ICEAI-0056

High-Grade Biosilica Isolated from Diluted Acids Leached Rice Husk

Lanny Sapei^{*}, Natalia Suseno, Karsono Samuel Padmawijaya, Jessica Natalia Wibowo, Chandra Widjaja

Department of Chemical Engineering, University of Surabaya, Indonesia * E-mail: lanny.sapei@staff.ubaya.ac.id

Abstract

Rice husk which consists of ~20% silica seems to be quite promising to be the biosilica resources. As one of the most abundant agricultural wastes derived from paddy milling sites, rice husks have been generally directly burn on sites causing air pollution and environmental problems. Rice husk silica is amorphous in nature which is quite reactive and has a great potential to be used as a raw material for various silica based products. The aim of this experiment was to study the efficacy of diluted acids such as HCl and citric acid in order to obtain high-grade silica. The characterisation of silica ashes included the analysis of composition and structure using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), X-ray Fluorescence (XRF). The specific surface area of silica was determined using Brunauer, Emmet, Teller-Surface Area Analyzer (BET-SAA). Silica produced from these experiments had an amorphous form. The highest silica purity with Si content of 96.2% was obtained from rice husk treated using diluted HCl. However, the highest specific surface area of ~253 m²/g was derived from diluted citric acid treated rice husks. Diluted acids seemed to be quite effective in removing metallic impurities enabling to produce high grade biosilica.

Keywords: Amorphous silica, rice husk, dilute acids, leaching.

1. Introduction

The rice paddy production in the world reached 748 million tons in 2016 of which ~ 90% was produced in Asia (FAO, 2016). In Indonesia, about 75 million tons was produced in 2015 (BPS, 2016). Around 20% of rice paddy is rice husk (Blissett, 2017), thus around 15 million tons of rice husks are produced annually in Indonesia. Rice husk is produced during the paddy milling and regarded as the second largest wastes after rice straws. Rice husk is generally accumulated and burnt on sites thus increasing air pollution. Rice husks have been considered to be the amorphous silica resources which have been widely used in many industrial applications such as cements (Sinyoung, 2017; Aprianti, 2017), fillers (Hsieh, 2017; Noushad, 2016), polymer composites (Yaakob, 2017), adsorbent (Deokar, 2016), catalyst support (Kumar, 2016), and drug delivery (Rajanna, 2017). Besides that, there have been several attempts to harness rice husk as biomass derived fuels (Blissett, 2017) and as precursors for silica-based materials

synthesis such as zeolite (Mohamed, 2015), Si (Malino, 2016), SiC (Seraji, 2016), and Si_3N_4 (Qadri, 2016) The high content of silica in rice husk of ~20% makes it promising to be the low cost and renewable resources of biosilica with significantly increased added value product.

Rice husk silica could be isolated in several ways, such as alkaline extraction using NaOH (Kalapathy, 2000; Liou, 2011) or NH₄OH (Della, 2005) followed by precipitation process using acids. Silica could be simply obtained from direct combustion of rice husk resulting in silica rich ashes. However, direct combustion of rice husk without any pretreatment has resulted in low-grade silica which might also be converted into crystalline form due to the reactions between silica and alkaline salts forming eutectic mixtures of silicates. In the last decade, there have been many attempts of conducting pretreatment of rice husk using different acids solutions such as HCl, H₂SO₄, HNO₃, acetic acid, oxalic acid, citric acid (Chandrasekhar, 2005; Umeda, 2007; Umeda, 2008; Umeda 2009; Liou, 2010; Sapei, 2012; Rafiee, 2012; Sapei, 2015; Bakar, 2016) for the removal of metallic impurities prior to combustion in order to obtain silica with high purity. There have been a tendency of using diluted strong acid of 1-5% (Umeda, 2007; Rafiee, 2012) instead of strong acid solution with ~ 5-20% (Umeda, 2007) and even by using organic acid such as citric acid of 1-7% (Umeda, 2008; Umeda, 2009) for a green and more environmentally benign process. In this research, a more diluted HCl and citric acid of 0.01 M were used as the reagents during acid leaching prior to thermal treatment in order to obtain silica with high purity. The resulted silica was characterized using several methods, such as XRF, FTIR, XRD, and BET-SAA. Silica obtained from this mild process was expected to fulfill the criteria of high-grade amorphous silica with high purity and high specific surface area.

2. Materials and Methods

2.1 Materials

Rice husks were derived from paddy milling processing plant in Mojokerto, East Java. Citric acid p.a. (Sigma Aldrich) and hydrochloric acid 37% (Merck). Aquades.

