P. aeruginosa PAO1 using a GenElute bacterial Genome DNA kit (Sigma). The ORF encoding the acylase gene (bases 346 690-344 303) (Stover et al., 2000) was amplified from chromosomal DNA by PCR using the primer pair ForA and RevA (Table 2). The PCR product was digested with NdeI and HindIII restriction enzymes and ligated to the similarly digested pET-20b plasmid, containing a 6-His tag (Novagen). The resulting pET-pa0305 his plasmid was used for the construction of pUCP-pa0305his by reamplifying (using primers ForB and RevB) and subcloning the pa0305 fragment containing a Cterminal 6-His tag (Table 2). For purification and enzyme activity assays the pUCP-pa0305his construct was transformed into E. coli Origami. pUCP-pa0305 was constructed in a similar fashion, but now omitting the 6-His tag. For pa0305 overexpression in PAO1 and pa0305 complementation in PAO1 Apa0305 strains, the ORF was amplified by PCR from P. aeruginosa PAO1 chromosomal DNA using the ForB and RevC primers (Table 2). After digestion of the PCR product with SacI and XbaI restriction enzymes, the product was ligated to the pMMB67EH vector in which gene expression is under the control of a tac promoter. The resulting construct was then transformed into P. aeruginosa cells using the protocol described by Smith & Iglewski (1989).

Purification of PA0305his protein. *E. coli* Origami cells containing the pUCP-*pa0305*his plasmid were grown in 2 × tryptone yeast extract (TY) medium (0.5% sodium chloride, 0.6% tryptone and 1% yeast extract) supplemented with 100 µg ampicillin ml⁻¹ and 0.1% glycerol, for 40 h at 37 °C. The culture was induced with 0.4 mM IPTG at OD₆₀₀ 0.8–1.0. Cells were harvested by centrifugation, sonicated in lysis buffer (50 mM Tris/HCl pH 8.0, 2 mM EDTA, 0.1% Triton X-100) and centrifuged (30 min, 20 000 g, 4 °C). The cell-free extract was then used for purification of PA0305his on an Ni-NTA agarose gravity column (Qiagen). The protein was eluted with 250 mM imidazole in 50 mM Tris/HCl pH 8.0 and afterwards desalted using 50 mM Tris/ HCl (pH 8.0) on a PD10 desalting column (GE Healthcare) (Otten

Strain, plasmid or oligonucleotide	Relevant characteristic or sequence $(5' \rightarrow 3')$	Source or reference
Strains		
P. aeruginosa PAO1	Wild-type	Holloway collection
P. aeruginosa PAO1 ∆pa0305	Deleted pa0305, PAO1 derivative	This study
E. coli S17-1 λ pir	Δ ara-leu7697 Δ lacX74 Δ phoAPvuII phoR araD139 ahpC galE galK rpsL (Sm ^r)	Simon <i>et al.</i> (1989)
	$F'[lac^+(lacI^q) pro]$ gor522::Tn10 (Tc ^r) trxB::kan	
E. coli Origami	Δara–leu7697 ΔlacX74 ΔphoAPvuII phoR araD139 ahpC galE galK rpsL	Novagen
	F'[lac ⁺ (lacl ^q) pro] gor522::Tn10 (Tc ^R) trxB::kan	
<i>E. coli</i> JM109::pSB401	Biosensor for detecting C ₆ -, C ₇ - and C ₈ -HSL and its 3-O-form	Swift et al. (1997)
<i>E. coli</i> JM109::pSB536	Biosensor for detecting C ₄ -HSL	Swift et al. (1997)
<i>E. coli</i> JM109::pSB1075	Biosensor for detecting C110- to C14-HSL and their 3-O-forms	Winson et al. (1998)
Plasmids		
pET-20b	Expression vector	Novagen
pET-20b- <i>pa0305</i> his	pET20b containing pa0305 with a six-His tag at the C-terminus	This study
pUCP18	E. coli-Pseudomonas shuttle vectors derived from pUC18, pMB1, pRO1600	West et al. (1994)
	replicon, $lacZ\alpha$, bla , $Ap^{R} Cb^{R}$	
pUCP- <i>pa0305</i> his	pUCP18 containing pa0305 with a six-His tag at the C-terminus	This study
pUCP- <i>pa0305</i>	pUCP18 containing pa0305	This study
pMMB67EH	AmpR IncQ, tac promoter	Fürste et al. (1986)
pMMB- <i>pa0305</i>	pMMB67EH containing pa0305	This study
pEX18Gm	Gm^r , $oriT^+$ sac B^+ , gene replacement vector	Hoang et al. (1998)
pEX-Δ <i>pa0305</i>	pEX18Gm containing flanking regions of <i>pa0305</i>	This study
Oligonucleotides		
ForA	CGCGCAATATACATATGAAACGCACCCTGACCGTGATCG	
RevA	CATTATATTAAGCTTGCGCTTCGGCTCCAGCACCAGCAC	
ForB	GGGGAAGAGCTCATGAAACGCACCCTGACCGTGATCG	
RevB	CCGTTGCACCTCTAGAAGTTATTGCTCAGCGGTGGCAGCAG	
RevC	TTAATTCTAGATCAGCGCTTCGGCTCCAGCACCA	
ForD	CAGAACCAGACCGACCTCTA	
RevD	CGGAACAGACGGTCGGTATC	
ForE	GGTAAGCTTCAAGCGGTTCTCGCTGAGTTC	
RevE	GCTCCAGCACACGCGTATGCATCGATCCTTTCTCCTTGTTGTA	
ForF	GCATACGCGTGTGCTGGAGCCGAAGCGCTGAG	
RevF	GCCGAATTCAACGCCTCCAAGCTGGTGACG	
ForG	CGTCGAGCTGGATCTCGATCTG	
RevG	GGCCGATCTACAATACCTACCG	
rpoD-For	GGGCGAAGAAGGAAATGGTC	
rpoD-Rev	CAGGTGGCGTAGGTGGAGAA	

et al., 2007). The purified protein was analysed on an SDS-PAGE gel. A Western blot was then carried out for immunodetection of the protein with Ni-NTA HRP conjugate (Qiagen).

Protein identification. To characterize the purified PA0305his protein, the α -subunit and the β -subunit-his were extracted from the gel, trypsin digested and analysed by using MALDI-TOF MS. Protein identification based on mass spectra was done by peptide mass fingerprinting using Mascot software (Matrix Science).

For N-terminal sequencing the purified PA0305his was loaded onto an SDS-PAGE gel. After separation, proteins were transferred onto a PVDF membrane (Sequi-Blot PVDF membrane, Bio-Rad) by semi-dry electroblotting. The membrane was then stained with Coomassie Briliant Blue (CBB) R-250 and the bands corresponding to the α -subunit and the β -subunit-his of PA0305his were excised. The first six residues of the subunits were determined by ABI Procise 494 sequencing (Alphalyse).

Preparation of mRNA and real-time PCR (QRT-PCR). Cells were harvested at the late-exponential growth phase. Total RNA was isolated and purified using the RNeasy mini kit (Qiagen), followed by DNase (Qiagen) on-column digestion according to the manufacturer's instructions. RNA was quantified by the A260: A280 ratio using a NanoDrop (ND-1000) spectrophotometer. cDNA was synthesized with 1 µg total RNA as a template using the iScript cDNA Synthesis kit (Bio-Rad). Control reactions for detection of DNA contamination contained the RNA template but lacked iScript reverse transcriptase. The expression of the pa0305 gene in P. aeruginosa was quantified by QRT-PCR using the primer pair ForD and RevD (Table 2) with iQ SYBR Green Supermix (Bio-Rad) in an iCycler (Bio-Rad). Amplification was performed at 95 °C (10 min), followed by 40 cycles of 95 °C (15 s), 62 °C (30 s), followed by melting curve analysis. The rpoD gene was chosen as an internal housekeeping gene for the baseline control in the evaluation of pa0305 expression. The relative expression of pa0305 transcript was normalized to the rpoD gene and was quantified using the Pfaffl equation (Pfaffl, 2001). For each condition studied, two separate experiments were performed in triplicate.

Bio-activity assay. An aliquot $(2 \ \mu l)$ of 0.5 mg C₁₂-HSL ml⁻¹ in acetonitrile was placed in a 96-well microtitre plate (Lumitrac600,

GreinerBio). Acetonitrile was allowed to evaporate and the AHL was reconstituted in 100 μ l PBS buffer pH 7.4 (Gibco) containing 5 μ l of either cell-free extract or purified enzyme. The plate was incubated at 30 °C, at 70 r.p.m. After 4 h, 100 μ l of a 1:100 dilution of the luxbased *E. coli* pSB1075 biosensor was added to each well and the plate was further incubated for 6 h at 30 °C. Bioluminescence was detected on a FLUOstar Omega platereader (BMG labtech). As a control, reactions with only PBS mixed with the enzyme were conducted in the same way. All of the assays were performed in triplicate.

To determine the specificity of AHL-degradation activity, acetonitrile stocks of AHLs (Table 1) were transferred in a 96-well microtitre plate at a final concentration of 100, 10, 1 and 0.1 µg ml⁻¹ in the reaction mixture. The solvent was allowed to evaporate and the AHLs were reconstituted in 100 µl PBS pH 7.4 containing 2.5 µg purified enzyme. The plate was incubated at 30 °C, at 70 r.p.m. Next to this, control reactions using inactive enzyme were performed in the same way. The enzyme was inactivated by boiling a mixture of PBS with 2.5 µg enzyme at 100 °C for 15 min. After 4 h of incubation, 100 µl of a 1:100 dilution of the appropriate biosensor (E. coli pSB401, pSB536 or pSB1075) was added to each well and the plate was further incubated for 6 h at 30 °C. Bioluminescence was detected on a FLUOstar Omega platereader (BMG labtech). The experiments were performed in triplicate. The differences in relative light units (RLU) between experimental samples and controls were used to determine the degree of degradation of each AHL.

Analysis of C₈-HSL deacylase activity by HPLC. The assays were carried out using C8-HSL as described previously (Uroz et al., 2008). The reaction mixture consisted of 1 mM C8-HSL and 25 µg (~0.286 µM) of the enzyme in 1 ml PBS buffer pH 7.4 (Invitrogen). The mixture was incubated at 30 °C and 70 r.p.m. for 4 h. Three samples of 750 µl were taken at 0 and 4 h and processed for detection of the residual substrate, the released octanoic acid and the HSL. For detection of the substrate, residual C8-HSL in the reaction mixture was extracted twice with 750 µl ethyl acetate. Octanoic acid in the sample was extracted three times with hexane and dried under nitrogen streaming. Derivatization of the octanoic acid was then performed by addition of 4-bromomethoxy-7-methyl coumarin (BrMMC) reagent as described previously (Wolf & Korf, 1990). The presence of free HSL was determined by addition of 750 µl dansyl chloride (2.5 mg ml⁻¹) in acetone to the reaction mixture followed by overnight incubation at 37 °C (Lin et al., 2003). The mixture was dried under nitrogen streaming and neutralized using 50 µl 0.2 M HCl. After dilution with 250 µl acetonitrile, the sample was analysed by reverse-phase HPLC separation. As a control, reference HSL (final concentration 2 mM) was dansylated in parallel with the same reagents. The presence of C8-HSL residue and dansylated HSL was analysed by reverse-phase HPLC separation (Uroz et al., 2008; Lin et al., 2003).

