REVIEW ARTICLES

Resveratrol: A Sirtuin Activator and The Fountain of Youth
 Meiliana A, Dewi NM, Wijaya A
 p.1-14

Mitochondrial Dysfunction in Stem Cell Aging
 Meiliana A, Dewi NM, Wijaya A
 p.15-30

RESEARCH ARTICLES

Combination of Fibrinogen and High-sensitivity C-reactive Protein Measurements is Potential in Identification of Acute Coronary Syndrome
 Sargowo D, Sandra F
 p.31-6

Differences in Maternal Leptin Serum Levels between Normal Pregnancy and Preeclampsia
 Yusrawati, Habibah RL, Machmud R
 p.37-42

Cardiovascular Disease Risk and Barriers to Physical Activity
 Aditama L, Rahmawati D, Parfati N, Pratidina A
 p.43-8

The Efficacy, Safety and Tolerability of Retapamulin as a Treatment Option for Impetigo and Other Uncomplicated Superficial Skin Infections: A Meta-analysis
 Ciulianto R
 p.49-56
The Indonesian
BIOMEDICAL JOURNAL

Volume 7 Number 1, April 2015

MISSION & VISION
The Indonesian Biomedical Journal mission is to assist, enlighten and support all health related policies by delivering information with speed. Its mission is represented by the Logo which is based on two main elements: the Caduceus Staff and naga Antaboga, which are prominent figures in Indonesian “wayang”, specifically in the famous Mahabharata tale.

AIMS & SCOPE
The Indonesian Biomedical Journal is dedicated to publish original research and review articles covering all aspects in biomedical sciences. The editors will carefully select manuscript to present only the most recent findings in basic and clinical sciences. All professionals concerned with biomedical issues will find this journal a most valuable update to keep them abreast of the latest scientific development.

THE LOGO
The ‘Indonesian Biomedical Journal’ insignia is designed based on two main elements; the Caduceus staff and naga Antaboga, which are prominent figures in Indonesian ‘wayang’, specifically in the famous Mahabharata tale. Wayang is the traditional Indonesian puppetry and drama which has its root in Hinduism. It is now an ingrained part of Indonesian culture and heritage.

Antaboga’s name in his youth is Nagasesa. His father, Antawisesa is a giant snake who weds the goddess Dewi Sayati, daughter of Sang Hyang Wenang, the Principal God. Due to his services to heavenly beings, Nagasesa is honoured with the title ‘Bathara’ or ‘Sang Hyang’, which means ‘God’. Since then, he is called Sang Hyang Antaboga, in recognition of his new position. His other names are Sang Hyang Nagasesa, Sang Hyang Anantaboga and Sang Hyang Basuki. As a God, Sang Hyang Antaboga is master of the underworld, which in wayang rates as significant as the realm above. His palace is in Saptapratala, the seventh plane below earth.

Sang Hyang Antaboga adopts a human outlook in his customary appearance. In critical situations, he can change his form into a giant snake. He possesses a magical power which enables him to alter his exterior according to his will. As the guardian of the holy water Amerta, he is also endowed with the ability to bring back to life those who die earlier than their natural time.

With the objective of strengthening the tie between them, the Gods reward Sang Hyang Antaboga with a female deity, Dewi Supreti, for a wife. One of the children from this marriage, Dewi Ningguni, will one day marry Bima or Werkudara, the second son of Pandawa family. Bima is one of the central figures in Mahabharata story.

In Indonesian or Javanese mythology, the word ‘Naga’ means a giant snake. The Indonesian word for snake itself is ‘ular’. It is common practice for the Indonesians however to use the two words simultaneously, hence ‘ular naga’, to describe a giant snake. Ular naga is widely revered.

The logo of the Indonesian Biomedical Journal, which expresses its mission and vision, is a varied adaptation of the Caduceus staff. The pair of wings on top of the staff represents the speed of information and transformation, thus creation of a new beginning. The staff itself stands for authority. Likewise, in ancient Greek mythology, the pair of snakes or in this logo; the Antabogas, symbolizes the source of life and wisdom. Their intertwining position or ‘double helix’ incidentally is also the shape of DNA and signifies creation and stability.