2.2 Isolation of Rice Husk Silica

Impurities such as sand and rice straws were removed out from rice husks prior to water rinsing and drying at 105°C in the oven (Memmert, Germany) for 2 hours. The dried clean rice husks were then subjected to a leaching process using diluted acids, i.e. 0.01 M HCl and 0.01 M citric acid. Leaching process was conducted at 100°C for 60 minutes in a stirred flask with reflux. Afterwards, rice husks were rinsed several times using aquades, filtered, and then dried in the oven at 105°C for 2 hours. The dried leached rice husks were then thermally treated in a furnace (Ney VULCAN D-550, Dentsply Ceramco, USA) at 750°C for 5 hours for the organics removal. The remaining ash after combustion contained highly pure silica. Rice husk without acid leaching was also thermally treated as the control.

2.3 Characterisation of Rice Husk Silica

Rice husk ashes which were mainly silica were characterised using several techniques such as XRF (X-ray Fluorescence), FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), and BET-SAA (Brunauer, Emmet, Teller-Surface Area Analyzer). Elemental composition of the ashes was determined using (XRF) (PANalytical, MiniPal4, Netherlands) at Physics Laboratory, State University of Malang, Malang. The functional groups of chemical constituents of the ashes were analysed using FTIR (Bruker Tensor, Germany) at Polymer and Membrane Laboratory, University of Surabaya, Surabaya. Samples were prepared using a KBr pellet at dry atmosphere at 25°C. Each spectrum was derived from an average of 32 scans with a resolution of 64 cm⁻¹ within the wavenumber range of 400–4000 cm⁻¹. XRD (X'Pert Pro PACAnalytical, Netherlands) measurement was conducted within $2\theta = 5-70^{\circ}$ at Energy Laboratory, Institut Teknologi Sepuluh November, Surabaya in order to study the crystallinity of the ashes. Finally, the specific surface areas of the ashes were determined using BET-SAA (Quantachrome, USA) at Energy Laboratory, Institut Teknologi Sepuluh November, Surabaya.

3. Results and Discussion

The ash obtained from thermally treated rice husk was about 20% of the native rice husk and ~90% of the ash was silica based on the gravimetric analysis. The ash of untreated rice husk was grey in color, whereas those obtained from diluted treated acids showed a white color as could be seen in Figure 1. The white color reflected silica of high purity, whereas the grey color indicated some trapped carbon inside the silica network due to the eutectic reactions between silica and metallic impurities (Umeda, 2009). Potassium has been the main impurities of which presence disturbed the isolation process of pure silica (Sapei, 2008). The pretreatments of rice husk using diluted acids of both HCl and citric acid prior to thermal treatment have successfully increased the whiteness and brightness of the ashes. This visual observation was supported by the results obtained from XRF analysis.

Figure 1. Silica ashes isolated from acid pretreated rice husk followed by thermal treatment at 750°C for 5 hours. a) control; b) diluted HCl treated; c) diluted citric acid treated.

Element/	Content (%)		
Samples	Control	Diluted	Diluted
		HCl treated	citric acid treated
Si	84.7	96.2	94.7
К	4.68	0.18	0.57
Ca	5.83	1.59	1.92
Mn	0.92	0.11	0.18
Fe	1.22	0.26	0.49
Ni	1.56	1.02	1.36
Cu	0.22	0.17	0.21
others	0.87	0.47	0.57

Table 1. Elemental analysis of rice husk silica

The Si content was increased from ~85% to ~ 95-96% (Table 1) when rice husk was previously treated using diluted acids. The corresponding silica purity as SiO_2 obtained from XRF measurement were 98.6% and 98% for diluted HCl treated and diluted citric acid treated rice husk, respectively. The Si content in biosilica isolated from diluted HCl rice husk was slightly higher than those isolated from diluted citric acid. However, both showed a quite high silica purity of ~98%. These results showed that much diluted acids of 0.01 M of both HCl and citric acids were already sufficient in removing the metallic impurities mainly K in order to obtain high-grade biosilica. There have been about 96% and 88% decrease of K after leaching with diluted HCl and diluted citric acid, respectively. It turned out that diluted HCl seemed to be more powerful in removing the metal impurities compared to diluted citric acid.

HCl as a strong acid was almost fully ionized when mixed with water producing hydrogen ion which was responsible for the dissolution of metallic impurities. During the citric acid leaching, metallic impurities were removed from rice husks due to the chelate reaction between -COOH groups and metallic impurities. These carboxyl groups, tend to donate proton (H^+), resulting in the negatively charged carboxyl group that is capable of forming stable complexes with several metal ions such as K^+ and Ca²⁺ (Pa, 2016). Silica purity of 99.3% was obtained when 1% citric acid was used (Umeda, 2007). In this experiment, 5 times more diluted citric acid was used and comparable result was obtained. Diluted acid leaching proved to be significantly useful and effective in substantially removing the metallic impurities and increase the purity of rice husk silica while reducing environmental problems.