HPLC analysis was performed using a Shimadzu-VP system. The column used was a LichroCART 125-4 Superspher 100 RP-18 endcapped. The mobile phase was water (solvent A) and acetonitrile (solvent B). The C_8 -HSL was detected at 219 nm, whereas the dansylated HSL was detected at 267 nm and the BrMMC-derivative of octanoic acid at 328 nm.

Kinetic studies of PA0305his on C₈-HSL and 3-oxo-C₁₂-HSL substrate. Kinetic studies were performed in 0.1 M phosphate buffer pH 7.5 at 30 °C (Lin *et al.*, 2003). For C₈-HSL kinetics, six different concentrations of the substrate (0.02–0.20 mM) were used, at which the substrate was completely soluble. For each of these concentrations, the substrate was incubated with 25 µg PA0305his (ml reaction volume)⁻¹ for 2 min. A 100 µl sample of the reaction mixture was taken and mixed directly with 100 µl *o*-phthalaldehyde (OPA) solution in a 96-well microtitre plate and the A_{340} was measured

spectrophotometrically. To obtain a calibration curve of the OPAderivative of the HSL reference, the same procedure was performed in an enzymic mixture containing HSL. The calibration curve is a straight line that could be fitted with the following equation: y=1.959x+0.6966 ($R^2=0.9882$). The initial rates (mM s⁻¹) were plotted versus the concentration of substrate (mM), which gives a straight line. Assuming that [S]< $< K_m$, the slope of the line equals ($K_{\text{cat}} \times [\text{E}]/K_m$. Thus, dividing the slope by the enzyme concentration results in a value for the apparent K_{cat}/K_m .

For 3-oxo- C_{12} -HSL kinetics, the substrate (at seven different concentrations, 0.01–0.12 mM, where the substrate was soluble) was incubated with 10 µg PA0305his (ml reaction volume)⁻¹ for 1 min. A 1 ml sample was mixed directly with 1 ml ethyl acetate to stop the reaction and extracted three times with the same volume of ethyl acetate. The amount of HSL product released was quantified as described above.

Construction of precise gene deletions in PAO1. A precise chromosomal deletion of *pa0305* was constructed as follows. The flanking regions of the target gene were amplified with PAO1 chromosomal DNA as a template, using the primer pair ForE and RevE and the primer pair ForF and RevF. The two resulting fragments were joined together in a second PCR round using ForA and RevB primers. The fusion product was then digested with *Hind*III and *Eco*RI and cloned into the similarly digested pEX18-Gm (Hoang *et al.*, 1998). The subsequent deletion procedure was performed as described previously (Papaioannou *et al.*, 2009). The sequences of the primers and probes (ForG and RevG) are listed in Table 2. A double deletion ($\Delta pvdQ$, $\Delta quiP$) and a triple deletion strain ($\Delta pvdQ$, $\Delta quiP$, $\Delta pa0305$) were constructed with the same approach using similar primer sets.

Elastase assay. Elastolytic activity of extracellular supernatant was assayed in the following manner. Supernatant samples of 0.1 ml were added in Eppendorf tubes containing 20 mg Elastin Congo red (ECR; Sigma) suspended in 0.90 ml ECR buffer (100 mM Tris, 1 mM CaCl₂, pH 7.5). After 4 h incubation with agitation, insoluble ECR was removed by centrifugation (20 000 g, 5 min, 4 °C). The absorbance of the supernatants measured at 495 nm was divided by the OD₆₀₀ of the culture. LB medium was used as a negative control (Ohman *et al.*, 1980).

Pyocyanin assay. Pyocyanin was extracted from the supernatants and measured by the method previously described by Essar *et al.* (1990). A 5 ml supernatant of culture grown in LB was extracted with 3 ml chloroform. The chloroform layer was transferred to a fresh tube and re-extracted with 1 ml 0.2 M HCl. After centrifugation, the A_{520} of the HCl fraction was measured. Concentrations, expressed as micrograms pyocyanin produced per millilitre culture supernatant, were determined as $(OD_{520} \times 17.072)/OD_{600}$ (Essar *et al.*, 1990).

Quantification of 3-oxo-C₁₂-HSL, C₄-HSL and 2-heptyl-3hydroxy-4(1H)-quinolone (POS) production. The amount of 3oxo-C₁₂-HSL produced by the PAO1 parental strain and the PAO1 $\Delta pvdQ\Delta quiP$ and PAO1 $\Delta pvdQ\Delta quiP\Delta pa0305$ mutant strains was determined using the biosensor *E. coli* (pSB1075), which produces light in response to long AHLs (Winson *et al.*, 1998). 3-Oxo-C₁₂-HSL concentrations were measured 4, 15, 27 and 50 h after initiation of bacterial growth. Samples taken at the specific time points mentioned were centrifuged for 10 min at 5000 *g* and each of the supernatants was filtered through a 0.2 µm pore filter (Whatman). The filtered supernatants were then frozen in liquid nitrogen and stored at -20 °C until further analysis. Once all samples were collected, a bioassay was started at 37 °C by adding 180 µl of a 1:100 dilution of an overnight *E. coli* (pSB1075) culture and 20 µl of the supernatant sample to be analysed. The amount of light generated by the biosensor was read every hour during a 24 h time-course in a multifunctional microplate reader (FLUOstar Omega, BMG Labtech). Data points obtained immediately prior to the maximum light production were used for comparisons (approximately 9 h after initiation of the bioassay). For quantification of the accumulation levels of 3-oxo-C₁₂-HSL and C₄-HSL by TLC, 2 μ l of the acidified supernatants from the same amount of cells was spotted on a silica gel 60 F254 TLC plate (Merck) for 3-oxo-C₁₂-HSL and a reverse-phase TLC plate for C₄-HSL. The separation and detection were performed as described by Yates *et al.* (2002). For quantification of accumulation levels of PQS, the compound was detected as previously described (Diggle *et al.*, 2003).

Quorum quenching activity of expressed PA0305 in P. aeruginosa using a Caenorhabditis elegans model. Slow-killing kinetics of C. elegans by PAO1 and its derivatives were determined by using the procedure described previously (Papaioannou et al., 2009). Briefly, Pseudomonas strains were grown overnight at 37 °C in LB broth supplemented with appropriate antibiotics and then diluted 100-fold into fresh broth. Nematode growth medium plates (59 mm diameter) were then spread with 80 µl of the respective culture. After the plates were incubated at 37 °C for 24 h and allowed to equilibrate to room temperature for 30 min, 50 larval stage 4 (L4) nematodes from stock plates were transferred onto the P. aeruginosa lawn (PAO1, PAO1 $\Delta pa0305$, PAO1 $\Delta lasRlasI$). The plates were then incubated at 24 °C and scored for living and dead worms every 3-4 h for 7 days. For statistical purposes, a minimum of four replicates per trial was performed. E. coli OP50 was used as a negative control to evaluate background levels of worm death. A worm was considered to be dead when it failed to respond to plate tapping or gentle touch with a platinum wire. Worms that died as a result of getting stuck to the wall of the plate were excluded from the analysis. Results are presented as the percentage of living nematodes on the killing plates compared with their survival on the E. coli OP50 control strain. Statistical analysis was performed using the two-sample Student's t-test in the statistical programming language R. The results were plotted using PyLab, a python package for data analysis and visualization.

RESULTS

Expression and purification of PA0305

The *P. aeruginosa pa0305* gene was amplified and cloned into the pUCP18 vector. Using this construct, expression of the gene in *E. coli* Origami resulted in the synthesis of a protein of about 60 kDa as shown by SDS-PAGE with

Coomassie staining (Fig. 1, lane 2). The size of this protein matches the predicted size of the β -subunit of the putative acylase encoded by pa0305. Because of the relatively lowlevel expression of the gene, overproduction of the α subunit was not observed. To facilitate protein detection and purification, the recombinant enzyme was also produced in E. coli Origami as a C-terminal His-tagged protein. In comparison with native PA0305 (without a fusion tag), however, the His-tagged PA0305 protein was produced at even lower levels and could not be detected by Coomassie staining (Fig. 1, lane 5). Nonetheless, the Histagged protein could be efficiently purified by a Ni-based immobilized-metal-affinity chromatography protocol. SDS-PAGE analysis of the purified protein revealed three protein bands (Fig. 1, lane 7). The band of about 65 kDa represents the β -subunit, whereas the two bands of about 26 and 28 kDa represent different non-mature forms of the α subunit (as discussed below). The identity of the 65 kDa band as the His-tagged β -subunit of the PA0305 protein was confirmed by Western blotting with anti-His antibody (Fig. 1, lane 11). Expression of the pa0305 gene from the vector pMMB67EH in P. aeruginosa resulted in very low amounts of PA0305 (data not shown) and purification from P. aeruginosa was not further pursued.

Characterization of purified PA0305his

The purified PA0305his protein was subjected to MS and protein sequencing to establish the identity of the three protein bands observed on the SDS-PAGE gel (Fig. 1, lane 7). MALDI-TOF MS analysis of the protein band of about 65 kDa revealed that this protein is the β -subunit of PA0305. N-terminal sequencing revealed that the first six amino acid residues of the β -subunit are, as predicted, Ser-Asn-Ala-Trp-Val-Val. From these observations, it can be concluded that the β -subunit of PA0305 is correctly formed in *E. coli*, resulting in a protein with an N-terminal serine.

MALDI-TOF MS analysis of the two smaller proteins revealed similar MS spectra, indicating that both proteins correspond to the α -subunit. The spectrum of the 26 kDa

protein band is consistent with that expected for the Cterminally processed α -subunit (i.e. with signal peptide but without spacer peptide), whereas the spectrum of the 28 kDa protein band is consistent with the α -subunit that includes both the signal peptide and the spacer peptide. Nterminal sequencing of the smallest (26 kDa) protein band revealed the sequence Met-Lys-Arg-Thr-Leu-Thr. This observation further confirms that the signal peptide indeed remains attached to the α -subunit. Apparently, the signal peptide is not efficiently removed in *E. coli*, which suggests that the protein is not properly secreted.

Analytical gel filtration was performed as described in Methods with thyroglobulin (670 kDa), ferritin (440 kDa) and aldolase (158 kDa) as reference proteins. PA0305his eluted with a retention time corresponding to a molecular mass of approximately 400 kDa (data not shown), a size that corresponds to a tetra-heterodimer.

PA0305 is an AHL acylase

The lux-based *E. coli* pSB1075 biosensor was used to test cellfree extracts for the presence of AHL-degrading activity. C_{12} -HSL was used as the substrate since it resembles the *P. aeruginosa* signal molecule, 3-oxo- C_{12} -HSL. Incubation of C_{12} -HSL with cell-free extract prepared from *E. coli* cells overproducing PA0305his resulted in the conversion of C_{12} -HSL, as detected by a clear reduction in bioluminescence (Fig. 2). Cell-free extracts prepared from the negative control strain (*E. coli* cells containing an empty plasmid) did not show this reduction in bioluminescence (Fig. 2). These data clearly indicate that PA0305 is a C_{12} -HSL-degrading enzyme.