In short, the logo of the Indonesian Biomedical Journal represents its mission to assist, enlighten and support all health related policies by delivering information with speed.

Editor in Chief
Dewi Muliaty, PhD (Biomedics, Prodia Clinical Laboratory)

Senior Executive Editors
Ferry Sandra, DDS, PhD (Biochemistry and Molecular Biology, Trisakti University)
Prof. Irawan Yusuf, MD, PhD (Physiology, Hasanuddin University)

Managing Editor
Anna Meiliana, PhD (Biomedics, Padjadjaran University)

Board of Editors
Prof. Amin Soebandrio, MD, PhD (Microbiology, Fijkman Institute)
Prof. Askandar Tjokroprawiro, MD, PhD (Endocrinology, Airlangga University)
Prof. Aw Tar Choone, MBBS, MMed (Hematology, ICON Laboratory)
Prof. Erry Gumilar Duchlan, MD, PhD (ObGyn, Airlangga University)
Marita Kantiawati PhD (Biomedics, Prodia Clinical Laboratory)
Prof. Marzuki Suryaatmadja, MD (Clinical Pathology, University of Indonesia)
Prof. Syakib Bakri, MD, PhD (Nephrology, Hasanuddin University)

Honorary Editors
Andi Wijaya, PhD (Biomedics, Hasanuddin University)
Prof. Marsetio Donosepoetro, MD (Clinical Pathology, Airlangga University)

Peer Reviewers
Antonia Anna Lukito, MD, PhD (Cardiology, Pelita Harapan University)
Cynthia Retna Sartika, PhD (Biomedics, Prodia Stem Cell Laboratory)
Prof. Djanggan Sargowo, MD, PhD (Cardiology, Brawijaya University)
Prof. Hadyanto Lim, MD, PhD (Pharmacology, North Sumatra University)
Indriyanti Rafi Sukmawati, PhD (Biomedics, Prodia Clinical Laboratory)
Jajah Fachiroh, PhD (Molecular Biology, Gadjah Mada University)
Julius July, MD, PhD (Neurology, Pelita Harapan University)
Keri Lestari Dandan, PhD (Pharmacy, Padjadjaran University)
Khie Kiong, MD, MPharmSc, PhD (Biology, Maranatha Christian University)
Laifa Hendarmin, DDS, PhD (Biochemistry, Syarif Hidayatullah State Islamic University)
Prof. Mansyur Arif, MD, PhD (Clinical Pathology, Hasanuddin University)
Melisa Intan Barliana, PhD (Molecular Biology, Padjadjaran University)
Rizky Abdullah, PhD (Molecular Biology, Padjadjaran University)
Prof. Roberto Volpe, MD, PhD (Cardiology, University of Rome "La Sapienza")
Trilis Vullianti, PhD (Biomedics, Prodia Clinical Laboratory)
Yenny Surjawati, MD, PhD (Clinical Pathology, Prodia Clinical Laboratory)

Contact Address
Secretariat Of The Indonesian Biomedical Journal
Prodia Tower 9th Floor
Jl. Kramat Raya No.150, Jakarta 10430, Indonesia
Tel.: +62-21-3144182, ext. 872
Fax.: +62-21-3144181
E-mail: Secretariat@InaBJ.org
Website: www.InaBJ.org

The Indonesian Biomedical Journal has been published by The Prodia Education and Research Institute since April 2009. The Indonesian Biomedical Journal, a triannually (April, August and December) published scientific journal, contains original research and review articles covering all aspects in biomedical sciences. All manuscripts will be selected and peer-reviewed to present valuable and authentic findings in basic and clinical sciences.