The FTIR spectra of all samples (Figure 2) including control seemed identical and showed a fingerprint of amorphous silica with typical siloxane bands at 460-487 cm⁻¹, 808-823 cm⁻¹, and 1064-1089 cm⁻¹. The peaks at wavenumber 1100-1000 and 800 cm⁻¹ were attributed to - (SiO)_n- due to asymmetric and symmetric stretching vibration from Si–O–Si, respectively (Socrates, 2001). Absorption band at ~460 cm⁻¹ was assigned to bending vibration of O–Si–O

(Moenke, 1974). There was some physically adsorbed water in the biosilica indicated by a small peak at 1635-1658 cm⁻¹ due to the vibration of H–O–H bending (Moenke, 1974). A broad hump between 3460-3471 cm⁻¹ was assigned to –OH group stretching which could derived from silanol (Si–OH) or H₂O (Moenke, 1974).

Figure 3. XRD patterns of rice husk silica

2-theta (⁰)

All silica ashes both treated with diluted acids and non-treated showed an amorphous form according to XRD analysis as shown in Figure 3. A broad hump with a peak at $2\theta = 22^{\circ}$ was a typical characteristics of amorphous silica. This was in line with the previous investigation stating that silica present in rice husk was amorphous in nature (Sapei, 2012; Umeda, 2008).

Furthermore, silica accumulated in plants such as in *Equisetum hyemale* was also amorphous (Sapei, 2007).

Table 2. Specific area of rice husk silica		
Sample	BET Specific Area (m ² /g)	
Control	17.909	
Diluted HCl treated	165.765	
Diluted citric acid treated	253.283	

The specific surface area of biosilica isolated from diluted acid leached rice husks could be seen in Table 2. The non-treated sample (control) showed the lowest specific surface area of ~18 m²/g. This was due to the formation of eutectics as the results of the reaction between silica and alkaline metal mainly potassium during the thermal treatment. The low melting point eutectics were easily melted during the thermal treatment thus collapsing the pores of biosilica. Leaching with diluted acids significantly enhanced the specific surface area of about 9 to 14 times. These specific areas were more or less comparable with those obtained using higher concentrations of corresponding acids (Bakar, 2016; Alyosef, 2013; Rafiee, 2012). Interestingly, silica obtained from diluted citric acid treated rice husk showed a much higher specific surface area compared to that obtained from diluted HCl treated rice husk. Citric acid was able to hydrolyze the main organic materials in the husk, such as cellulose and hemicelluloses into simple structure of monosaccharides such as furfural and levoglucosan (Alyosef, 2013). Most probably the hydrolysis of organics by diluted citric acid was more efficient than that in the presence of diluted HCl. The enhanced area was thereby attributed to some pores formed due to the removal of organics. Organic acid could be considered as an alternative chemical to replace the strong acid in the leaching process since organic acid is less corrosive, less hazardous and more environmentally benign compared to HCl. Furthermore, much diluted acid was sufficient in substantially removing metallic impurities in rice husk in order to obtain high-grade silica thus reducing the production cost and environmental problems.

4. Conclusion

Biosilica isolated from diluted acid leached rice husk was amorphous according to XRD analysis. The FTIR spectra of all samples showed the fingerprint of amorphous silica. The Si contents were improved from ~85% to ~95-96% when rice husks were previously treated using diluted acids of both HCl and citric acid prior to thermal treatments. Although the purity of silica derived from HCl treated rice husk had a slightly higher purity, its surface area was about 65% lower than that obtained from citric acid treated rice husk which had a relatively high surface area of 253 m²/g. The purity and surface area of silica derived from this mild process was comparable with those obtained using more concentrated acids. This proved that leaching

using much diluted citric acid seemed to be sufficiently efficient and economical in order to produce high grade silica while also decreasing the environmental problems.

5. References

- Alyosef, H. A., Eilert, A., Welscher, J., Ibrahim, S. S., Denecke, R., Schwieger, W., & Enke, D. (2013). Characterization of biogenic silica generated by thermo chemical treatment of rice husk. *Particulate Science and Technology*, *31*(5), 524-532.
- Aprianti, E. (2017). A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II. *Journal of Cleaner Production*, *142*, 4178-4194.
- Bakar, R.A., Yahya, R., Gan, S.N. (2016). Production of High Purity Amorphous Silica from Rice Husk, *Procedia Chemistry* 19, 189-195.
- Blissett, R., Sommerville, R., Rowson, N., Jones, J., & Laughlin, B. (2017). Valorisation of rice husks using a TORBED® combustion process. *Fuel Processing Technology*, *159*, 247-255.