Having established that PA0305 exhibits activity towards C_{12} -HSL, various AHLs with alkyl chains ranging from C_4

Fig. 2. Activity of cell-free extract of *E. coli* Origami producing PA0305his on C_{12} -HSL substrate. After incubation of C_{12} -HSL with extracts, the non-degraded substrate was analysed using the biosensor strain pSB1075 as described in Methods. The amount of light produced in response to C_{12} -HSL was quantified as relative light units (RLU). Lanes: 1, C_{12} -HSL incubated without cell extract; 2, C_{12} -HSL incubated with cell-free extract of *E. coli* with empty vector; 3, C_{12} -HSL incubated with cell-free extract of *E. coli* producing PA0305his. Error bars, SD.

to C₁₄ (for abbreviations see Table 1) were tested as potential substrates for purified PA0305his. In these activity assays, purified PA0305his was mixed with four different concentrations of AHLs, ranging from 0.01 to 10 μ g ml⁻¹ and the conversion of the AHLs was followed by measuring the quenching of light using a panel of three biosensor strains (Table 3). At each AHL concentration, the activity of the purified enzyme was compared with heat-inactivated protein. The PA0305his protein showed activity towards AHL with alkyl chains ranging from C_6 to C14. The highest degradation rate (93-fold decrease in substrate concentration) was observed on C8-HSL at 10 µg ml^{-1} . At the lowest concentration, 0.01 µg ml^{-1} , the degradation rate was the highest on 3-oxo-C₁₂-HSL (64fold). Activity against the 3-oxo- forms was detected from 3-oxo- C_{10} -HSL to 3-oxo- C_{14} -HSL (Table 3).

To investigate whether PA0305 functions as a lactonase or an acylase, the products of the conversion of C8-HSL were subjected to HPLC analysis. The reaction was performed by exposing C₈-HSL substrate to PA0305his for 4 h. C₈-HSL was detected as a specific peak at the retention time of 5.85 min (Fig. 3). Compared with a negative control with inactivated enzyme, PA0305his caused a significant reduction of the C₈-HSL concentration at 4 h. Detection of HSL liberated by acylase activity was performed by dansylating the free amine of HSL. Fig. 3 shows the presence of dansylated HSL in the 4 h sample, resulting from the cleavage of the amide bond between the HSL and the acyl chain. The specific peak was detected at a retention time of 6.33 min. This dansylated product, clearly visible in the reaction mixture with active PA0305his, was absent in the control, indicating that degradation of the substrate was caused by acylase activity. To confirm the presence of octanoic acid released by acylase activity, derivatization of the fatty acid using BrMMC was performed. HPLC analysis showed that the specific peak of the BrMMC-octanoic acid derivative was present at 12.59 min in C8-HSL samples exposed to active PA0305 for 4 h. This peak was absent in the control samples with inactivated enzyme. These results clearly indicate that PA0305 is an AHL acylase that converts C8-HSL to HSL and octanoic acid.

Kinetic studies of PA0305his on AHLs

Having established that PA0305 functions as an AHL acylase, kinetic parameters were determined for the PA0305-catalysed conversion of C₈-HSL and 3-oxo-C₁₂-HSL. The C₈-HSL was chosen because it shows the highest activity with PA0305his at high concentrations and 3-oxo-C₁₂-HSL was chosen since it is one of the signal molecules produced by *P. aeruginosa*. The initial rates of these reactions were dependent on the concentration of the respective substrate. However, saturation with C₈-HSL and 3-oxo-C₁₂-HSL was not achieved for PA0305 because the low solubility of these AHLs in aqueous buffer does not permit rate measurements at high substrate concentrations. Hence, K_{cat}/K_m values were determined using seven low

Table 3. Specificity of purified PA0305his for AHL substrates

Degradation is expressed as RLU, generated by three lux-based biosensors, which produce light in response to the AHLs. The initial concentration of AHL (0.01, 0.1, 1 or 10 μ g ml⁻¹) is given. The degradation assay was carried out in PBS buffer (pH 7.4) with 25 μ g of either active or inactivated enzyme ml⁻¹ and incubated at 30 °C with shaking. The remaining amount of AHLs was detected by a suitable lux-based biosensor at 30°C for 6 h.

AHL substrate	Purified PA0305his protein	Degradation (10 ⁻³ ×RLU)			
		0.01	0.1	1	10
C ₄ -HSL*	Inactivated	22.3 ± 1.0	70.3 ± 0.9	74.8 ± 0.9	81.2 ± 4.7
	Active	20.2 ± 2.5	68.9 ± 5.8	74.2 ± 7.1	84.2 ± 9.6
C ₆ -HSL†	Inactivated	2.3 ± 0.2	13.0 ± 2.0	40.0 ± 4.1	70.0 ± 7.5
	Active	0.94 ± 0.15	7.2 ± 0.4	31.0 ± 0.6	66.6 ± 2.8
3-oxo-C ₆ -HSL†	Inactivated	72.4 ± 0.3	99 ± 2	115 ± 6	133 ± 4
	Active	78.7 ± 8	107 ± 13	121 ± 12	136 ± 12
C ₇ -HSL†	Inactivated	5.8 ± 0.7	25.7 ± 3.0	61.8 ± 6.7	89.2 ± 3.5
	Active	0.73 ± 0.13	4.7 ± 0.6	23.9 ± 1.5	79.7 ± 1.8
C ₈ -HSL†	Inactivated	0.18 ± 0.03	2.6 ± 0.2	12.9 ± 0.4	34.4 ± 0.5
	Active	0.036 ± 0.008	0.06 ± 0.01	0.11 ± 0.01	0.37 ± 0.10
3-oxo-C ₈ -HSL†	Inactivated	41.8 ± 1.6	77.7 ± 0.5	92.8 ± 6.7	99.0 ± 1.5
	Active	32.1 ± 1.2	73.0 ± 4.9	93.1 ± 7.5	103 ± 6
C ₁₀ -HSL‡	Inactivated	0.080 ± 0.004	2.5 ± 0.3	8.6 ± 0.9	9.7 ± 1.6
	Active	0.064 ± 0.016	0.076 ± 0.012	0.105 ± 0.023	0.6 ± 0.1
3-oxo-C ₁₀ -HSL‡	Inactivated	8.3 ± 2.1	10.9 ± 0.9	11.3 ± 1.3	13.0 ± 0.4
	Active	0.240 ± 0.085	0.5 ± 0.1	2.5 ± 0.4	8.6 ± 0.4
C ₁₂ -HSL‡	Inactivated	2.41 ± 0.47	8.6 ± 0.3	9.56 ± 0.12	9.15 ± 0.13
	Active	0.110 ± 0.008	0.13 ± 0.01	0.41 ± 0.05	3.27 ± 0.25
3-oxo-C ₁₂ -HSL‡	Inactivated	10.96 ± 0.20	10.5 ± 0.1	10.0 ± 0.1	9.20 ± 0.12
	Active	0.171 ± 0.044	0.42 ± 0.08	1.57 ± 0.13	5.52 ± 0.25
C ₁₄ -HSL‡	Inactivated	4.49 ± 0.15	9.2 ± 0.6	8.9 ± 0.9	8.23 ± 0.46
	Active	0.124 ± 0.026	0.16 ± 0.03	0.46 ± 0.05	1.38 ± 0.03
3-oxo-C ₁₄ -HSL‡	Inactivated	8.0 ± 1.4	9.4 ± 0.4	9.33 ± 0.15	8.70 ± 0.25
	Active	0.19 ± 0.02	0.19 ± 0.01	0.81 ± 0.11	1.32 ± 0.13

*Biosensor *E. coli* JM109::pSB536. †Biosensor *E. coli* JM109::pSB401.

#Biosensor *E. coli* JM109::pSB1075.

substrate concentrations where the substrate is still soluble and the detection of HSL formed was performed using the derivatization method as described above. A comparison of the values showed that PA0305 is 56-fold more efficient in catalysing the conversion of 3-oxo-C₁₂-HSL (K_{cat}/K_m =7.8 × 10⁴ M⁻¹ s⁻¹) than C₈-HSL (K_{cat}/K_m =0.14 × 10⁴ M⁻¹ s⁻¹).

Deletion of pa0305 in *P. aeruginosa* results in accumulation of 3-oxo-C₁₂-HSL

The kinetic studies with purified PA0305 have shown that the enzyme is quite efficient at degrading 3-oxo- C_{12} -HSL, which is a natural QS signal molecule in *P. aeruginosa*. This observation prompted us to investigate whether deletion of the *pa0305* gene in *P. aeruginosa* would affect the ability of this strain to accumulate 3-oxo- C_{12} -HSL. In order to detect the accumulation of 3-oxo- C_{12} -HSL in cell cultures, *P. aeruginosa* cells grown in LB were harvested at specific time points. The supernatants were subjected to detection of 3-oxo-C₁₂-HSL using biosensor E. coli JM109::pSB1075 (Fig. 4a). The kinetics of 3-oxo-C₁₂-HSL accumulation revealed that P. aeruginosa wild-type and P. aeruginosa $\Delta pa0305$ produced similar amounts of 3-oxo-C₁₂-HSL within 7 h post-inoculation. However, from 24 to 50 h post-inoculation, 3-oxo-C12-HSL was much more abundant in the $\Delta pa0305$ strain compared with the wild-type strain as seen after separation on TLC plates (see Supplementary Fig. S1, available with the online version of this paper). In order to exclude any influence from other AHL acylases encoded by P. aeruginosa, a triple deletion strain ($\Delta pvdQ$, $\Delta quiP$, $\Delta pa0305$) was constructed and compared with the double deletion strain ($\Delta pvdQ$, $\Delta quiP$). After 50 h, an approximately 250% increase in accumulation of 3-oxo-C₁₂-HSL was observed (Fig. 5). This suggests that PA0305 has a significant role in 3-oxo-C12-HSL degradation in P. aeruginosa cells grown in LB medium. Notably, while deletion of the pa0305 gene affects 3-oxo-C₁₂-HSL accumulation, no influence on the accumulation of the QS signal molecules C₄-HSL and PQS was observed (Fig. 4b).

Fig. 3. Identification of the products of the PA0305his-catalysed conversion of C_8 -HSL. C_8 -HSL was incubated with PA0305his for 4 h. Samples were taken at time 0 (upper panels) and after 4 h (middle panels) and were then treated for quantification by HPLC analysis of the residual C_8 -HSL and the octanoic acid and HSL released. Reduction of C_8 -HSL levels upon exposure to active PA0305his was corroborated with the occurrence of free octanoic acid and HSL, confirming that PA0305his is an acylase that cleaves the amide bond linking the HSL ring and the acyl chain. C_8 -HSL samples were extracted with ethyl acetate and injected into an RP₁₈ column as described in Methods. For efficient detection, octanoic acid was BrMMC-derivatized and HSL was dansylated, as described in Methods. Arrows indicate the specific peaks that were subjected to UV analyses (lower panels). The spectra of C_8 -HSL, BrMMC-derivatized octanoic acid and dansylated HSL are identical to those described by Uroz *et al.* (2008). AU, Absorbance units.

The effects of PA0305 on P. aeruginosa QS

The AHL hydrolysing capability of PA0305, both *in vitro* and *in vivo*, suggests that this enzyme may function as a quorum quencher in *P. aeruginosa*. To determine the ability of overexpressed PA0305 to interfere with the expression of QS-regulated functions, the *P. aeruginosa* wild-type and *P. aeruginosa* $\Delta pa0305$ strains were transformed with the pMMB-*pa0305* construct. As controls, the same strains were transformed with the empty plasmid (pMMB67EH). Gene expression was either constitutive or induced with IPTG.

