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Abstract A diregular digraph is a digraph with the in-degree and out-degree of all vertices is
constant. The Moore bound for a diregular digraph of degree 4 and diameter k is

Mgy = I+d+d2+ -+ d*. It is well known that diregular digraphs of order M ;, degree
d >1and diameter & >1 do not exist. A (d.k)-digraph is a diregular digraph of degree & > 1,
diameter & >1, and number of vertices one less than the Moore bound. For degrees 4 =2 and 3, it
has been shown that for diameter &k =3 there are no such (d, k)-digraphs. However for diameter 2,
it is known that (d,2)-digraphs do exist for any degree d. The line digraph of X ;. is one example

of such (d,2)-digraphs. Furthermore, the recent study showed that there are three non-isomorphic
(2,2)-digraphs and exactly one non-isomorphic (3,2)-digraph. In this paper, we shall study
(4,2)-digraphs. We show that if (4,2)-digraph G contains a cycle of length 2 then & must be the line
digraph of a complete digraph K.

1. Introduction

A digraph G is a system consisting of a finite nonempty set V(G) of objects called
vertices and a set E{(G) of ordered pairs of distinct vertices called arcs. The order of G is
the cardinality of V(G). A subdigraph H of (7 is a digraph having all vertices and arcs in
. If (u,v) is an arc in a digraph G, then u is said to be adjacent to v and v is said to be
adjacent from u. An in-neighbor of a vertex v in a digraph G is a vertex u such that
(u,vYe G. An out-neighbor of a vertex v in a digraph G is a vertex w such that

(v,w)e G. The set of all out-neighbors of a vertex v is denoted by N*(v)and its
cardinality is called the out-degree of v, d*(v)=IN*(v)|. Similarly, the set of all
in-neighbors of a vertex v is denoted by N (v) and its cardinality is called the in-degree of
v, d‘(v):l N‘(v)'. A digraph G is diregular of degree d if for any vertex v in G,
d*(V)=d (=d.

A walk of length h from a vertex u to vertex v in G is a sequence of vertices
(¢ =ug,uy,,u, =v) such that (u;_;,u;)e G foreach i A vertex u forms the trivial
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walk of length 0. A closed walk has uy =u, . A path is a walk in which all points are
distinct. A cycle C, of length £ >0 is a closed walk with k distinct vertices (except u,
and u, ). If there is a path from u to v in G then we say that v is reachable from u.

The distance from vertex u to vertex v in a digraph G, denoted by &(u,v), is defined
as the length of a shortest path from « to v. In general, &(u, v} is not necessarily equal to
S(v,u). The diameter k of a digraph G is the maximum distance between any two

vertices in G.
Let G be a diregular digraph of degree 4 and diameter k with n vertices. Let one

vertex be distinguished in G. Let n,,Vi=0,1,---,k, be the number of vertices at
distance i from the distinguished vertex. Then,

n, £d°, for i =1 k. M
Hence,
k
n=Y n <l+d+d++d*. (2)
i=0

The number of 1+d+d” +--+d* is the upper bound for the number of vertices in
digraph G. This upper bound is calied Moore bound and denoted by M, ;. If the
equality sign in (2) holds then the digraph G is called Moore digraph.

It has been known that the Moore digraphs do not exist for 4 >1 and & >1, except
for trivial cases (for d =tor k =1),[10] and [5]. The trivial cases are fulfilled by the
cycle digraph C,,, for d =1,and the complete digraph K, for k =1. This motivates
the study of the existence problem of diregular digraphs of degree d, diameter k& with
order M, , —1. Such digraphs are called Almost Moore digraphs and denoted by

(d,k)-digraphs.

Several results have been obtained on the existence of (d,k)-digraphs. For instance, in
[6] it is shown that the (d,2)-digraphs do exist for any degree. The digraph constructed is
the line digraph of K ,,,.LK,,, . Concerning the enumeration of (4.2)-digraphs, it is

known from [9] that there are exactly three non-isomorphic (2,2)-digraphs (see Figure 1).