BPS (Badan Pusat Statistik). (2016). https://www.bps.go.id/brs/view/id/1271

- Chandrasekhar, S., Pramada, P.N., Praveen, L. (2005). Effect of Organic Acid Treatment on the Properties of Rice Husk Silica, *Journal of Materials Science* 40, 6353-6544.
- Della, V.P., Kuhn, I., Hotza, D. (2002). Rice Husk Ash as an Alternate Source for Active Silica Production, *Materials Letters* 57, 818-821.
- Deokar, S. K., Singh, D., Modak, S., Mandavgane, S. A., & Kulkarni, B. D. (2016). Adsorptive removal of diuron on biomass ashes: a comparative study using rice husk ash and bagasse fly ash as adsorbents. *Desalination and Water Treatment*, 57(47), 22378-22391.
- FAO (Food and Agriculture Organization of the United Nations) Rice Market Monitor. (2016, Dec). Vol. XIX, No. 4. <u>http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/</u>
- Hsieh, Y. Y., Chen, T. Y., Kuo, W. C., Lai, Y. S., Yang, P. F., & Lin, H. P. (2017). Rice huskderived porous carbon/silica particles as green filler for electronic package application. *Journal of Applied Polymer Science*, 134(15).
- Kalapaty, U., Proctor, A., Shultz, J. (2000). A simple method for production of pure silica from rice hull ash, *Bioresource Technology* 73, 257-262.
- Kumar, A., Priyadarshinee, R., Singha, S., Dasgupta, D., & Mandal, T. (2016). Rice husk ash-based silica-supported iron catalyst coupled with Fenton-like process for the abatement of rice mill wastewater. *Clean Technologies and Environmental Policy*, 18(8), 2565-2577.
- Liou, Tzong-Horng., Jung-Wu, S. (2010). Kinetics Study and Characteristics of Silica Nanoparticles Produced from Biomass-Based Material, *Ind. Eng. Chem. Res* 49, 8379-8387.

- Liou, Tzong-Horng., Yang, Chun-Chen. (2011). Synthesis and Surface Charateristics Of Nanosilica Produced From Alkali-extracted Rice Husk Ash, *Material Research and Engineering B 176*, 521-529.
- Malino, M. B., Jimmy, & Lapanporo, B. P. (2016, March). The dependence of grain size of silicon from rice husk ash on metallothermic reaction time. In N. N. Rupiasih, W. G. Suharta, & H. Suyanto (Eds.), *AIP Conference Proceedings* (Vol. 1719, No. 1, p. 030015). AIP Publishing.
- Moenke, H.H.W. (1974) "Chapter 16 Silica, the three-dimensional silicates, borosilicates and beryllium silicates" in The Infrared Spectra of Minerals, 4th Edition, Farmer, V.C., Mineralogical Society, London.
- Mohamed, R. M., Mkhalid, I. A., & Barakat, M. A. (2015). Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. *Arabian Journal of Chemistry*, 8(1), 48-53.
- Noushad, M., Ab Rahman, I., Husein, A., & Mohamad, D. (2016). Nanohybrid dental composite using silica from biomass waste. *Powder Technology*, 299, 19-25.
- Pa, F. C., Chik, A., & Bari, M. F. (2016). Palm Ash as an Alternative Source for Silica Production. In *MATEC Web of Conferences* (Vol. 78, p. 01062). EDP Sciences.
- Rafiee, E., Shahebrahimi, S., Feyzi, M., Shaterzadeh, M. (2012). Optimization of Synthesis and Characterization of Nanosilica Produced from Rice Husk (a common waste material), *International Nano Letters 2*, 29.
- Rajanna, S. K., Vinjamur, M., & Mukhopadhyay, M. (2017). Robust Silica Aerogel Microspheres from Rice Husk Ash to Enhance the Dissolution Rate of Poorly Water-Soluble Drugs. *Chemical Engineering Communications*, 204(2), 249-253.
- Sapei, L., Miryanti, A., Widjaja, L.B. (2012). Isolasi dan Karakterisasi Silika dari Sekam Padi dengan Perlakuan Awal Menggunakan Asam Klorida, *Prosiding SINTECH-1* The first Symposium in Industrial Technology, Fakultas Teknologi Industri UPN Veteran Yogyakarta A-8 – A-16, ISSN:2302-8033.
- Sapei, L., Padmawijaya, K.S., Sutejo, A., Theresia, L. (2015). Karakterisasi Silika Sekam padi dengan Variasi Temperatur Leaching Mengunakan Asam asetat, *Jurnal Teknik Kimia*, 9 (2), 38-43
- Sapei, L., Gierlinger, N., Hartmann, J., Nöske, R., Strauch, P., Paris, O. (2007). Structural and Analytical Studies of Silica Accumulations in *Equisetum hyemale*. *Journal of Analytical* and Bioanalytical Chemistry 389, 1249-1257.
- Sapei, L., Nöske, R., Strauch, P., Paris, O. (2008). Isolation of Mesoporous Biogenic Silica from the Perennial *Equisetum hyemale*. *Chem. Mater* 20, 2020-2025.
- Seraji, M. M., Ghafoorian, N. S., & Bahramian, A. R. (2016). Investigation of microstructure and mechanical properties of novolac/silica and C/SiO 2/SiC aerogels using mercury porosimetry method. *Journal of Non-Crystalline Solids*, 435, 1-7.