Overexpression of the *pa0305* gene (LB growth, IPTG induction) in *P. aeruginosa* resulted in a significant reduction in elastolytic (LasB) activity throughout the growth phase, from 5 to 24 h post-inoculation (Fig. 6a). Pyocyanin production was also reduced after 5 h post-inoculation, but the reduction did not last until 24 h of growth (Fig. 6b). The accumulation of $3-\infty$ -C₁₂-HSL was

http://mic.sgmjournals.org

significantly reduced in all PA0305-overproducing strains and the amounts remained at low levels even after 24 h of growth (Fig. 7a). However, C₄-HSL accumulation levels were not altered and this signal molecule was abundant throughout the 24 h growth period (Fig. 7b). This observation is consistent with the finding that PA0305 is not active against C₄-HSL.

To prove that the reduced 3-oxo- C_{12} -HSL accumulation was correlated with the transcription of the *pa0305* gene, mRNA levels of the *pa0305* gene in all strains were quantified using QRT-PCR. All isolated total RNA samples were of good quality as shown by analysis of the samples on a formaldehyde agarose gel (data not shown). Furthermore, the RNA samples were free of chromosomal DNA, as indicated by the finding that no cDNA could be generated from the RNA samples in the absence of iScript transcriptase. The *rpoD* housekeeping gene was used as a control for comparison of the quantity and quality of all

Fig. 4. Quantification of AHLs produced in a time lapse experiment. Supernatant of LB cultures of the respective strains grown for 0–5 h was extracted as described previously (Yates *et al.*, 2002) and quantified in the bioluminescence assay. (a) Results of analysis with biosensor *E. coli* JM109::pSB1075 detecting 3-oxo-C₁₂-HSL. (b) Results of analysis with biosensor *E. coli* JM109::pSB536 detecting C₄-HSL. It can be seen that the pMMB-*pa0305*-harbouring strains accumulate much less 3-oxo-C₁₂-HSL over time as compared with the wild-type PAO1 strain and the $\Delta pa0305$ strain, whereas the accumulation of C₄-HSL is similar for all strains. \blacklozenge , Wild-type empty; \blacksquare , PAO1 pMMB-*pa0305*; \blacktriangle , PAO1 pEx- $\Delta pa0305$.

mRNAs. The expression of *pa0305* was normalized to the *rpoD* gene which had a similar expression profile in all strains. The amount of *pa0305* transcript present in the wild-type culture at 5 h was low (Table 4). The mRNA levels of *pa0305* were significantly higher in both the wild-type strain and the $\Delta pa0305$ strain harbouring the *pa0305* expression plasmid when compared with the control strains harbouring an empty plasmid.

Quorum quenching activity of overproduced PA0305 in *P. aeruginosa* using the *C. elegans* infection model

To assess whether either the deletion or overexpression of the *pa0305* gene in *P. aeruginosa* have any effect on the

Fig. 5. Accumulation of 3-oxo-C₁₂-HSL in HSL-acylase deletion strains. The PAO1 parental strain, the *P. aeruginosa* $\Delta pvdQ$, $\Delta quiP$ double mutant and the *P. aeruginosa* $\Delta pvdQ$, $\Delta quiP$, $\Delta pa0305$ triple mutant were screened for 3-oxo-C₁₂-HSL accumulation levels after 50 h of growth in LB medium. The graph illustrates the higher 3-oxo-C₁₂-HSL levels present in the $\Delta pvdQ$, $\Delta quiP$, $\Delta pa0305$ triple mutant, in which PA0305 is absent, compared with the PAO1 and the $\Delta pvdQ$, $\Delta quiP$ double mutant background levels, where PA0305 is still present. Error bars, sp.

pathogenicity of the bacterium, the killing kinetics of the wild-type PAO1 strain, the $\Delta pa0305$ strain and the pa0305 overexpressing PAO1 strain were determined using a C. elegans infection model and a slow killing assay as previously described by Tan & Ausubel (2000). In the slow killing assay, the LT₅₀ value (time taken for half of the C. elegans to die) for PAO1 was shown to be around 68 h. We chose to screen our mutants with this method as it is highly sensitive and allows discrimination between strains that only slightly differ in their ability to kill C. elegans. During the first 4 days there were no differences observed between worms feeding on the three different strains. Up to the completion of the assay no significant differences could be seen between the PAO1 parental strain and the derived PA0305-overexpressing strain (P>0.05). However, between days 5 and 7 after exposure, the harmful effects of the deletion of pa0305 were more profound. At day 7 postexposure only about 41% of the worms feeding on the deletion strain were alive compared with about 57 % of the worms fed on the PAO1 wild-type or pa0305 overexpressing strain (Fig. 8). Statistical analysis showed a significant difference between the PA0305 deletion strain and the PAO1 mutant for day 7 of the assay (P<0.05). These observations give an insight into the effect of the pa0305 gene on tempering the virulence of P. aeruginosa PAO1.

DISCUSSION

In recent years, numerous genes encoding new members of the Ntn-hydrolase superfamily have been discovered in the genomes of prokaryotes. The first characterized members of this superfamily were described as penicillin acylases and recently they have been more broadly classified as members of the family of β -lactam acylases. At present it is clear that β -lactam deacylation is unlikely to be the natural function of this class of enzymes, as this

Fig. 6. Effects of PA0305 overexpression on virulence factor production in *P. aeruginosa* PAO1 and PAO1 $\Delta pa0305$. The production of virulence factors was tested in wild-type and $\Delta pa0305$ strains carrying either an empty vector (pMMB) or the *pa0305*-expressing vector (pMMB-*pa0305*). The elastolytic activity (a) and pyocyanin production (b) in the supernatants of the respective strains are shown. Error bars, SD.

conversion does not inactivate penicillins or cephalosporins (Krzeslak *et al.*, 2007; Sio & Quax, 2004) and, hence, does not give a competitive advantage. For example, the paradigm of penicillin acylases, PGA from *E. coli*, generates a molecule with even higher antibiotic activity upon conversion of penicillin-G into 6-APA (Meevootisom *et al.*, 1983; Schumacher *et al.*, 1986). It has been argued that this conversion is therefore not likely to be the natural function of this industrially important enzyme. The *P. aeruginosa* PAO1 complete genome sequence revealed the presence of four genes with significant sequence similarity to penicillin and cephalosporin acylases. By now it has been established that two of these genes encode products, PvdQ and QuiP, that can deacylate long-chain AHLs resulting in quorum quenching, which points to a major physiological role for these enzymes (Huang *et al.*, 2006; Sio *et al.*, 2006). Phenotypic analysis of a *quiP* (quorum signal utilization and inactivation protein) transposon mutant showed that a strain carrying the transposon insertion was impaired in growth on decanoyl-HSL when compared with the parental strain. QuiP complementation revealed that, when *quiP* was constitutively expressed from a plasmid, AHL degrading activity potential was restored. A remarkable decrease in 3-oxo- C_{12} -HSL accumulation levels was

Fig. 7. Effects of PA0305 overproduction on accumulation of QS signal molecules in *P. aeruginosa* PAO1 and PAO1 $\Delta pa0305$. The same strains as described in Fig. 6 were also tested for the accumulation of 3-oxo-C₁₂-HSL as detected by luminescence measured with *E. coli* pSB1075 biosensor. (a) Overproduction of PA0305 reduces the accumulation of 3-oxo-C₁₂-HSL in wild-type and $\Delta pa0305$ supernatant. (b) *E. coli* pSB536, which is sensitive to C₄-HSL, was incubated with the same cell extracts. It can be concluded that overproduction of PA0305 does not reduce the accumulation of C₄-HSL. Error bars, sp.

Table 4. Fold changes of *pa0305* gene expression in *P. aeruginosa* strains

Cells were harvested at the late-exponential growth phase (5 h postinoculation). The *pa0305* expression levels of all strains were compared with the expression of PAO1 $\Delta pa0305$ strain harbouring an empty plasmid, which is given the value 1. All of the values were normalized to the housekeeping gene *rpoD*.

P. aeruginosa	Plasmid	Fold change
PAO1 wild-type	pMMB67EH	205 ± 35
	рММВ- <i>ра0305</i>	144488 ± 19344
PAO1 Δ <i>pa0305</i>	pMMB67EH	1 ± 0
	pMMB- <i>pa0305</i>	93335 ± 9506

detected when *quiP* was constitutively expressed in *P. aeruginosa.* Interestingly, even though QuiP has been proven to be involved in AHL utilization, this gene was not classified in microarray analysis as a QS-regulated gene. Similarly, PvdQ also effectively degrades AHL side chains ranging from 11 to 14 carbons and overexpression of this gene, as well as exogenous addition of purified protein in growing *P. aeruginosa* cultures, delays the accumulation of the 3-oxo- C_{12} -HSL molecule and as a result decreases the expression of virulence factors such as elastase and pyocyanin (Sio *et al.*, 2006).

Different organisms were also found to produce enzymes acting on autoinducer molecules and disrupting the QS systems. Apart from the AHL acylases produced by *P. aeruginosa*, *Ralstonia* strain XJ12B produces the AiiD AHL acylase that when expressed in *P. aeruginosa* results in reduction of virulence (Lin *et al.*, 2003). In addition to the AHL acylases, a second group of enzymes that act on autoinducer molecules have been identified. These enzymes are characterized as AHL lactonases and they inactivate AHL signals by hydrolysing the lactone ring, thus yielding the corresponding acylhomoserine. Examples are the AiiA (autoinducer inactivator) AHL lactonase from the Gram-positive bacterium *Bacillus* sp. 240B1 (Dong *et al.*, 2001) and the AiiB AHL lactonase produced by *Agrobacterium tumefaciens* (Liu *et al.*, 2007). It has already been shown that transgenic plants expressing AHL lactonase displayed an enhanced resistance to infection by *Erwinia carotovora* (Dong *et al.*, 2001).

In *P. aeruginosa* two additional genes, *pa1893* and *pa0305*, have been annotated as genes possibly encoding penicillin acylases (Krzeslak *et al.*, 2007) although they have not been characterized. The results of this study clearly demonstrate that PA0305 has acyl-HSL degrading activity similar to that of PvdQ and QuiP.