+
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(a) (b) (©

Figure 1. The three non-isomorphic (2, 2)-digraphs
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In [2], it is shown that there is exactly one (3,2)-digraph, i.e., LK,. Fixing the
degree instead of the diameter Miller and Fris (8] proved that (2,k)-digraphs do not exist
for any values of k¥ 23. However, the existence problem of (d k)-digraphs with 423
and k =3 is still open.

Every (d.k)-digraph G has the characteristic property that for every vertex xe G
there exists exactly one vertex y so that there are two walks of lengths <k from x to y
(one of them must be of length k). We called the vertex y is the repeat of x and denoted

by r(x). If r{x)=y then r~'(y)=x. Thus the map r: V(G) > V(G) is a permutation
on V(G). If r(xy=x then x is called selfrepear (in this case, the two walks have
lengths O and k). It means that x is contained in a C,. If r(x)# x then x is called
non-selfrepeat. Tt is easy to show that no vertex of a (d,k)-digraphs is contained in two
C.'s.

In this paper, we study the enumeration of (4,2)-digraphs. Particularly, we study

(4,2)-digraphs containing a cycle of length 2.
The following theorem and lemma shown in [4] and [3] will be used in this paper

repeatedly. Let G be a (dk)-digraphand ScV. Let 7(§)= {r(x)| xe S}
Theorem 1. For every vertex v of a (d.k)-digraph, we have:

(@ NT(r)=r(N"()

(b) N7 (r(v))=r(N (v}

In the other words, theorem 1 shows that (a,b)e G if and only if (r(a), r(b))e G.

Lemma 1. The permutation r has the same cycle structure on N *(v) for every
selfrepeat v of (d k)-digraphs G.

2, Results

The aim of this paper is to show that if a (4,2)-digraph contains a selfrepeat then all
vertices in such a digraph must be selfrepeats.

Let G is a (4,2)-digraph that contains a selfrepeat vertex. We shall label the vertices
of Gby 0,1,2,---,19. Without loss of generality, from now on we assume the following:

1. 0is a selfrepeat vertex;
2. NY0)={1,23,4) and (0,4)e C, (thus 4 is also a selfrepeat);

3. N*()=(5678], N*(D)=9,10,11,12), N*(3)={13,14,15,16), and
N (4)={17,18,19,0}, (see figure 2).



82 H. Iswadi and E.T. Baskoro

We shall define L, ={1,2,3,4}, L, =N*MUNYQDUN (BUNT(4), and for
each i€ V(G), define A; ={i} UNT().

1314 15 16

Figure 2. The {4,2)-digraphs with containing a cycle of length 2

Since 0 is a selfrepeat then for each ae L;, by Theorem 1, we have r(a)e L.
Furthermore, Theorem 1 implies that for each be L,, we have r(b)e L,. Then we
have following lemma.

Lemma 2. Foreach j=1,2, we havethatif al;, then r(a)e L;.

Lemma 3. If x is a non-selfrepeat vertex in a (d,k)-digraph G and r(x)e N *(x) then

N7 (x) does not contain any selfrepeat vertices.

Proof Consider any ye N'(x). If y=r(x) then y is a non-selfrepeat. Now, let
y# r(x). For a contradiction assumes that y is a selfrepeat. Since (x.y)€ E(G), by
Theorem 1 we have {(r(x),r(¥)=y}e E(G). Thus there are two walks of lengths <2
from x to y in G, namely (x, y}and (x,r{(x),y). Thus r(x)=y which is not possible.

Therefore, each vertex of N (x) is a non-selfrepeat.

Lemma 4. If x is a non-selfrepeat vertex in a (d k)-digraph G and r(x}e N Y (x) then

N*(x) does not contain any vertex and its repeat together.
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Proof. Suppose that vertex ¢ and r(f) are in N *(x). Since (x,t)e G, due to Theorem
1, then we have (r(x), r{t))e E(G). Thus there are two walks of lengths £2 from x to
r(t), namely (x,r(r))and (x,r(x),r(t}). Thus r(x)=r(f). Hence x=1¢,a contradiction
with rin N7 (x).