- Sinyoung, S., Kunchariyakun, K., Asavapisit, S., & MacKenzie, K. J. (2017). Synthesis of belite cement from nano-silica extracted from two rice husk ashes. *Journal of Environmental Management*, 190, 53-60
- Socrates, G. (2001). "Infrared and Raman Characteristic Group Frequencies, Tables and Chart", 3rd Edition, John Willey and Sons Ltd, England, 241-247.
- Umeda, J., Kondoh, K., & Michiura, Y. (2007). Process parameters optimization in preparing high-purity amorphous silica originated from rice husks. *Materials transactions*, 48(12), 3095-3100.
- Umeda, J., Imai, H., Kondoh, K. (2009) Polysaccharide Hydrolysis and Metalic Impurities Removal Behavior of Rice Husks in Citric Acid Leaching Treatment, *Transaction of JWRI*, 38, No.2.
- Umeda, J., Kondoh, K. (2008). High-Purity Amorphous Silica Originated in Rice Husks via Carboxylic Acid Leaching Process, *Journal of Materials Science* 22, 7084-7090.
- Yaakob, M. S., Abidin, N. A. Z., Abdullah, M. N., Muda, M. K. H., & Mustapha, F. (2017).
 Drop-Weight Impact Test on Laminated Composite Plate of Flax (Linum Usitatissimum)
 Using Rice Husk Ash from Paddy (Oryza Sativa) as a Natural Binder. *Pertanika Journal of Science & Technology*, 25(1).
- Qadri, S. B., Rath, B. B., Gorzkowski, E. P., Wollmershauser, J. A., & Feng, C. R. (2016). Nanostructured silicon nitride from wheat and rice husks. *Journal of Applied Physics*, 119(13), 134902.

Acknowledgement

The authors wish to thank Ms. Dyah Ayu Ambarsari for the assistance during experiments. This research was funded by Ministry of Research, Technology and Higher Education of the Republic of Indonesia under the research grant scheme of "Applied Product" 2017.

Conference Proceedings

ICEAI

International Congress on Engineering and Information

ICCBES

International Congress on, Chemical, Biological and Environmental Sciences

ICCIS

International Conference on Computer and Information Sciences

Conference Proceedings

May 9-11 2017 Kyoto, Japan

ICEAI	
	International Congress on Engineering and Information

ICCBES

ICEAI

International Congress on Chemical, Biological and EnvironmentaL Sciences

ICCIS

International Conference on Computer and Information Sciences

ICEAI

International Congress on Engineering and Information

ISBN 978-986-88450-4-6

ICCBES

International Congress on Chemical, Biological and EnvironmentaL Sciences

ISBN 978-986-87417-8-2

ICCIS

International Conference on Computer and Information Sciences

ISBN 978-986-5654-25-2

Content

Content	
Welcome Message	7
General Information for Participants	
International Committees	10
International Committee of Nature Sciences	
Conference Venue Information	13
Conference Schedule	15
Natural Sciences Keynote Speech	
Oral Sessions	19
Environmental Sciences (1)	19
ICCBES-0026	21
ICCBES-0011	
ICCBES-0046	35
ICCBES-0101	
ICCBES-0108	42
Civil Engineering / Electrical Engineering	47
ICEAI-0013	
ICEAI-0019	63
ICEAI-0021	71
ICEAI-0032	82
ICEAI-0020	91
ICEAI-0044	
Environmental Sciences (2)	
ICCBES-0021	
ICCBES-0049	
ICCBES-0054	
ICCBES-0058	
ICCBES-0076	
ICCBES-0070	
Computer Science / Information Engineering / Information Man	agement /
Information Technology	
ICEAI-0040	
ICEAI-0041	
ICCIS-0006	
ICEAI-0006	
ICEAI-0015	

ICEAI-0030	
Energy Engineering	
ICCBES-0080	
ICCBES-0032	
ICCBES-0025	
ICCBES-0020	
Chemical Sciences	302
ICEAI-0043	
ICEAI-0038	
ICEAI-0033	
ICEAI-0031	
ICEAI-0025	
ICCDES-0115	
	201
ICCRFS-0066	201
ICFAI-0018	190
Riological Engineering / Riological Sciences / Chemical Engineering	188
ICCIS-0004	185
	150

ICEAI-0008	
ICEAI-0011	
ICEAI-0022	
ICEAI-0024	
ICEAI-0026	
ICEAI-0035	
ICCBES-0059	
ICCBES-0068	
ICCBES-0071	
ICCBES-0084	
ICCBES-0090	
ICCBES-0091	
ICCBES-0094	
ICCBES-0095	
ICCBES-0022	
ICCBES-0031	
ICCBES-0042	
ICCBES-0047	
ICCBES-0065	
ICCBES-0069	
ICCBES-0077	
ICCBES-0081	
ICCBES-0105	
ICEAI-0027	
ICEAI-0036	
ICEAI-0055	
Poster Sessions (3)	
Biological Sciences (2) / Information Engineering / Environmental	Sciences /
Environmental Engineering / Energy Engineering / Industrial Engi	neering 494
ICCBES-0009	
ICCBES-0010	
ICCBES-0013	
ICCBES-0014	
ICCBES-0023	
ICCBES-0028	
ICCBES-0034	
ICCBES-0055	
ICCBES-0064	
ICCBES-0078	