P. aeruginosa PAO1 pa0305 is predicted to encode a protein of 795 amino acids in length (Stover et al., 2000) and the polypeptide shows the striking features of posttranslational processing typical of the members of the Nterminal nucleophile aminohydrolases (Ntn hydrolases) superfamily. The gene is transcribed as a single polypeptide and as a result of autocatalytic cleavage a mature active enzyme consisting of two dissimilar subunits is formed. The strongest evidence for PA0305 being an Ntn hydrolase is the presence of the conserved Ser 1 residue, the first residue of the β -subunit. The N-terminal amino acids 1–25 of PA0305 are predicted to compose a signal sequence peptide (LipoP v.1.0, Phobius, SignalP v.3.0 Hidden Markov Models) (Winsor et al., 2009), which is in line with the observation that most bacterial Ntn hydrolases are secreted. However, determination of the N-terminal sequence of the α -subunit purified from *E. coli* revealed that the signal peptide is not cleaved off from the α -subunit under the experimental conditions used, indicating that the protein may not be translocated to the periplasm in E. coli or that the E. coli signal peptidase is less capable of cleaving this sequence. The finding that the protein migrates as a tetra-heterodimer on a gel filtration column is unique in comparison with other characterized AHL acylases, but is not surprising considering that some cephalosporin acylases, also members of the Ntn-hydrolase superfamily,

Fig. 8. The effect of overexpressing and deleting the *pa0305* gene on the virulence of *P. aeruginosa* in the *C. elegans* model. *C. elegans* nematodes were fed on a layer of *Pseudomonas* cells as described previously (Papaioannou *et al.*, 2009). Wild-type *P. aeruginosa* PAO1, *P. aeruginosa* PAO1 $\Delta pa0305$ and *P. aeruginosa* PAO1 harbouring pMMB-*pa0305* were used as feeding layers. The number of surviving animals was counted for 7 consecutive days. A significant difference of the effects of the PAO1 $\Delta pa0305$ strain compared with the PAO1 parental strain is indicated by an asterisk.

have a tetra-heterodimer structure (Kwon et al., 2000). PA0305 has been purified to homogeneity from E. coli and it was used for further enzymic characterization revealing that it has activity towards medium- and long-chain HSLs. When compared with PvdQ and QuiP, which show 26 and 29% sequence similarity, respectively, PA0305 shows broader substrate specificity. However, in spite of the 67 % sequence similarity with HacB from P. syringae, PA0305 is unable to degrade C₄-HSL. Interestingly the ability to degrade C₄-HSL, the second major autoinducer, seems to be absent from all AHL acylases of P. aeruginosa PAO1 described to date (Huang et al., 2006). Judging from conversion rates at high concentrations of different acyl-HSLs it may be concluded that C₈-HSL is the best substrate for PA0305 (93-fold decrease at 10 μ g ml⁻¹; Table 3). This must be considered with care, however, as the solubility of long-chain HSLs may become limiting at high concentrations. In fact this is demonstrated by comparing the conversion rates of C_8 -HSL at 0.01 and 10 µg ml⁻¹ with the conversion rates of 3-oxo-C₁₂-HSL at these respective concentrations (Table 3). The deacylation rate of the enzyme at low concentrations appears to be best for 3-oxo-C₁₂-HSL and not for C8-HSL (64-fold versus 1.3-fold). To explain these observations, one likely possibility is that at high substrate concentrations (10 μ g ml⁻¹) of 3-oxo-C₁₂-HSL, higher order assemblages (e.g. micelles) may form, limiting the enzyme activity. Nonetheless, our data suggest that at physiological concentrations the natural autoinducer of P. aeruginosa is the best substrate for the PA0305 enzyme. To further substantiate this conclusion kinetic studies were performed using HPLC detection of derivatized products. For the first time, to our knowledge, we report an apparent $K_{\text{cat}}/K_{\text{m}}$ value for an acyl-HSL acylase. Indeed the catalytic efficiency of PA0305 is higher for 3-oxo-C12-HSL in comparison with C8-HSL, which is consistent with 3-oxo-C₁₂-HSL being one of the natural substrates of this enzyme. Although individual K_{cat} and K_m values have not been assessed, the apparent $K_{\text{cat}}/K_{\text{m}}$ value of $7.8 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ implies that the enzyme has a high catalytic efficiency towards 3-oxo-C₁₂-HSL, which would require an efficient acyl binding pocket in the enzyme similar to the substrate binding pocket described for PvdQ (Bokhove et al., 2010).

The deletion of the *pa0305* gene from chromosomal DNA resulted in an increase of the 3-oxo-C₁₂-HSL levels in the growth medium, which became most apparent after 50 h incubation. This phenotype was evident in both the wild-type and the PAO1 $\Delta pvdQ \Delta quiP$ background. The increase in 3-oxo-C₁₂-HSL did not result in alterations of the C₄-HSL accumulation levels, the growth rate (data not shown) nor the morphology of the mutant. This is all in agreement with previous observations with HacB mutants of *P. syringae* (Shepherd & Lindow, 2009). It seems that the apparent 3-oxo-C₁₂-HSL concentration is close to saturation level for regulating the AHL-responsive system in both the wild-type and $\Delta pa0305$ mutant.

Overproducing PA0305 in both PAO1 wild-type and $\Delta pa0305$ did reduce, but not completely abolish, the

accumulation of 3-oxo- C_{12} -HSL (Fig. 4a). This may be due to the localization of PA0305, which is predicted to be restricted to the periplasm, whereas the substrate, 3-oxo- C_{12} -HSL, is dispersed from the cytoplasm to the extracellular medium.

Interestingly the reduction of the 3-oxo- C_{12} -HSL levels showed the highest effect on pyocyanin production after 24 h, whereas the reduction in elastase was most pronounced after 6 h and the effect on reducing C_4 -HSL was absent. This difference in response probably reflects the difference in response regulators involved and their interaction with the regulatory elements of the respective genes.

According to mRNA quantification by RT-PCR, in rich media such as LB without exogenous addition of signal molecules, pa0305 is expressed in low amounts at the lateexponential phase, at about 5 h post-inoculation. Previous studies using transposon insertions on *pa0305* revealed that this gene is not crucial for cell growth on C₁₀-HSL (Huang et al., 2006). In addition, microarray data published previously (Wagner et al., 2003, 2004) did not categorize pa0305 as a QS-regulated gene. In this study, we show that the pa0305 gene is expressed in cells grown in LB medium and is involved in the degradation of the P. aeruginosa las-regulon signal molecule, 3-oxo-C₁₂-HSL. From the overexpression studies we conclude that the level of pa0305 transcript can be 50-100-fold increased and it may be interesting to study the regulation of the pa0305 expression under different experimental conditions, including infection models.

Unlike *pvdQ*, which is located in the pyoverdin operon (Lamont & Martin, 2003), *pa0305* does not seem to be part of an operon and there is no suggestion of a function from the genetic surroundings of *pa0305*. To verify the predicted activity of PA0305 as a penicillin acylase, we tested a number of potential substrates. Using *p*-dimethylaminobenzaldehyde for the detection of 6-aminopenicillanic acid (Sio *et al.*, 2003) and 7-aminocephalosporanic acid (Sio *et al.*, 2002), we were able to determine that PA0305 has low activity towards penicillin V, a slight activity on penicillin-G and no activity on glutaryl 7-ACA (data not shown). However, based on the fact that the conversion of β -lactams will not provide an advantage to *P. aeruginosa*, we believe that the deacylation of β -lactams is not the natural function of PA0305 (Krzeslak *et al.*, 2007).

The broad activity of PA0305 on different chain-length AHLs suggests a possible function of this protein under natural conditions. In addition to adding to the understanding of bacterial signal communication, the availability of purified PA0305 offers a potential agent that can be used to reduce virulence of pathogenic *P. aeruginosa* strains or other pathogens by quenching the QS system. Initial experiments in this study using the *C. elegans* infection model indicate that the effect of reducing virulence is relatively limited and detectable only after 5 days. It is possible that the stability of the protein is insufficient for its use in the nematode infection assay. Analogous to other Ntn hydrolases, the stability may be increased by protein

engineering or by *in vitro* formulation of purified enzyme in order to obtain a more stable acylase that might be used for more significant reductions in pathogenicity (Sio & Quax, 2004; Verhaert *et al.*, 1997). The finding that at least three of the four Ntnhydrolases of *P. aeruginosa* are capable of degrading AHLs and are thus capable of interfering with crucial gene regulatory circuits provides an explanation for the widespread occurrence of this class of enzymes in the genomes of prokaryotes. In view of the observed function of PA0305 and its homology to *P. syringae* HacB, we propose to rename *pa0305* as *hacB* (AHL *acylase B*).

ACKNOWLEDGEMENTS

We gratefully acknowledge Miguel Cámara and Paul Williams (University of Nottingham) for providing the biosensor strains pSB1075, pSB536 and pSB401. We thank Stephan Heeb (University of Nottingham) for the gift of pEX18-Gm and Bert-Jan Baas (University of Groningen) for help with calculating enzyme kinetic parameters. In addition we thank Eric Daniel Fraenkel (University of Groningen) for the help in the statistical analysis of the *C. elegans* assay data. M.W. was a recipient of a Bernoulli grant from the University of Groningen. This research was partly funded by EU grant ANTIBIOTARGET MEST-CT-2005-020278.

REFERENCES

Bokhove, M., Nadal Jimenez, P., Quax, W. J. & Dijkstra, B. W. (2010). The quorum-quenching *N*-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. *Proc Natl Acad Sci U S A* **107**, 686–691.

de Kievit, T. R. (2009). Quorum sensing in *Pseudomonas aeruginosa* biofilms. *Environ Microbiol* 11, 279–288.

Diggle, S. P., Winzer, K., Chhabra, S. R., Worrall, K. E., Cámara, M. & Williams, P. (2003). The *Pseudomonas aeruginosa* quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates *rhl*-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. *Mol Microbiol* **50**, 29–43.

Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F. & Zhang, L. H. (2001). Quenching quorum-sensing-dependent bacterial infection by an *N*-acyl homoserine lactonase. *Nature* **411**, 813–817.

Essar, D. W., Eberly, L., Hadero, A. & Crawford, I. P. (1990). Identification and characterization of genes for a second anthranilate synthase in *Pseudomonas aeruginosa*: interchangeability of the two anthranilate synthases and evolutionary implications. *J Bacteriol* **172**, 884–900.

Fürste, J. P., Pansegrau, W., Frank, R., Blöcker, H., Scholz, P., Bagdasarian, M. & Lanka, E. (1986). Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. *Gene* **48**, 119–131.

Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. (1998). A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. *Gene* 212, 77–86.

Huang, J. J., Han, J. I., Zhang, L. H. & Leadbetter, J. R. (2003). Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and *Pseudomonas aeruginosa* PAO1. *Appl Environ Microbiol* **69**, 5941–5949.

Huang, J. J., Petersen, A., Whiteley, M. & Leadbetter, J. R. (2006). Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of *Pseudomonas aeruginosa* PAO1. *Appl Environ Microbiol* 72, 1190–1197.

Krzeslak, J., Wahjudi, M. & Quax, W. J. (2007). Quorum quenching acylases in *Pseudomonas aeruginosa*. In *Pseudomonas: a Model System in Biology*, vol. 5, pp. 429–449. Edited by J.-L. Ramos & A. Filloux. Netherlands: Springer.

Kwon, T. H., Rhee, S., Lee, Y. S., Park, S. S. & Kim, K. H. (2000). Crystallization and preliminary X-ray diffraction analysis of glutaryl-7-aminocephalosporanic acid acylase from *Pseudomonas* sp. GK16. *J Struct Biol* **131**, 79–81.

Lamont, I. L. & Martin, L. W. (2003). Identification and characterization of novel pyoverdine synthesis genes in *Pseudomonas aeruginosa*. *Microbiology* 149, 833–842.

Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R. & Zhang, L. H. (2003). Acyl-homoserine lactone acylase from *Ralstonia* strain XJ12B represents a novel and potent class of quorumquenching enzymes. *Mol Microbiol* 47, 849–860.

Liu, D., Thomas, P. W., Momb, J., Hoang, Q. Q., Petsko, G. A., Ringe, D. & Fast, W. (2007). Structure and specificity of a quorum-quenching lactonase (AiiB) from *Agrobacterium tumefaciens*. *Biochemistry* **46**, 11789–11799.

Lyczak, J. B., Cannon, C. L. & Pier, G. B. (2000). Establishment of *Pseudomonas aeruginosa* infection: lessons from a versatile opportunist. *Microbes Infect* **2**, 1051–1060.

Meevootisom, V., Somsuk, P., Prachaktam, R. & Flegel, T. W. (1983). Simple screening method for isolation of penicillin acylase-producing bacteria. *Appl Environ Microbiol* **46**, 1227–1229.