To show that each vertex in G is a selfrepeat. We consider the out-neighbors of 0.
Since 0 and 4 are selfrepeats, then by Theorem 1 we essentially have three cases:

Case 1l Vertices 1, 2, and 3 are non-selfrepeat vertices.
Case 2 Two of {1,2,3}are non-selfrepeat vertices.
Case 3 Vertices 1, 2, and 3 are selfrepeat vertices.

Let 5 be a selfrepeat in (4,2)-digraph G. Let 1 is a non-selfrepeat in N'(s). Then each
vertex w in N () must be a non-selfrepeat, since otherwise by Theorem 1 there are two

walks from s to » which implies that r(s)=u, a contradiction with s being a selfrepeat.

Letubein N*(t). The following lemma considers the properties of out-neighbors of u.

Lemma 5. Let s be a selfrepeat vertex in (4,2)-digraph G. Let te N *(s) be a non-
selfrepeat vertex. Let ue N'(t) be a non-selfrepeat vertex such that (u,v)e G, for
some ve N¥(s) and v is a non-selfrepeat vertex. Let r(ty=v. Then for each

ye N7 (s), there is at most one non-selfrepeat w, where w = N A y-

Proof. Suppose that there are two non-selfrepeat vertices of N *(u), which are in Ay,

for some ye N*(s). Since r(f)=v and (t,u)€ E(G), due to Theorem 1, then
(r(h=v, r(u))e E(G). Hence r(u) in Nt (). Suppose N¥(u)={v,¥.¥,,y;}and
both y, and y, arein A,. If one of them, say y;, is equal to y, then there exist two
walks of lengths <2 from u to y,. This means that r(u)=y,. Since r(u) in
N*(v), we should have an arc {rom v to y; in G. Thus; altogether there are three walks
of lengths <2 from u to y,, acontradiction. Thus, y, #y. Similarly, we can show

that y, # y. Let us denote the three remaining vertices of A, by y, x; ,and x, such

that N*(¥)={ ¥, ¥2,%, %, } (see Figure 4).
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Voy; M ¥ X x5

Figure 4

Of course y#v. Since otherwise, there are two repeats of u, namely r(u)= ¥, and
r(u)=y,. Toreach y in 2 steps from « we cannot do via v, since there will be two
walks of lengths <2 from s to y, namely (s,y) and (s,v,y). Thus r(s)=y, a
contradiction with s being selfrepeat. We cannot do it via Y1 Or y,,since there will be a
¢, containing y, or y,, a contradiction with Y10t y; being a non-selfrepeat. Hence, to
reach y from u we must do it through y;. Thus we have (¥4, yYe E(G).

To reach x; in 2 steps from u we cannot do it via v, because if we have vx)eq
then there are two walks of lengths <2 from s to x;. Thus r(s) = x;, a contradiction.
We cannot do it through either Y1 O y;, because if we have (y,x;)or (yvi,x)e G,
then there are two walks of lengths <2 from y to %. Thus r(y)=x;. Since sisa
sclfrepeat and (s, y)e G, by Theorem 1, we have {5,r(¥y)=x,)€ G. Thus there are
also two walks of lengths <2 from s to x; in G, namely (s,y,x%) and (s,x,). Hence
r(s)=x,, a contradiction. Therefore, we have ( Y1, %) € E(G) to be able to teach x|
from u. Similarly, we can show to reach x; from u in 2 steps we should have
(¥3,x3)€ E(G). Thus altogether implies r( ¥3)=x; and x,, a contradiction with the
uniqueness of repeat. Therefore there are at most one out-neighbor of u which is in Ay.

In the following sections, we shall show that Cases 1 and 2 can not hold.
2.1. Casel

Consider a (4,2)-digraph G containing a subdigraph of Figure 2 and having properties of
Case 1. In this case, 1, 2, and 3 are non-selfrepeat vertices. Without loss of generality,
Wwe can assume that

r()=2, r(2)=3 and r(3)=1 {3)
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Then, we have the following three properties (due to Theorem 1}:

1. ifae NT(1) then riaye N1 (2),
2. if ae N"(2) then r(a)e N (3),
3. If ae N*(3) then r(a)e N (1).