ICEAI-0014	534
ICEAI-0037	
ICEAI-0054	
ICCIS-0002	
ICCBES-0027	
ICCBES-0051	
ICCBES-0056	
ICCBES-0057	
ICCBES-0079	
ICCBES-0088	
ICCBES-0098	
ICEAI-0062	
ICEAI-0003	
ICEAI-0049	
ICEAI-0039	

Welcome Message

Local Host

Michelle Kawamura Ph.D Associate Professor Ritsumeikan University

Dear scholars and friends,

On behalf of Higher Education Forum I would like to welcome you all to Kyoto, Japan. Kyoto is a city representing a mixture of traditional Japanese cultures and modernization. From the well preserved constructions over centuries old, thousands of Buddhist temples and Shinto shrines to the untouched nature, this one of a kind place is unique in today's world. It is also these elements which attract people who appreciate and value historical surroundings. Beyond the various fascinating historical and traditional sites in Kyoto, the city also offers convenient transportation, comfortable accommodation, delicacies from all parts of the world and most of all, the hospitality of Kyoto. People in Kyoto welcome tourists to explore their culture, experience their customs and traditions. All these reasons led to an increasing number of foreign visitors to Kyoto every year. Some people visit for the first time and many others visit more than once.

Each year, many scholastic conferences of various disciplines take place in Kyoto. Kyoto has over 33 national, public and private universities. It also has over 57 vocational and technical schools. Including graduate schools and public and private research institutions, Kyoto takes pride in its education system, scholastic and research development. This is one of the reasons that many domestic and international conferences select Kyoto to host their conferences.

This is my third time, in three years to proudly act as the local host of Kyoto for the Higher Education Forum to welcome all the guests from all over the world. I have presented in 2014 and gave a welcome and keynote speech last year. I have met many professionals from different fields and exchanged knowledge from our researches to cultural experiences. The opportunity here is beyond scholastic exchange, but to also connect us to various cultures to become more aware of cultural differences, empathy and tolerance for others. I have gained new friends and learned profoundly here in the past 2 years participating in the conferences held by the Higher Education Forum. I sincerely hope you will enjoy your stay in Kyoto and bring home lots of experiences and knowledge from this conference.

See you soon~

Michelle Kawamura

General Information for Participants

Registration

The registration desk will be situated on the **4**th **Floor** at the **Kyoto Research Park** during the following time:

08:10-16:00 Wednesday, May 10, 2017 08:30-16:30 Thursday, May 11, 2017

Organizer

Higher Education Forum (HEF) Tel: + 886 2 2740 1498 | www.prohef.org

A Polite Request to All Participants

Participants are requested to arrive in a timely fashion for all addresses. Presenters are reminded that the time slots should be divided fairly and equally by the number of presentations, and that they should not overrun. The session chair is asked to assume this timekeeping role and to summarize key issues in each topic.

Certificate

Certificate of Presentation or Certificate of Attendance

A certificate of attendance includes participant's name and affiliation, certifying the participation in the conference. A certificate of presentation indicates a presenter's name, affiliation and the paper title that is presented in the scheduled session.

Certificate Distribution

Oral presenters will receive a certificate of presentation from the session chair after their presentations or at the end of the session. Poster presenters will receive a certificate of presentation from the conference staff at the end of their poster session.

The certificate of presentation will not be issued, either at or after the conference, to authors whose papers are registered but not presented. Instead, the certificate of attendance will be provided after the conference.

Preparation for Oral Presentations

All presentation rooms are equipped with a screen, an LCD projector, and a laptop computer installed with Microsoft PowerPoint. You will be able to insert your USB flash drive into the computer and double check your file in PowerPoint. We recommend you to bring two copies of the file in case that one fails. You may also connect your own laptop to the provided projector; however please ensure you have the requisite connector.

Preparation for Poster Presentation

Materials Provided by the Conference Organizer:

- 1. Poster Panel (90cm×173cm)
- 2. Push pins

Materials Prepared by the Presenters:

- 1. Home-made poster(s)
- 2. Material: not limited, can be posted on the poster panel
- 3. Maximum poster size is A0

(Example)