Ohman, D. E., Cryz, S. J. & Iglewski, B. H. (1980). Isolation and characterization of *Pseudomonas aeruginosa* PAO mutant that produces altered elastase. *J Bacteriol* **142**, 836–842.

Otten, L. G., Sio, C. F., Reis, C. R., Koch, G., Cool, R. H. & Quax, W. J. (2007). A highly active adipyl-cephalosporin acylase obtained via rational randomization. *FEBS J* 274, 5600–5610.

Papaioannou, E., Wahjudi, M., Nadal-Jimenez, P., Koch, G., Setroikromo, R. & Quax, W. J. (2009). Quorum-quenching acylase reduces the virulence of *Pseudomonas aeruginosa* in a *Caenorhabditis elegans* infection model. *Antimicrob Agents Chemother* **53**, 4891–4897.

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res* 29, e45.

Schumacher, G., Sizmann, D., Haug, H., Buckel, P. & Böck, A. (1986). Penicillin acylase from *E. coli:* unique gene–protein relation. *Nucleic Acids Res* 14, 5713–5727.

Shepherd, R. W. & Lindow, S. E. (2009). Two dissimilar *N*-acylhomoserine lactone acylases of *Pseudomonas syringae* influence colony and biofilm morphology. *Appl Environ Microbiol* 75, 45–53.

Simon, R., Quandt, J. & Klipp, W. (1989). New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. *Gene* 80, 161–169.

Sio, C. F. & Quax, W. J. (2004). Improved β -lactam acylases and their use as industrial biocatalysts. *Curr Opin Biotechnol* 15, 349–355.

Sio, C. F., Riemens, A. M., van der Laan, J. M., Verhaert, R. M. & Quax, W. J. (2002). Directed evolution of a glutaryl acylase into an adipyl acylase. *Eur J Biochem* 269, 4495–4504.

Sio, C. F., Otten, L. G., Cool, R. H. & Quax, W. J. (2003). Analysis of a substrate specificity switch residue of cephalosporin acylase. *Biochem Biophys Res Commun* 312, 755–760.

Sio, C. F., Otten, L. G., Cool, R. H., Diggle, S. P., Braun, P. G., Bos, R., Daykin, M., Cámara, M., Williams, P. & Quax, W. J. (2006). Quorum

quenching by an N-acyl-homoserine lactone acylase from *Pseudomonas* aeruginosa PAO1. Infect Immun **74**, 1673–1682.

Smith, A. W. & Iglewski, B. H. (1989). Transformation of *Pseudomonas aeruginosa* by electroporation. *Nucleic Acids Res* 17, 10509.

Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowalik, D. J. & other authors (2000). Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature* **406**, 959–964.

Swift, S., Karlyshev, A. V., Fish, L., Durant, E. L., Winson, M. K., Chhabra, S. R., Williams, P., Macintyre, S. & Stewart, G. S. A. B. (1997). Quorum sensing in *Aeromonas hydrophila* and *Aeromonas salmonicida*: identification of the LuxRI homologs AhyRI and AsaRI and their cognate *N*-acylhomoserine lactone signal molecules. *J Bacteriol* 179, 5271–5281.

Tan, M. W. & Ausubel, F. M. (2000). *Caenorhabditis elegans*: a model genetic host to study *Pseudomonas aeruginosa* pathogenesis. *Curr Opin Microbiol* **3**, 29–34.

Tatterson, L. E., Poschet, J. F., Firoved, A., Skidmore, J. & Deretic, V. (2001). CFTR and pseudomonas infections in cystic fibrosis. *Front Biosci* 6, D890–D897.

Uroz, S., Oger, P. M., Chapelle, E., Adeline, M. T., Faure, D. & Dessaux, Y. (2008). A *Rhodococcus qsdA*-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. *Appl Environ Microbiol* 74, 1357–1366.

Verhaert, R. M., Riemens, A. M., van der Laan, J. M., van Duin, J. & Quax, W. J. (1997). Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from *Alcaligenes faecalis*. *Appl Environ Microbiol* **63**, 3412–3418.

Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. (2003). Microarray analysis of *Pseudomonas aeruginosa*

quorum-sensing regulons: effects of growth phase and environment. *J Bacteriol* **185**, 2080–2095.

Wagner, V. E., Gillis, R. J. & Iglewski, B. H. (2004). Transcriptome analysis of quorum-sensing regulation and virulence factor expression in *Pseudomonas aeruginosa. Vaccine* 22 (Suppl. 1), S15–S20.

West, S. E. H., Schweizer, H. P., Dall, C., Sample, A. K. & Runyen-Janecky, L. J. (1994). Construction of improved *Escherichia– Pseudomonas* shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in *Pseudomonas aeruginosa*. *Gene* 148, 81–86.

Winson, M. K., Swift, S., Fish, L., Throup, J. P., Jørgensen, F., Chhabra, S. R., Bycroft, B. W., Williams, P. & Stewart, G. S. (1998). Construction and analysis of *luxCDABE*-based plasmid sensors for investigating *N*-acyl homoserine lactone-mediated quorum sensing. *FEMS Microbiol Lett* 163, 185–192.

Winsor, G. L., Van Rossum, T., Lo, R., Khaira, B., Whiteside, M. D., Hancock, R. E. & Brinkman, F. S. (2009). Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. *Nucleic Acids Res* 37 (Database issue), D483– D488.

Wolf, J. H. & Korf, J. (1990). Improved automated precolumn derivatization reaction of fatty acids with bromomethylmethoxycoumarin as label. *J Chromatogr A* 502, 423–430.

Yates, E. A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S. R., Sockett, R. E., Goldner, M., Dessaux, Y., Cámara, M. & other authors (2002). *N*-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of *Yersinia pseudotuberculosis* and *Pseudomonas aeruginosa*. *Infect Immun* **70**, 5635–5646.

Edited by: D. Demuth

HOME CURRENT ISSUE ARCHIVE SEARCH HELP CONTACT US

Microbiology Editor's Choice

Microbiology Editor-in-Chief, Dr Agnès Fouet, talks about the journal's scope and features, plus the benefits of publishing in the journal

rrent Issue : April 2015

pers In Press at updated May 26, 2015

lect an Issue from the Archive nuary 1947 - April 2015

arch for Articles nuary 1947 - April 2015

st-Read Articles

st-Cited Articles

Ilected Papers

*v*iew Articles Comment SGM Prize Lectures Special Issues

FREE SAMPLE ISSUE

MICROBIOLOGY, a journal of the Society for General Microbiology (SGM), combines editorial expertise from around the world with exceptional breadth of coverage and high-quality production standards, and provides access to topical, high-quality research and up-to-date Reviews in a single accessible source. The current impact factor for the journal is 2.835 (2013). Advanced Search

Go

ABOUT MICROBIOLOGY EDITORIAL BOARD & STAFF SUBMIT A MANUSCRIPT INFORMATION FOR AUTHORS INFORMATION FOR REVIEWERS INFORMATION FOR LIBRARIANS PERMISSIONS AND REPRINTS SUBSCRIPTIONS ADVERTISING ALERTS & FEEDS FEEDBACK J GEN VIROL INT J SYST EVOL MICROBIOL J MED MICROBIOL JMM CASE REPORTS ALL SGM JOURNALS

For an alternate route to Microbiology use this URL: http://intl-mic.sgmjournals.org

Copyright © 2015 Society for General Microbiology

Print ISSN: 1350-0872 Online ISSN: 1465-2080 We use Cookies (/about/cookies) to track your preferences I Understand ()

Microbiology Society (http://www.microbiologysociety.org) Microbe Post (http://www.microbepost.org)

Contact us (/about/contact-us/)

(http://www.microbiologyresearch.org)

Research online

< Back (http://mic.microbiologyresearch.org/content/journal/micro/157/7)

Share ~

MICROBIOLOGY

Publishing high-quality research since 1947

(/content/journal/micro)

About (/content/journal/micro/about)	Editorial Board (/content/journal/micro/editorial)		
Accepted Papers (/content/journal/micro	?acceptedpapers=true)	Current Issue (/content/jo	urnal/micro/161/10)
Archive (/content/journal/micro/past-issu	ies)		
Colleguiane (/agentent/agllaguiane)fagetae	maa huun0/200/2f		

Collections (/content/collections?facetnames=http%3a%2f %2fpub2web.metastore.ingenta.com%2fns%2frelatedToPublication&facetvalues=http%3a%2f %2fsgm.metastore.ingenta.com%2fcontent%2fjournal%2fmicro)

Submit a Paper (http://www.editorialmanager.com/mic/Default.aspx)

Editorial Board

Editor-in-Chief

Tanya Parish

Infectious Disease Research Institute

itute (mailto:tanya.parish@idri.org)

Research interests: mycobacteria, gene regulation, drug discovery, pathogenesis, antibiotic resistance Editor's webpage (http://globalhealth.washington.edu/faculty/tanya-parish)

Jodi Lindsay

(mailto:jlindsay@sgul.ac.uk) 😢 (https://twitter.com/jodi_lindsay) St George's, University of London Research interests: Staphylococci, evolution, horizontal gene transfer, antimicrobial resistance Editor's webpage (http://www.sgul.ac.uk/research-profiles-a-z/jodi-lindsay)

[[[] (mailto:wafa.achouak@cea.fr)]

Wafa Achouak

CEA, IBEB, France

Research interests: Rhizosphere microbial ecology, Environmental microbiology, Environmental adaptation, Plant–bacteria interaction Editor's webpage (http://ibeb.cea.fr/dsv/ibeb/Pages/laboratoires /lemire.aspx#mailto%3awafa.achouak%40cea.fr)

Víctor J. Cid

(mailto:vicjcid@farm.ucm.es) 📴 (https://twitter.com/VictorJCid) Universidad Complutense de Madrid

Research interests: Yeast, signalling, morphogenesis, heterologous expression, Saccharomyces cerevisiae, bacterial translocated effectors Editor's webpage (https://www.ucm.es/signalyeast/lineas-de-investigacion)

Stephen Gordon

[Mailto:stephen.gordon@ucd.ie] [Content (https://twitter.com/@steve_myco)] University College Dublin

Research interests: Mycobacteria; Tuberculosis; Paratuberculosis; One Health; bacterial virulence mechanisms

Editor's webpage (http://www.ucd.ie/research/people/veterinarymedicine /professorstephengordon)

Institut Pasteur

🖂 (mailto:tmsadek@pasteur.fr)

Research interests: Host/Pathogen interactions, Staphylococcus aureus, Gene regulation, Environmental signaling

Editor's webpage (http://www.pasteur.fr/en/research/microbiology/units-groups /biology-gram-positive-pathogens)

 Paul W. O'Toole
 [mailto:pwotoole@ucc.ie]

 University College Cork
 [mailto:pwotoole@ucc.ie]

 Research interests: Microbiome Microbiota Commensalism Gut Lactobacillus

 Aging Host-Microbe

 Editor's webpage (http://publish.ucc.ie/researchprofiles/D010/pwotoole)

Frank Sargent

🖂 (mailto:f.sargent@dundee.ac.uk)

University of Dundee Research interests: Bacterial respiration; fermentation; metalloenzyme structure, function and biosynthesis Editor's webpage (http://www.lifesci.dundee.ac.uk/people/frank-sargent)