PRINT ISSN: 2085-3297, ONLINE ISSN: 2355-9179

The Indonesian Biomedical Journal has been published by The Prodia Education and Research Institute since April 2009. The Indonesian Biomedical Journal, a triannually (April, August and December) published scientific journal, contains original research and review articles covering all aspects in biomedical sciences. All manuscripts will be selected and peer-reviewed to present valuable and authentic findings in basic and clinical sciences.
Content

The Indonesian Biomedical Journal
Volume 7 Number 1, April 2015

REVIEW ARTICLE

Resveratrol: A Sirtuin Activator and The Fountain of Youth
Meiliana A, Dewi NM, Wijaya A
p.1-14

Mitochondrial Dysfunction in Stem Cell Aging
Meiliana A, Dewi NM, Wijaya A
p.15-30

RESEARCH ARTICLE

Combination of Fibrinogen and High-sensitivity C-reactive Protein Measurements is Potential in Identification of Acute Coronary Syndrome
Sargowo D, Sandra F
p.31-6

Differences in Maternal Leptin Serum Levels between Normal Pregnancy and Preeclampsia
Yusrawati, Habibah RL, Machmud R
p.37-42

Cardiovascular Disease Risk and Barriers to Physical Activity
Aditama L, Rahmawati D, Parfati N, Pratidina A
p.43-8

The Efficacy, Safety and Tolerability of Retapamulin as a Treatment Option for Impetigo and Other Uncomplicated Superficial Skin Infections: A Meta-analysis
Ciulianto R
p.49-56
Cardiovascular Disease Risk and Barriers to Physical Activity

Lisa Aditama1,*, Dewi Rahmawati2, Nani Parfati1, Astrid Pratidina1

1Faculty of Pharmacy, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, Indonesia
2Postgraduate Program in Pharmaceutical Science, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, Indonesia

*Corresponding author. E-mail: lisa_aditama@yahoo.com

BACKGROUND: The prevalence of obesity is increasing and tends to be higher in adult population groups who are also more educated and employed as a civil/military/police/officers. This study aims to analyze cardiovascular disease (CVD) risk, perceptions about physical activity and barriers experienced to perform physical activity, also stage of change to physical activity.

METHODS: The study design was an observational study, use qualitative methods with in-depth interviews and quantitative analysis CVD risk also stage of change to physical activity questionnaire.

RESULTS: Framingham 10-years CVD risk of obese men in University of Surabaya was 11.97% (1.70 to 29.90) based on lipid profile, and 13.90% (2.30 to 30.00) based on body mass index. Perception of obese men in University of Surabaya regarding physical activity had findings several barriers that can be grouped into time constraint, facility constraint, low motivation, and knowledge about physical activities.

CONCLUSION: In this study we found that 10-years CVD risk of obese men in University of Surabaya can be categorized as medium risk. There are several barriers regarding life style modification for physical activity and exercise, whereas the subjects included in this study are quite ready to start the program, but improvement for the readiness before starting the program will still be needed.

KEYWORDS: CVD risk, obese men, physical activity

Abstract

BACKGROUND: The prevalence of obesity is increasing and tends to be higher in adult population groups who are also more educated and employed as a civil/military/police/officers. This study aims to analyze cardiovascular disease (CVD) risk, perceptions about physical activity and barriers experienced to perform physical activity, also stage of change to physical activity.

METHODS: The study design was an observational study, use qualitative methods with in-depth interviews and quantitative analysis CVD risk also stage of change to physical activity questionnaire.

RESULTS: Framingham 10-years CVD risk of obese men in University of Surabaya was 11.97% (1.70 to 29.90)

Introduction

Obesity is a complex multifactorial chronic disease that develops from the interaction of genotype and environment. Obesity is essentially occurs from an imbalance between sedentary lifestyle with a high dietary intake of calories.(1)

The prevalence of obesity is higher in the group of the adult population more educated, and employees as a civil/military/police/officers.(2) Men have a greater risk of cardiovascular disease (CVD) than premenopausal women, but a woman's risk factors will increase five to ten years postmenopause, thus becoming the same risk factors as men.(3)

Combating obesity is not only done with the cessation of food intake. Obesity prevention can be done either by lifestyle modification.(4,5) Physical activity or exercise has a great impact on reducing the risk of CVD. Interventions to modify lifestyle needs based on the theory or model that explains the people behavior, and can help to change the behavior by considering and identifying factors that affect the behavior.(6)

Obese people often have rarely healthy behaviors such as physical activity, especially sports, because there are several barriers.(7,8) In order to profile among the
Methods

The design of this study is an observational study, with quantitative analysis of cardiovascular risk factors using CVD risk calculator prepared by D’Agostino and Pencina based on a publication in Circulation 2008. Framingham Risk Score has a risk classification by look at the resulting score; <10% are categorized as low risk, 10-20% as medium risk and >20% as high risk (10,11) and perform perceptions of physical activity with qualitative methods with semi-structured interviews, also stage of change to physical activity, using the validated questionnaire The Stages of Change Continuous Measure (URICA-E2).(9) In this study, physical activity means regular exercise e.g. brisk walking, aerobics, jogging, bicycling, swimming, rolling, etc. Such activity should be performed to 3-5 times per week for 20-60 minutes per session.