Thus each vertex in N*{(I)WN* (2)UN'(3) is a non-selfrepeat. Since 4& N*(0) is a
selfrepeat, then the permutation r on N'(4) has the same cycle structure with that on
N*(0). In this case, N*(0) consists of three non-selfrepeat and one selfrepeat. Since
0 N7 (4) is sclfrepeat, then N* (4)\{0} consists of non-selfrepeat vertices.

Since G has diameter 2, hence to reach 1 from 3 there must exist a vertex
Xy € N'(3) such that (x4,1) € G. From now on, let us denote by x, y, and z the
remaining three out-neighbors of x, in G. Of course, none of them can be 0 since

otherwise r(xy)=1, acontradiction with r(xy) in N*(1). None of them canbein A;.

Since otherwise, then r(3)in N * (3}, a contradiction with assumption that r(3)=1.

Lemma 6. There is at most one of {x,y.z} can be in either N*(1} or Ay, or
Ag MOY.

Proof Suppose that two of {x, y,x}bein N*(D), sayxandy. Then r(xy)=x and y, a
contradiction with the uniqueness of repeat. Hence at most one of {x, y, x} bein N*(I).
Suppose that two of {x, y,x}be in A,, say x and y. Since all of vertices in A, is non-
selfrepeat, by Lemma 5 then at most one of x and y can be in A,. Hence at most one of
{x,y,x} in A,. Suppose that two of ‘{x, y,x}be in A,\{0}, say x and y. If one of
them, say x, is equal to 4, then there exist two walks of lengths < 2 from x; to y. Thus
r(xg)=ye N'(4), a contradiction with r(xy)e N*(1). Thus x#4. Similarly, we can
show that y#4. Hence both x and y be in N*T($\|0}. Since all of vertices in
N*Y(@\{0} is non-selfrepeat, by Lemma 5 then at most one of x and y can be in

NT(D\{0}. Hence at most one of {x,y, x}in A, V(O]
One of {x, y,x} must bein N (1). Since otherwise, then there are two of {x,y,x}
bein A, or A4\{0}, a contradiction with Lemma 6. Let x be in N'(1). Hence

r(xp)=x& N*(xy). Then y or z cannot be equal to 4. Since otherwise, then N* (xy)
contains a selfrepeat vertex, a contradiction with Lemma 3. Hence none of {y, z} can
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be 4. If one of {y,z} is equal to 2, then N¥(x,) contains | and r(l)=2,

a contradiction with Lemma 4.
The following theorem will complete the impossibility of case 1.

Theorem 2. There is no (4,2)-digraph containing a subdigraph of Figure 2 and having
properties of Case [.

Proof. Suppose that G is a (4,2)-digraph containing a subdigraph of Figure 2 and having
properties of Case 1. By Lemma 6, we have that out-neighbors x, y, z of x, other than 1

must be equaily distributed, namely xe N*(1), ye N*(2), and ze N*(4)\{0). Then
rlxg)=x. Since r(xg)=x, r(l)=2, and (xy,1)e G,by using Theorem 1, then
(r(xg), r())=(x,2)e G.

We will show that (x,3)e G. Toreach 3 from x; in 2 steps, we cannot do this via 1,
because 3 N ™ (1). If we do that via z, then there are two walks (4,0, 3)and (4, z,3) in
G. Hence r(4)=3 which is a contradiction with 4 being a selfrepeat. Suppose that
{y,3)e G. Next, we must reach 0 from x; in 2 steps. We cannot do it via 1, because
0z N (1). If we do that via x, then there are two walks from x to 2 or r(x)=2, a
contradiction with r(x)e N (2). If we do it via y, then r(y) =3, a contradiction with
r(y)e N7(3). If we do that via z, then r(4)=0, a contradiction with 4 is a selfrepeat.
50, (y,3) ¢ G. This implies that (x,3)e G.