Gavin H. Thomas

🔀 (mailto:ght2@york.ac.uk) 💽 (https://twitter.com/GavinHThomas) University of York Research interests: Bacterial transporters, Escherichia coli, insect symbionts, industrial biotechnology, Editor's webpage (http://thomaslabyork.weebly.com/)

Marvin Whiteley

University of Texas at Austin, USA

🔀 (mailto:mwhiteley@austin.utexas.edu)

🔀 (mailto:elaine.bignell@manchester.ac.uk)

🖂 (mailto:braunste@med.unc.edu)

🖂 (mailto:W.Crielaard@acta.nl)

[[[] (mailto:ChDahl@uni-bonn.de)]

Research interests: Biofilm; Oral microbiology; Polymicrobial; Pseudomonas; Quorum sensing

Editors

Sonja-Verena Albers 🔀 (mailto:sonja.albers@biologie.uni-freiburg.de) Max Planck Institute for Terrestrial Microbiology, Germany Research interests: archaea, cell surface structures, motility, protein secretion, macromolecular assemblies

Elaine Bignell

The University of Manchester

Research interests: anti-infective therapeutic entities, sensory and signalling proteins, Aspergillus fumigatus

Miriam Braunstein

University of North Carolina School of Medicine, USA

Research interests: Protein secretion, Mycobacteria, Microbial genetics, Microbial pathogenesis

Wim Crielaard

Academisch Centrum Tandheelkunde Amsterdam (ACTA), Netherlands

Research interests: Oral microbial communities and oral health and diseases

Christiane Dahl

Universität Bonn, Germany

Research interests: sulfur metabolism, bacterial energy metabolism, anoxygenic phototrophic bacteria, electron transport, metalloenzymes, microbial physiology

Donald Demuth

🔀 (mailto:drdemu01@louisville.edu)

🔀 (mailto:Karen.Dobos@colostate.edu)

University of Louisville

Research interests: Oral microbiology, Biofilms, Bacterial pathogenesis

Karen Dobos

Colorado State University, USA

Research interests: Infectious Diseases, Mycobacteriology, Proteomics, Mass Spectrometry, Systems Biology

crobiology Society Journals Editorial Board	http://mic.microbiologyresearch.org/content/journal/micro/editorial			
Ken Fields	🖂 (mailto:ken.fields@uky.edu)			
University of Kentucky College of Medicine, USA				
Research interests: Pathogenesis of the obligate in	Research interests: Pathogenesis of the obligate intracellular bacterium Chlamydia trachomatis			
Klas Flärdh Lund University, Sweden	🖂 (mailto:klas.flardh@cob.lu.se)			
Research interests: Bacterial cell biology, differen	tiation, cell division, Streptomyces			
Enrique Flores Ins t ituto de Bioquímica Vegetal y Fotosíntesis, Sp	ain			
Research interests: Bacterial Cell and Molecular B Cyanobacteria, Nitrogen fixation, Cell differentiat	Biology, Gene expression, Membrane transport, tion, Heterocysts			
David Grainger University of Birmingham, UK	🖂 (mailto:d.grainger@bham.ac.uk)			
Research interests: Gene regulation, genomics, ba	acteriology, pathogenicity			
Hugo Gramajo Universidad Nacional de Rosario, Argentina	🔤 (mailto:gramajo@ibr-conicet.gov.ar)			
Research interests: lipid metabolism and its regul	ation in actinomycetes			
Simonetta Gribaldo Institut Pasteur, France	(mailto:simonetta.gribaldo@pasteur.fr)			
Research interests: Microbial Phylogenomics				
Angelika Grundling Imperial College London, UK	🖂 (mailto:a.grundling@imperial.ac.uk)			
Research interests: Gram-positive bacteria, Staph Lipoteichoic acid, lipids, nucleo t ide signalling, c-c	ylococcus aureus, Listeria monocytogenes, cell wall, di-AMP			
Alfredo Herrera-Estrella LABORATORIO NACIONAL DE GENOMICA PARA LA	🔤 (mailto:aherrera@langebio.cinvestav.mx) A BIODIVERSIDAD (LANGBIO), Mexico			
Research interests: Fungal development, compara	ative and functional genomics			
Matthew Holden Wellcome Trust Sanger Ins t itute, UK	🖂 (mailto:mh3@sanger.ac.uk)			
Research interests: Bacterial genomics, staphyloc	occi, streptococci, MRSA, evolution, antibiotic resistance			
Derek Hood Medical Research Council Harwell, UK	🖂 (mailto:d.hood@har.mrc.ac.uk)			
Research interests: Haemophilus influenzae, lipor	polysaccharide, microbial pathogenesis, otitis media			
Servé Kengen Wageningen University and Research Centre, Net	iherlands			
Research interests: biohydrogen, redox regulation	n, sugar fermentation, thermophile, Clostridium,			

Thermotoga, Thermococcus

Jan Kok

University of Groningen, Netherlands Research interests: Molecular biology, genetics and genomics of Gram-positive bacteria

Ruiting Lan

University of New South Wales, Australia

Research interests: Genomics, Evolution of bacterial pathogens, Enteric bacterial pathogens, Bordetella pertussis, Population biology, Evolutionary microbiology

Paul Langford

Imperial College London, UK

Research interests: Bacterial pathogenicity, vaccines, diagnostics, Pasteurellaceae, respiratory pathogens, meningitis

Nick Le Brun

University of East Anglia, UK

Research interests: Metal ion trafficking and metabolism, Oxidative/nitrosative stress, Metalloregulators, Thiol-disulfide exchange, Iron–sulfur clusters

Yin Li

Institute of Microbiology, Chinese Academy of Sciences Research interests: Industrial fermentation, systems biotechnology

Eugene Madsen

Cornell University

Research interests: Environmental microbiology, molecular microbial ecology, biogeochemistry, biodegradation

Riccardo Manganelli

Università degli Studi di Padova, Italy Research interests: Tuberculosis, Sigma Factors, Vaccines, Regulation of Gene Eexpression

Diethard Mattanovich

Universität für Bodenkultur Wien, Austria

Research interests: Microbial biotechnology, Systems biotechnology, Protein folding and secretion, Metabolic engineering

Wilfried Meijer

Autonomous University of Madrid, Spain Research interests: Bacillus subtilis, Plasmid biology, Bacteriophage, Sporulation, Horizontal gene transfer

Joachim Morschhäuser

Julius-Maximilians-Universität Würzberg, Germany

🖂 (mailto:r.lan@unsw.edu.au)

🖂 (mailto:p.langford@imperial.ac.uk)

🔯 (mailto:n.le-brun@uea.ac.uk)

🖂 (mailto:yli@im.ac.cn)

🖂 (mailto:elm3@cornell.edu)

(mailto:diethard.mattanovich@boku.ac.at)

🖂 (mailto:riccardo.manganelli@unipd.it)

🕅 (mailto:wmeijer@cbm.uam.es)

🔯 (mailto:joachim.morschhaeuser@uni-wuerzburg.de)

Microbiology Society Journals | Editorial Board

Research interests: Candida, Molecular Mycology, Gene regulation, Antifungal drug resistance mechanisms

Carol Munro University of Aberdeen, UK	🖂 (mailto:c.a.munro@abdn.ac.uk)
Research interests: Fungal pathogens, Candida albicans, fung	al cell wall, antifungal drug, chitin
Dietrich Nies Martin-Luther Universität Halle-Wittenburg, Germany Research interests: Transition metals, RND proteins, CDE prot	(mailto:d.nies@mikrobiologie.uni-halle.de)
Research interests. Hansition metals, http proteins, obr prot	enis, i type i ti does, eer signa laetois
Alex O'Neill University of Leeds, UK	Imailto:a.j.oneill@leeds.ac.uk
Research interests: Antibiotic resistance mechanisms, antibac	terial drug discovery
Yasuo Ohnishi The University of Tokyo, Japan	🖂 (mailto:ayasuo@mail.ecc.u-tokyo.ac.jp)
Research interests: morphological differentiation, secondary	metabolism
Ivan Oresnik University of Manitoba, Canada Research interests: Nitrogen fixation, Plant-microbe interactio	(mailto:oresniki@cc.umanitoba.ca)
Research interests. Wirogen indition, nam interested	
Karen Otteman University of California, Santa Cruz, USA	🖂 (mailto:ottemann@ucsc.edu)
Research interests: Chemotaxis, Chemoreceptors, Motilit	
Petra Oyston Defence Science and Technology Laboratory, UK	🖂 (mailto:pcoyston@dstl.gov.uk)
Research interests: Francisella, Yersinia pestis, Host-pathoger	n interactions, Vaccines, Biodefence
Pablo Rodríguez Palenzuela Centro de Biotecnología y Genómica de Plantas U.P.M., Madr	id, Spain
Research interests: Bacterial plant pathogenicity, Bacterial ge Bacterial resistance to plant toxins	nomics and bioinformatics, Bacterial effectors,
Rebecca Parales University of California, Davis, USA	🔀 (mailto:reparales@ucdavis.edu)
Research interests: Bacterial chemotaxis, Biodegradation, Arc regulation, Pseudomonas	omatic compound metabolism, Oxygenases, gene
Jaume Piñol Universitat Autònoma de Barcelona, Spain	🖂 (mailto:jaume.pinyol@uab.cat)
Research interests: Mycoplasmas, Host-pathogen interactions Macromolecular complexes, Cell adhesion.	s, Gene expression and regulation, Motility,

biology Society Journals Editorial Board	http://mic.microbiologyresearch.org/content/journal/micro/editorial
Stefanie Pöggeler	🖂 (mailto:spoegge@gwdg.de)
University of Göttingen, Germany	
Research interests: fungal biology, fungal develop	oment, fungal mating-systems, inteins
Gail Preston	🖂 (mailto:gail.preston@plants.ox.ac.uk)
University of Oxford, UK	
Research interests: Plant-microbe interactions, Pla metabolism, Bacterial regulatory networks, Bacte	ant disease, Microbial interactions, Pseudomonas, Bacterial erial protein secretion
Kevin Purdy University of Warwick, UK	🖂 (mailto:K.Purdy@warwick.ac.uk)
Research interests: Microbial ecology, environme	ntal microbiology, animal/microbe interactions
Mark Schembri University of Queensland, Australia	🔀 (mailto:m.schembri@uq.edu.au)
Research interests: Bacterial pathogenesis, virule host-pathogen interactions	nce factors, biofilms, adhesins, gene regulation,
Karen Scott University of Aberdeen, UK	🔤 (mailto:k.scott@abdn.ac.uk)
Research interests: diet and the gut microbiota, a	ntibiotic resistance, gene transfer
Pascale Serror Le Centre INRA de Jouy-en-Josas, France	🖂 (mailto:pascale.serror@jouy.inra.fr)
Research interests: Enterococci, commensalism, v	virulence, gene regulation, Gram-positive bacteria
Jörg Simon Technische Universität Darmstadt, Germany	🖂 (mailto:simon@bio.tu-darmstadt.de)
Research interests: Bacterial energy metabolism a the microbial nitrogen and sulphur cycles; Nitrosa Multihaem cytochromes; Quinones	and bioenergetics; Electron transport chains; Enzymology of ative stress defence; Metalloenzyme biosynthesis;
Jörg Stülke University of Göttingen, Germany	🖂 (mailto:jstuelk@gwdg.de)
Research interests: Gram-positive bacteria, secon subtilis, carbon metabolism, gene regulation, dat	d messengers, RNA degradation, biofilm formation, Bacillus abases
Hana Sychrova Academy of Sciences of the Czech Republic	🖂 (mailto:sychrova@biomed.cas.cz)
Research interests: transporters, pH homeostasis,	, cation homeostasis, osmotolerance, yeast
Gottfried Unden Johannes Gutenberg Universität Mainz, Germany	🖂 (mailto:unden@uni-mainz.de)