International Committee of Nature Sciences

Abdelmalik Serbout	University of physical and sports activities Djelfa Algeria	Algeria
Abdelwahab Elghareeb	Cairo University	Egypt
Abhishek Shukla	R.D. Engineering College Technical Campus, Ghaziabad	India
Ahmad Zahedi	James Cook University	Australia
Alexander M. Korsunsky	Trinity College,Oxford	UK
Almacen	Philippine Association of Maritime Trainig Centers	Philippines
Amel L. Magallanes	Capiz State University	Philippines
Amran Bin Ahmed	University Malaysia Perlis	Malaysia
Anthony D. Johnson	Seoul National University of Science & Technology	UK
Ashley Love	A.T. Still University	USA
Asif Mahmood	King Saud University, Riyadh	Saudi Arabia
Asmida Ismail	University Technology Mara	Malaysia
Baolin Wang	University of Western Sydney	
Byoung-Jun Yoon	Korea National Open University	South Korea
Chang Ping-Chuan	Kun Shan University	Taiwan
Chee Fah Wong	Universiti Pendidikan Sultan Idris	Malaysia
Chee-Ming Chan	Universiti Tun Hussein Onn Malaysia	Malaysia
Cheng, Chun Hung	The Chinese University of Hong Kong	Hong Kong
Cheng-Min Feng	National Chiao Tung University	Taiwan
Cheuk-Ming Mak	The Hong Kong Polytechnic University	Hong Kong
Chia-Ray Lin	Academia Sinica	Taiwan
Chih-Wei Chiu	National Taiwan University of Science and Technology	Taiwan
Chikako Asada	Tokushima University	
Chi-Ming Lai	National Cheng-Kung University	Taiwan
Ching-An Peng	University of Idaho	USA
Chin-Tung Cheng	National Kaohsiung (First) University of Science and Technology	Taiwan
Christoph Lindenberger	Friedrich-Alexander University	Germany
Daniel W. M. Chan	The Hong Kong Polytechnic University	Hong Kong
Deok-Joo Lee	Kyung Hee University	South Korea
Din Yuen Chan	National Chiayi University	Taiwan
Don Liu	Louisiana University	USA
Edward J. Smaglik	Northen Arizona University	USA
Ehsan Noroozinejad Farsangi	Kerman Graduate University of Advanced Technology (KGUT)	Iran

Farhad Memarzadeh	National Institutes of Health	USA
Fariborz Rahimi	University of Bonab	Iran
Fatchiyah M.Kes.	Universitas Brawijaya	Indonesia
Gi-Hyun Hwang	Dongseo University	South Korea
Gwo-Jiun Horng	Southern Taiwan University of Science and Technology	Taiwan
Hae-Duck Joshua Jeong	Korean Bible University	South Korea
Hairul Azman Roslan	Universiti Malaysia Sarawak	
Hamed M El-Shora	Mansoura University	Egypt
Hanmin Jung	Convergence Technology Research Planning	South Korea
Hasmawi Bin Khalid	University Teknologi Mara	Malaysia
Hikyoo Koh	Lamar University	USA
Hiroshi Uechi	Osaka Gakuin University	Japan
Ho, Wing Kei Keith	The Hong Kong Institute of Education	Hong Kong
Hsiao-Rong Tyan	Chung Yuan Christian University	Taiwan
Hsien Hua Lee	National Sun Yat-Sen University	Taiwan
Hung-Yuan Chung	National Central University	Taiwan
Hyomin Jeong	Gyeongsang National University	South Korea
Hyoungseop Kim	Kyushu Insititute of Techonogy	Japan
Jacky Yuh-Chung Hu	National Ilan University	Taiwan
Jeril Kuriakose	Manipal University	India
Jieh-Shian Young	National Changhua University of Education	Taiwan
Jivika Govil	Zion Bancorporation	India
Jongsuk Ruth Lee	Korea Institute of Science and Technology Information	South Korea
Jui-Hui Chen	CPC Corporation, Taiwan	Taiwan
Jung Tae Kim	Mokwon University	South Korea
Kamal Seyed Razavi	Federation University Australia	Australia
Kazuaki Maeda	Chubu Univeristy	Japan
Kim, Taesoo	Hanbat National University	South Korea
Kuang-Hui Peng	National Taipei University of Technology	Taiwan
Kun-Li Wen	Chienkuo Technology University	Taiwan
Lai Mun Kou	SEGi University	Malaysia
Lars Weinehall	Umea University	Sweden
Lee, Jae Bin	Mokpo National University	South Korea
M. Chandra Sekhar	National Institute of Technology	India
M. Krishnamurthy	KCG college of technology	India
Mane Aasheim Knudsen	University of Agder	Norway
Michiko Miyamoto	Akita Prefectural University	Japan
Minagawa, Masaru	Tokyo City University	Japan