To reach O from x; in 2 steps, we cannot do this via 1, because 02 N*(1). If we do
that via x, then there are two walks from x to 2. This means that r(x)=2, a
contradiction with r(x)e N (2). If we do that via z, then r(4)=0, a contradiction with
4 is a selfrepeat. Hence (y,0) isin G. Similarly, to reach 4 from x; in 2 steps, we can
show that it is done through x. Hence we have (x, 4)e G.

Let ¢ be the fourth vertex in N* {x). Now we consider vertex x and the others at
distance 1 and 2 from x. At distance 1 from x, there are 2, 3, 4, and ¢. At distance 2 from
x, NT(t) contain 1 and the remaining vertices in N*()\{x}(since
N*Y(2)={9,10,11,12}, N*(3)={13,14,15,16}, N*(4)={17,18,19,0}). Then t has
multiple repeats, a contradiction with the uniqueness repeat.

2.2. Case 2
Consider a (4,2)-digraph G containing a subdigraph of Figure 2 and having properties of

case 2. In this case, there are two out-neighbors of 0 as non-selfrepeat vertices. Without
loss of generality, we can assume that those non-selfrepeat vertices are 1, and 2, such that

rl)=2, r(2)=1, and r(3)=3 3}
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Then, by Theorem 1 we have two following properties:

1. if ae N*(1) then r(a)e N*(2),
2. if ae N*(2) then r(a)e N*(I).

This implies that all vertices in N (1) u N*(2) are non-selfrepeat vertices. Since 3
and 4 are selfrepeats, then by Lemma 5, vertices 3 and 4 have the same cycle structure
with 0. In this case, two of vertices in N*(0) are selfrepeat and the others are non-
selfrepeat. Then N ™ (3) and N ™ (4) consist of two selfrepeat vertices and non-selfrepeat
each. We assume that 15 and 16 are selfrepeat vertices in N7 (3). Let
H, ={15,16}. It is clear O is a selfrepeat vertex in N ' (4). Let another selfrepeat in

N*(4) be 19. Let H, ={0,19}. Since 3 is a selfrepeat then 3 contain in a C, which

contain another selfrepeat vertex, say s. Then s only can be 15 or 16. Let s = 16. Hence
3 and 16 contain in a C;. For 15 and 19, they must be containing in C;. Since otherwise
then there will be one of {0, 3, 4,16] contain in two cycle of length 2, a contradiction.

Furthermore, since 15, 16, and 19 are selfrepeat vertices, then by Lemma 5, each of
N*(15), N*(16), and N7(19)consist of two selfrepeat vertices and two non-

selfrepeat.
Since G has diameter 2, hence to reach 1 from 2 there must exist a vertex

xp € N™(2)such that (x,,1) € G. From now on, let us denote by x, y, and 7 the
remaining three out-neighbors of xy in G. Of course, none of them can be 0 since
otherwise r(xy)=1, a contradiction with r(x,) in N¥(1). None of them can be in
A,. Since otherwise, then r(2) in N7(2), a contradiction with assumption that
r(2}=1. If there are more than one of {x, y, z} can be in A4, then none of {x, y,z}can
be 3. Since otherwise, then there are two walks of lengths < 2 from x, to a vertex in
N*(3). Then r(xy)e N*(3), acontradiction with r(xp)e N*(1). Similarly, if there

are more than one of {x, y,z} canbein A, \{0}, then none of {x, y,z} can be 4.
Proposition 1. N*(16)=N" ().

Proof. ltis clear 3e N*(16). Let € N*(16) be {3, x;, x,, x5}. Let x| be another
selfrepeat vertex in N*(16). If x, =0 then there are two walks of lengths < 2 from 16 to
3, namely (16,0,3} and (16,3). Thus r(16)=3, a contradiction 16 being selfrepeat.
Hence x; #0. If x; =19 then there are two walks of lengths < 2 from 3 to 19, namely
(3,15,19) and (3,16,19). Thus r(3)=19,a contradiction with 3 being selfrepeat.
Hence x; #19. If x; =15 then there are two walks of lengths < 2 from 3 to 15, namely
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(3,16,15) and (3,15). Thus r(3}=15, a contradiction with 3 being selfrepcat. Hence
x; #15. Hence x =4.