Research interests: Transmembrane signaling, Oxygen sensing, C4-dicarboxylate metabolism, (Faculatative) anaerobic metabolism

Microbiology Society Journals | Editorial Board

[mailto:arnoud.vanvliet@ifr.ac.uk]

Arnoud van Vliet

Institute of Food Research, UK

Research interests: Foodborne pathogens, Campylobacter, genomics, molecular epidemiology, virulence, food safety

Peter Zuber

[[[] (mailto:zuberp@ohsu.edu)

Oregon Health & Science University, USA

Research interests: Gram-positive bacteria, Microbial stress response, Transcriptional control, Proteolytic control, Prokaryotic genetics

Tweets	Microbe Post	
M	Microbiology Society @MicrobioSoc Only a month left to apply for the Hayes – Burnet Award to visit a lab in Australia & present @AusSocMic #ECRchat microb.io/1iHXNqc	1 <u>h</u>
	Microbiology Society @MicrobioSoc Closing date for Travel Grants is 1 Dec – members can apply for help to attend an international conference next year: Expand	23 <u>h</u>
M	Microbiology Society @MicrobioSoc 3: Don't forget to submit your abstract for next year's Annual Conference #Microbio16! Deadline is 11 December 2015 microb.io/microliv16 Expand	1 Oct
(https://	twitter.com/MicrobioSoc)	y

Access Key

- F Free content
- OA Open access content
- s Subscribed content
- T Free Trial content

Join the Microbiology Society

Join the Microbiology Society and become part of the largest microbiology community in Europe. Members receive a range of benefits including a discount on the OpenMicrobiology fee when publishing open access with our journals.

Find out more (http://www.microbiologysociety.org/membership/)

Focused Meeting 2015: Industrial Applications of Metal–Microbe Interactions

This Focused Meeting on Industrial Applications of Metal–Microbe Interactions will take place in London, UK on 9 - 10 November 2015. Topics will include: biomining; biorecovery and bioprocessing; bioremediation; and biofabrication of higher value products.

Find out more (http://microb.io/IAMMI2015)

Back to top

About Us

About the Society (http://www.microbiologysociety.org/aboutus)

Terms and Conditions (http://about/terms-and-conditions/)

Privacy Policy (http://www.microbiologysociety.org/privacy)

Contact us (http:/about/contact-us/)

Submit a Publishing Proposal (http:/about/submit-proposal/)

Publications

Microbiology (/content/journal/micro)

Journal of General Virology (/content/journal/jgv)

Journal of Medical Microbiology (/content/journal/jmm)

JMM Case Reports (/content/journal/jmmcr)

Microbial Genomics (/content/journal/mgen)

International Journal of Systematic and Evolutionary Microbiology (/content/journal/ijsem)

Resources

Microbiology Society Journals | Editorial Board

For Authors (http:/authors/information-for-authors) For Librarians (http:/librarians/get-access) For Reviewers (http:/about/for-reviewers) Feedback (http:/about/contact-us/) http://mic.microbiologyresearch.org/content/journal/micro/editorial

FAQs (http://about/frequently-asked-questions)

Editorial Policies (http:/authors/editorial-policies)

Rights and Permissions (http:/about/rightsand-permissions)

Reprints and Advertising (http:/about/reprintsand-advertising)

Who's Who (http://www.microbiologysociety.org /whoswho)

Microbe Post (http://microbepost.org)

© 2015 Microbiology Society

ISSN 1350-0872

REVIEWS

Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages	
R. N. Jinadasa, S. E. Bloom, R. S. Weiss and G. E. Duhamel	1851–1875
Instructive simulation of the bacterial cell division cycle	
A. Zaritsky, P. Wang and N. O. E. Vischer	1876–1885

CELL AND MOLECULAR BIOLOGY OF MICROBES

Evidence that a chaperone–usher-like pathway of <i>Myxococcus xanthus</i> functions in spore coat formation	1000 1000
X. Leng, W. Zhu, J. Jin and X. Mao Absence of pneumococcal PcsB is associated with overexpression of LysM	1886-1896
domain-containing proteins	
C. Giefing-Kröll, K. E. Jelencsics, S. Reipert and E. Nagy	1897-1909
Identification of the <i>oriC</i> region and its influence on heterocyst development in the filamentous cyanobacterium <i>Anabaena</i> sp. strain PCC 7120	
Y. Zhou, WL. Chen, L. Wang and CC. Zhang	1910–1919
Alanine 32 in PilA is important for PilA stability and type IV pili function in <i>Myxococcus xanthus</i>	
Z. Yang, W. Hu, K. Chen, J. Wang, R. Lux, Z. H. Zhou and W. Shi	1920-1928
C-type natriuretic peptide modulates quorum sensing molecule and toxin production in <i>Pseudomonas aeruginosa</i>	
AS. Blier, W. Veron, A. Bazire, E. Gerault, L. Taupin, J. Vieillard, K. Rehel,	
A. Dufour, F. Le Derf, N. Orange, C. Hulen, M. G. J. Feuilloley	1000 1044
	1929-1944
Role of <i>timV</i> in type II secretion system-dependent protein secretion of Pseudomonas aeruginosa on solid medium	
G. P. F. Michel, A. Aguzzi, G. Ball, C. Soscia, S. Bleves	
and R. Voulhoux	1945–1954
Overlap of replication rounds disturbs the progression of replicating forks in a ribonucleotide reductase mutant of <i>Escherichia coli</i>	
I. Salguero, E. López Acedo and E. C. Guzmán	1955–1967
Repression of <i>N</i> -glycosylation triggers the unfolded protein response (UPR) and overexpression of cell wall protein and chitin in <i>Aspergillus fumigatus</i>	
K. Li, H. Ouyang, Y. Lü, J. Liang, I. B. H. Wilson and C. Jin	1968–1979

Front cover illustration

Light and electron microscopy reveal the interactions between *Salmonella* and cultured epithelial cells. The central scanning electron micrograph shows attachment of *Salmonella* and membrane remodelling (ruffling) induced on cells. The top and bottom confocal microscope images reveal heterogeneous replication of mCherry-expressing *Salmonella* (red) within epithelial cells. DNA in both host cells and bacteria is labelled with DAPI (blue). Image courtesy Mark Jepson and Katie Dunstan, School of Biochemistry, Bristol University. See the paper by Clark *et al.* in this issue, pp. 2072–2083.

ENVIRONMENTAL AND EVOLUTIONARY MICROBIOLOGY

Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS)	
expression profiling	
T. Hori, D. Sasaki, S. Haruta, T. Shigematsu, Y. Ueno, M. Ishii	
and Y. Igarashi	1980–1989
A novel multilocus sequence typing scheme for the opportunistic pathogen <i>Propionibacterium acnes</i> and characterization of type I cell surface-	
associated antigens	
A. McDowell, A. Gao, E. Barnard, C. Fink, P. I. Murray, C. G. Dowson, I. Nagy,	
P. A. Lambert and S. Patrick	1990-2003

GENES AND GENOMES

Arsenate reduction and expression of multiple chromosomal <i>ars</i> operons in <i>Geobacillus kaustophilus</i> A1 M. Cuebas, A. Villafane, M. McBride, N. Yee and E. Bini	2004–2011
Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus	
B. Yee, E. Sagulenko and J. A. Fuerst	2012-2021
Characterization of the <i>Porphyromonas gingivalis</i> conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer	
M. Naito, K. Sato, M. Shoji, H. Yukitake, Y. Ogura, T. Hayashi	
and K. Nakayama	2022-2032
The genome sequence of <i>Bacillus subtilis</i> subsp. <i>spizizenii</i> W23: insights into speciation within the <i>B. subtilis</i> complex and into the history of <i>B. subtilis</i> genetics	
D. R. Zeigler	2033-2041

MICROBIAL PATHOGENICITY

PA0305 of <i>Pseudomonas aeruginosa</i> is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily M. Wahjudi, E. Papaioannou, O. Hendrawati, A. H. G. van Assen, P. van Markerk, P. H. Cool, G. J. Poelarends and W. J. Quay	2042-2055
Molecular insights into the mechanism of phenotypic tolerance to rifampicin	2042-2000
conferred on mycobacterial RNA polymerase by MsRbpA	
A. Dey, A. K. Verma and D. Chatterji	2056-2071
Differences in <i>Salmonella enterica</i> serovar Typhimurium strain invasiveness are associated with heterogeneity in SPI-1 gene expression L. Clark, C. A. Perrett, L. Malt, C. Harward, S. Humphrey, K. A. Jepson, I. Martinez-Argudo, L. J. Carney, R. M. La Ragione, T. J. Humphrey	
and M. A. Jepson	2072-2083
Contribution of the PhoP/Q regulon to survival and replication of <i>Salmonella enterica</i> serovar Typhimurium in macrophages	
J. A. Thompson, M. Liu, S. Helaine and D. W. Holden	2084–2093
Interaction of <i>Bacteroides fragilis</i> and <i>Bacteroides thetaiotaomicron</i> with the kallikrein-kinin system	
E. C. Murphy, M. Mörgelin, J. C. Cooney and IM. Frick	2094–2105
Application of suppressive subtractive hybridization to the identification of genetic differences between two <i>Lactococcus garvieae</i> strains showing distinct differences in virulence for rainbow trout and mouse	
P. Reimundo, A. J. Rivas, C. R. Osorio, J. Méndez, D. Pérez-Pascual,	
R. Navais, E. Gomez, M. Sotelo, M. L. Lemos and J. A. Guijarro	2106-2119

The flavanone naringenin reduces the production of quorum sensing- controlled virulence factors in <i>Pseudomonas aeruginosa</i> PAO1 O. M. Vandeputte, M. Kiendrebeogo, T. Rasamiravaka, C. Stévigny, P. Duez, S. Rajaonson, B. Diallo, A. Mol, M. Baucher and M. El Jaziri	2120-2132
<i>Stenotrophomonas maltophilia</i> strains replicate and persist in the murine lung, but to significantly different degrees R. Rouf, S. M. Karaba, J. Dao and N. P. Cianciotto	2133–2142
Carboxypeptidase activity common to viridans group streptococci cleaves angiotensin I to angiotensin II: an activity homologous to angiotensin- converting enzyme (ACE)	
D. W. S. Harty and N. Hunter	2143-2151

PHYSIOLOGY AND BIOCHEMISTRY

Gentisate and 3-oxoadipate pathways in the yeast <i>Candida parapsilosis</i> : identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase Z. Holesova, M. Jakubkova, I. Zavadiakova, I. Zeman, I. Tomaska	
and J. Nosek	2152-2163
Identification and enzymic analysis of a novel protein associated with production of hydrogen sulfide and L-serine from L-cysteine in <i>Fusobacterium</i> <i>nucleatum</i> subsp. <i>nucleatum</i> ATCC 25586 Y. Yoshida, K. Suwabe, K. Nagano, Y. Kezuka, H. Kato and F. Yoshimura	2164-2171
	2104 2171
FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa	
S. Elias, E. Degtyar and E. Banin	2172-2180