The population in this study are male employees of University of Surabaya who are obese, having already obtained the data that there is an increasing number of employees who are obese and with CVD and did not receive any routine drug treatment. The study took place in University of Surabaya, in February-June 2013.

Demographics and CVD risk factors in participants are reported in Table 1. Semi-structural interviews were conducted at the University of Surabaya campus Tenggilis and Ngagel, or in the workplace of each participant, with duration varies between 15-20 minutes using recording tool. Calculation of the 10-year risk of vascular disease were done using Framingham Scoring according to BMI and Lipid Profile (Table 2). Obesity-related lifestyle barriers to a regular exercise can be grouped into: time constraint, facility constraint, low motivation, and knowledge barrier.

Results

Demographics and CVD risk factors in participants are reported in Table 1. Semi-structural interviews were conducted at the University of Surabaya campus Tenggilis and Ngagel, or in the workplace of each participant, with duration varies between 15-20 minutes using recording tool. Calculation of the 10-year risk of vascular disease were done using Framingham Scoring according to BMI and Lipid Profile (Table 2). Obesity-related lifestyle barriers to a regular exercise can be grouped into: time constraint, facility constraint, low motivation, and knowledge barrier.
Table 1. Demographics and Characteristics of Obese Men.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Obese Men (n = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD)</td>
<td>44.56 ± 6.49</td>
</tr>
<tr>
<td>BMI (mean ± SD)</td>
<td>31.97 ± 2.59</td>
</tr>
<tr>
<td>Smoking social history</td>
<td></td>
</tr>
<tr>
<td>a. Non smoking</td>
<td>18 (78.26%)</td>
</tr>
<tr>
<td>b. Smoking</td>
<td>5 (21.74%)</td>
</tr>
<tr>
<td>Social history of drinking coffee</td>
<td></td>
</tr>
<tr>
<td>a. Not drinking coffee</td>
<td>9 (39.13%)</td>
</tr>
<tr>
<td>b. ≤ 1 cup/day</td>
<td>1 (4.35%)</td>
</tr>
<tr>
<td>c. 1-3 cup/day</td>
<td>12 (53.17%)</td>
</tr>
<tr>
<td>d. ≥ 4 cup/day</td>
<td>1 (4.35%)</td>
</tr>
<tr>
<td>Social history of physical activity</td>
<td></td>
</tr>
<tr>
<td>a. Not exercising</td>
<td>8 (34.78%)</td>
</tr>
<tr>
<td>b. ≤ 1 x/week</td>
<td>4 (17.39%)</td>
</tr>
<tr>
<td>c. 1-3 x/week</td>
<td>3 (13.04%)</td>
</tr>
<tr>
<td>d. ≥ 4 x/week</td>
<td>8 (34.78%)</td>
</tr>
<tr>
<td>Family history of disease</td>
<td></td>
</tr>
<tr>
<td>a. Heart disease</td>
<td>5 (21.74%)</td>
</tr>
<tr>
<td>b. Diabetes Mellitus</td>
<td>3 (13.04%)</td>
</tr>
<tr>
<td>c. Hypertension</td>
<td>5 (21.74%)</td>
</tr>
<tr>
<td>d. Dyslipidemia</td>
<td>3 (21.72%)</td>
</tr>
<tr>
<td>e. Kidney disease</td>
<td>1 (4.35%)</td>
</tr>
<tr>
<td>f. Hyperuricemia</td>
<td>1 (4.35%)</td>
</tr>
<tr>
<td>g. Osteoarthritis</td>
<td>1 (4.35%)</td>
</tr>
<tr>
<td>Level of education</td>
<td></td>
</tr>
<tr>
<td>a. Low education</td>
<td>7 (30.43%)</td>
</tr>
<tr>
<td>b. High education</td>
<td>16 (69.56%)</td>
</tr>
<tr>
<td>Drugs consumed in last 3 months</td>
<td></td>
</tr>
<tr>
<td>a. Lipid lowering agent</td>
<td>1 (4.35%)</td>
</tr>
<tr>
<td>b. Anti-Hypertension</td>
<td>3 (13.04%)</td>
</tr>
<tr>
<td>c. Corticosteroids</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>d. Others</td>
<td>3 (13.04%)</td>
</tr>
</tbody>
</table>