Vertex x; cannot contain in N*(3)\{16} or N'(4), because if it can then
r(16) = x, € N"(31\ {16} or r(16)= x>e NT(0), a contradiction with 16 being
selfrepeat vertex. Similarly, xy cannot be in N " (3)\{16} or N*(4). Thus x, and
x; mustcontainin A, and A,.

Suppose that x, € N *{1). Then, we consider vertex 16 and the others at distance |
and 2 from 16. At distance 1 from 16, there are 3,4, x,, and x;. Atdistance 2 from [6,
vertices of N7 (x,) cannot be 1 (since if they are, then there will be a C; contain 1) and
vertices of N (x,) cannot be in N " ()\{x,} (since if they are, then r(D)e N (D).
Hence N*(x,) will contain vertices in {2} w N7 (2) (since N* (3 ={13,14,15,16)
and N (4)={0,17,18,19}). Then x; must be  containing  in
(1,2} G{NT(DV{xy ]} UNT(2). If xy=1, then there are two walks of lengths < 2
from 16 to x,, namely {16, x,}and {16,1,x,}. Then r(16) = x,, a contradiction with
16 being sclfrepeat. If x;=2, then at distance 2 from 16 there are

NT(2), N*(3), NT(4), and N*(x;). Thus N (x,) consists of MUINTMV{x, 1 )
Thus x, has multiple repeats, a contradiction with the uniqueness of repeat.
If x;e {N"(1)\{x;}}, then ] cannot be in N*(x,) and N*(x;). Thus 16 cannot reach

1 in a path of lengths < 2, a contradiction. Hence x; & INYVx, ). I x;€ NT(2),
then N'(x;) cannot contain 2 (if it can then there is a cycle contain 2, a contradiction).

It means that 2 must be in N*(x;). Then N¥(x,) consists of 2 and (N {D\xs) ).
Thus x, has multiple repeat, a contradiction with the uniqueness of repeat.
Then x, cannot be containing in {l, 2} v (NTD\{xy}} v ~NY(2), a contradiction.
Hence x, cannot be in N7 (1). Similarly x, cannotbein N *(2). Hence x, must
be 1 or2. Let x, =2. Since 16 is a seifrepeat and (16,2) € E(G), by using Theorem 1,
then (r(16y=16, r(2)=1) E(G). Hence x, must be 1. Hence Ntae6y={l,2,3,4}
=N"(0).

All of {x,y,z} cannotbe in A,. Since otherwise, x, cannot reach the fourth vertex
in A,, say r (because we cannot do it via 1 and if we do it via one of {x,y,z}, say x,

then there will be two walks of lengths < 2 from 3 to x, a contradiction). As we know
before that none of {x, y,z} which are in A, can be 3. Hence there are at most two of

{x,y,z}can be in N7(3). Similarly, there ate at most two of [x,y, z}can be in

NT(O\(0}.
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Lemma 7. There is at most one of {x,y.2} can be in either N*(1) or N*(3) or N'(4 N0},

Proof. Suppose that two of {x, y,z}canbe in N*(1), say xand y. Then r(xy)=x and
y. a contradiction with the uniqueness of repeat. Hence there is at most one of {x,y.z} can
bein N*(1). Suppose that two of {x,y,z} canbein N*(3), say x and y. Both x and

y cannot be non-selfrepeat vertices. Since if they are then it will be a contradiction with
Lemma 5. Hence both of [x, y} is selfrepeat ot {x, y} consist of one selfrepeat and one

non-selfrepeat. One of {x, y}cannot be 16. Since otherwise, then there are two walks of
lengths < 2 from xg to 1 (because N*(16)={1,2,3,4}). Then r(xp) =1, a contradiction
with r(xp) in N*(1). Hence one of {x, y}is equal to 15 and another is 13 and 14.

For x=13 and y=15. If z=19, then there are two walks of lengths < 2 from x,
to 19, namely (xq,19)and (xg,15,19)(because 19e N*(15)). Then r(xy)=19,a
contradiction with r(xg)in N'(1). Hence z#19. If z=4,then there are two walks of
lengths < 2 from x, to 19, namely (x,,15,19)and (xg, 4, 19) (because 19€ N*(15)
and 19€ N*(4)). Then r(x;)=19, a contradiction. Suppose that z =18. Then we
consider x, and the others at distance 1 and 2 from x,. At distance 1, we have 1, 13,
15, and 18. At distance 2, we have N7 (1})={56,7,8), N*(13), N'(I15), and
N*(18). Now we consider where we can put 3. N*(13) cannot contain 3. Since
otherwise, there will be a cycle of length 2 contain 13, a contradiction with 13 being a
non-selfrepeat. N T{15) cannot contain 3. Since otherwise, then 3 in two C:'s, a
contradiction. Hence 3e N¥(18). Now, we consider where we can put 16. N (13)
cannot contain 16, Since otherwise, then r(3)=16, a contradiction with 3 being a
selfrepeat.  Similarly, N7(15) cannot contain 16. If N*(18) contain 16, then
r(18} =16, a contradiction with 16 being a selfrepeat. Thus we cannot reach 16 from x,
in 1 and 2 steps, a contradiction. Similarly, if z =17, we cannot reach 16 from xq in 1

and 2 steps. Thus z must be in N7 (3). Hence all of {x,y,z}must be in A,, a
contradiction. Similarly, for y =14 and z =15, then all of {x,y, z} must be in A4, a

contradiction. Hence two of {x, y, z} cannot be in ¥ (3). Similar reason we use to find
a contradiction if two of {x,y,z} canbein N (4)\{0Q). Thus two of {x, ¥, z}cannot
bein NT(4)\{0}. Hence there is at most one of {x.,y,z} can be in either N7 (D) or
NT(3) or N*(4)\{0}.
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One of {x,y,z}must be in N *(1). Since otherwise, then there are two of
{x,y,2)be in N*(3) or N"(H\{0}, a contradiction with Lemma 7. Let x be in
N¥(l). Hence r{xg)=x€N7(x;). Then y or z cannot contain in union of

(4,3} v H; U H,. Since otherwise, then N7 (xy) contains a selfrepeat vertex, a

contradiction with Lemma 3. Hence none of {yz} can contain in union of
(4,3 U H, U H,.

Theorem 3. There is no (4,2)-digraph containing a subdigraph of Figure 2 and having
properties of Case 2.

Proof. Suppose that G is a (4,2)-digraph containing a subdigraph of Figure 2 and having
properties of Case 2. Due to Lemma 7. we have that the three out-neighbors x, y and z of

xp other than 1 must be equally distributed, namely xe N*(l), ye N*(3)\H,, and
ze NY(O\VH,. Since r(xg}=x r(N=2, and (x5, e G, by using Theorem 1, then
(r(xg), r(i)={(x, 2} e G. Toreach 0 from x;, we must do it from y, because if we do
soviaxor zthen r(x)=2 or r(4)=0, a contradiction. Hence (y.0)e G. To reach 3
from xg, we must do it through x, because if we do via y or z then 3 in two (3's or
r(y) =4, respectively, a contradiction. Similarly, if we show that 4 is reachable from
xp through x. Hence (x.3) and (x,4) areinG.

Let ¢ be the remaining vertex in N ¥ (x). Similarly with the proof of Theorem 2, we
have multiple repeats for 7, a contradiction with the uniqueness of repeat.

2.3. Case 3

Consider a (4,2)-digraph containing a subdigraph of Figure 2 and having properties of
Case 3. In this case, we have that all out-neighbors of 0 are selfrepeats, We will complete
our proof by showing that (4,2)-digraph is exactly LK.

Theorem 4. There is exactly one (4.2)-digraph, which contains a selfrepeat, namely the
line digraph LK of complete digraph on 5 vertices.

Proof. Since all out-neighbors of 0 are selfrepeats then by using Lemma 1 implies that
all vertices in the digraph must be selfrepeats. Next, due to Theorem 3 in [4], we
conclude that only such (4,2)-digraph is LK.
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