Table 2. Framingham 10-year CVD Risk According to BMI and Lipid Profile.

<table>
<thead>
<tr>
<th>Name</th>
<th>Framingham 10-year CVD risk based on BMI</th>
<th>Framingham 10-year CVD risk based on Lipid Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB1</td>
<td>10.40%</td>
<td>8.10%</td>
</tr>
<tr>
<td>SB2</td>
<td>6.00%</td>
<td>5.70%</td>
</tr>
<tr>
<td>SB3</td>
<td>6.10%</td>
<td>6.80%</td>
</tr>
<tr>
<td>SB4</td>
<td>14.00%</td>
<td>13.30%</td>
</tr>
<tr>
<td>SB5</td>
<td>21.10%</td>
<td>24.30%</td>
</tr>
<tr>
<td>SB6</td>
<td>6.20%</td>
<td>5.10%</td>
</tr>
<tr>
<td>SB7</td>
<td>7.00%</td>
<td>6.20%</td>
</tr>
<tr>
<td>SB8</td>
<td>16.60%</td>
<td>11.30%</td>
</tr>
<tr>
<td>SB9</td>
<td>12.10%</td>
<td>9.50%</td>
</tr>
<tr>
<td>SB10</td>
<td>12.60%</td>
<td>9.10%</td>
</tr>
<tr>
<td>SB11</td>
<td>11.60%</td>
<td>9.10%</td>
</tr>
<tr>
<td>SB12</td>
<td>10.00%</td>
<td>10.80%</td>
</tr>
<tr>
<td>SB13</td>
<td>16.10%</td>
<td>13.20%</td>
</tr>
<tr>
<td>SB14</td>
<td>13.30%</td>
<td>16.00%</td>
</tr>
<tr>
<td>SB15</td>
<td>14.20%</td>
<td>6.90%</td>
</tr>
<tr>
<td>SB16</td>
<td>30.00%</td>
<td>23.60%</td>
</tr>
<tr>
<td>SB17</td>
<td>22.20%</td>
<td>12.80%</td>
</tr>
<tr>
<td>SB18</td>
<td>30.00%</td>
<td>29.90%</td>
</tr>
<tr>
<td>SB19</td>
<td>10.00%</td>
<td>10.60%</td>
</tr>
<tr>
<td>SB20</td>
<td>30.00%</td>
<td>22.00%</td>
</tr>
<tr>
<td>SB21</td>
<td>6.70%</td>
<td>1.70%</td>
</tr>
<tr>
<td>SB22</td>
<td>2.30%</td>
<td>6.60%</td>
</tr>
<tr>
<td>SB23</td>
<td>11.30%</td>
<td>12.60%</td>
</tr>
</tbody>
</table>

Mean = 13.90% | **Mean = 11.97%**
Min = 2.30% | **Min = 1.70%**
Max = 30.00% | **Max = 29.90%**
Time Constraint

Other activities beside routine or working hours are time-consuming, so exercise become obstacles for the participants. Moreover due to fatigue from working, time is often used for resting than for doing regular exercise. Participant 2: "Since I go to the office early in the morning, the exercise should be in the afternoon, probably started from 17:00. However, usually I leave office at 15:00 and arrive at home near 16:30. In addition, since my wife also works, I have to help her to do some domestic tasks. The tasks are so tiresome and require plenty of time, when the tasks are done, it's already near the bed time. Then in the morning, I have to wake up at 5:00, so it's quite impossible to do any exercise."

Another obstacle for doing exercise is when friends or guests come. Participant 6: "I was planning to exercise, but then guest came unexpectedly. So I had to cancel the exercise."

Facility Constraint

Facility constraint was a great limitation for participants to exercise regularly. Participant 4: "The desire to exercise was there, but sometimes there are not enough tools, for example bicycle. Therefore the exercise can’t be done." Constraint of place to exercise can be a barrier for doing regular exercise. A participant argued that in order to exercise they must have/rent a place to exercise. Participant 2: "Usually we rent a place somewhere to exercise, but if the place was already rented, then our exercise is canceled."

Low Motivation

Interview results with participants indicate there are many obstacles because of the low motivation, including lack of encouragement and laziness. Participant 1: “If my children wanted to go along when I plan to have an exercise, then my exercise will be canceled.” Participant 2: “If the children go along with me, they tend to tease or play, so my exercise will be disturbed and eventually canceled.” Participant 3: “I often feel lazy and don’t like to perspire. I have been lazy since I was young.”

Another obstacle for doing exercise is when friends or guests come. Participant 6: “I was planning to exercise, but then guest came unexpectedly. So I had to cancel the exercise.”

Knowledge Barrier

Another obstacle for doing exercise is limited knowledge on how to exercise and what kind of exercise. For example, lack of knowledge on types of exercise that can be done with or without tools, also time and category of sports that can be done in accordance with their conditions. A participant said that there is no gym equipment then he can not do sports. Participant 4: “Sport equipments are necessary for doing exercises. Since my bicycle is already broken, and I haven’t bought a new one, I don’t exercise regularly now.”

Another finding for barrier to do exercise is to do exercise regularly. The regular exercise requires additional time. Participant 5: “My spare time is so limited, whereas exercise takes at least approximately 1 hour or so. When I have such free time, I’d better sleep.”

<table>
<thead>
<tr>
<th>Stage of Change</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-contemplation non believers in physical activity</td>
<td>0</td>
</tr>
<tr>
<td>PBPre-contemplation believers in physical activity</td>
<td>3</td>
</tr>
<tr>
<td>Contemplation</td>
<td>18</td>
</tr>
<tr>
<td>Preparation</td>
<td>2</td>
</tr>
<tr>
<td>Action</td>
<td>0</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
</tr>
</tbody>
</table>
Discussion

Based on Framingham Risk Score, we found 11.97% (1.70 to 29.90%) of CVD risk in 10 years based on lipid profile and 13.90% (2.30 to 30.00%) of CVD risk in 10 years based on BMI from obese men in University of Surabaya, that overall can be categorized as medium risk. CVD risk can be reduced with weight loss and lipid control by increasing HDL through a healthy lifestyle. According to Abdul Manaf study, healthcare team work (dietitians, nutritionist, physicians, physiotherapist, psychologist, and exercise instructor) is needed to establish body weight reducing programme in workplace. Through the intervention, there is significant reduction of body weight (-2.9 kg, p<0.001), BMI (-1.2 kg/m2, p<0.001), body fat percentage (-2.4%, p<0.05), waist circumference (-7.5 cm, p<0.001), serum fasting glucose (-0.2 mmol/L, p<0.01), HbA1c (-0.1%, p<0.02), and triglyceride (-0.2 mmol/L, p<0.001). (13)

There are several barriers to regular exercise that we obtained from the participants regarding lifestyle modification that focused on physical activity and exercise, and can be grouped into time constraint, facility constraint, low motivation, and knowledge about exercise. Lifestyle modification education is one of suitable therapies for obesity patients. (10)

Stage of changes in physical activity indicated that the average subjects included in the category are quite ready to start the program (contemplation and pre-contemplation) but still need to improve the readiness before starting the program.

Conclusion

In this study we found that 10-years CVD risk of obese men in University of Surabaya overall can be categorized as medium risk. There are several barriers regarding lifestyle modification for physical activity and exercise, whereas the average subjects included in the category are quite ready to start the program, but improvement for the readiness before starting the program will still be needed.

Based on this study, as an educational institution, University of Surabaya is recommended to:

1. Improve the existed sports facilities, so that employees and faculty member would be interested in doing regular sports activities.
2. Make an executive club for employees who are obese to exercise together.

Acknowledgement

We thanks to the Indonesia Higher Education Board (DIKTI) which has provided research grants in a competitive grant scheme.

References