Mu-Yen Chen	National Taichung University of Science and Tchonology	Taiwan
Norizzah Abd Rashid	Universiti Teknologi MARA	Malaysia
Onder Turan	Anadolu University	Turkey
Osman Adiguzel	Firat University	Turkey
P. Sivaprakash	A.S.L. Pauls College of Engineering & Technology	India
P.Sanjeevikumar	University of Bologna	India
Panayotis S. Tremante M.	Universidad Central de Venezuela	Venezuela
Patrick S.K. Chua	Singapore Institute of Technology	Singapore
Pei-Jeng Kuo	National Chengchi University	Taiwan
Phongsak Phakamach	North Eastern University	Thailand
Rainer Buchholz	Friedrich-Alexander University	Germany
Rajeev Kaula	Missouri State University	USA
Ransinchung R.N.(Ranjan)	Indian Institute of Technology	India
Ren-Zuo Wang	National Center for Research on Earthquake Engineering	Taiwan
Rong-Horng Chen	National Chiayi University	Taiwan
Roslan Zainal Abidin	Infrastructure University Kuala Lumpur	Malaysia
S. Ahmed John	Jamal Mohamed College	India
Saji Baby	Kuwait University	KUWAIT
Samuel Sheng-Wen Tseng	National Taiwan Ocean University	Taiwan
Sergei Gorlatch	University of Muenster	Germany
Shen-Long Tsai	National Taiwan University of Science and Technology	Taiwan
Sittisak Uparivong	Khon Kaen University	Thailand
Song Yu	Fukuoka Institute of Technology	Japan
Sudhir C.V.	Caledonian College of Engineering	Oman
Suresh. B. Gholse.	Rtm Nagpur University	India
Thippayarat Chahomchuen	Kasetsart University	Thailand
Victor A. Skormin	Binghamton University	USA
Vivian Louis Forbes	Wuhan University	China
William L. Baker	Indiana State University	USA
Wong Hai Ming	The University of Hong Kong	Hong Kong
Wong Tsun Tat	The Hong Kong Polytechnic University	Hong Kong
Wooyoung Shim	Yonsei University	South Korea
Ya-Fen Chang	National Taichung University of Science and Tchonology	Taiwan
Yasuhiko Koike	Tokyo University of Agriculture	Japan
Yee-Wen Yen	National Taiwan University of Science and Technology	Taiwan
Yoshida Masafumi	Tokyo City University	Japan
Youngjune Park	Gwangju Institute of Science and Technology	South Korea
Yuan-Lung Lo	Tamkang University	Taiwan

Conference Venue Information

Kyoto Research Park

Tel: +81-75-322-7800 Address: 134, Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan

Located at the ancient capital of Japan, Kyoto Research Park (KRP) is set at a convenient spot. KRP has a wide variety of networks involving universities, industries, administrative institutes, public research institutes, and economic bodies. KRP offers various of conference rooms, offices, and labs.

The conference will be held at Hall 1 inside the research park. Hall 1 is near to JR Tanbaguchi-Eki.

Floor Map of Bldg. #1

Conference Schedule

Tuesday, May 09, 2017

Internal Training

Wednesday, May 10, 2017		
Oral Session (4 th Floor)		
Time	Schedule	Venue
08:10-16:00	Registration	Foyer Area
09.20-10.00	Environmental Sciences (1)	Room B
08:30-10:00	Civil Engineering / Electrical Engineering	Room C
10:00-10:20	Tea Break & Networking	Foyer Area
	Environmental Sciences (2)	Room C
10:20-12:30	Welcome Speech & Networking(10:20-10:30)Prof. Michelle KawamuraRitsumeikan University	AV Room
12:30-13:30	Lunch	Atrium
15:00-15:20	Tea Break & Networking	Foyer Area
15:20-16:50	Computer Science / Information Engineering / Information Management / Information Technology	Room B

Wednesday, May 10, 2017		
Poster Session (Foyer Area, 4 th floor)		
Time	Schedule	
14:00-15:00	Poster Session (2)	
	Electrical Engineering / Biological Sciences (1) / Chemical Sciences / Computer Science / Civil Engineering	

Thursday, May 11, 2017		
Oral Session (4 th Floor)		
Time	Schedule	Venue
08:30-16:30	Registration	Foyer Area
08:40-10:10	Biological Engineering / Biological Sciences / Chemical Engineering	Room B
	Industrial Engineering	Room C
10:10-10:30	Tea Break & Networking	Foyer Area
10:30-12:00	Chemical Sciences	Room B
	Energy Engineering	Room C
12:00-13:00	Lunch	Atrium
13:00-14:30	Environmental Sciences (3)	Room C
14:30-14:50	Tea Break & Networking	Foyer Area
16:20-16:30	Tea Break & Networking	Foyer Area

Thursday, May 11, 2017		
Poster Session (Foyer Area, 4 th floor)		
Time	Schedule	
11:00-12:00	Poster Session (3)	
	Biological Sciences (2) / Information Engineering / Environmental Sciences / Environmental Engineering / Energy Engineering / Industrial Engineering	

Natural Sciences Keynote Speech

AV Room

10:30-11:30 Wednesday, May 10, 2017

Topic: Multicultural Perspectives on Software Engineering

Prof. Simona Vasilache

Dept. of Computer Science Graduate School of Systems and Information University of Tsukuba Japan

Abstract

Globalization plays a major role in all aspects of our 21st century life, influencing software engineering practice, as well as software engineering education.

Software engineering is a relatively young engineering discipline and it is under constant development and evolution; software development teams often include members from various cultural backgrounds. At the same time, the multicultural nature of education proves to be a challenge in all educational aspects, including those related to software engineering.

This talk will highlight some of the challenges posed by multiculturalism in the field of software engineering, both in industry and in academia.

Introduction of Prof. Simona Vasilache

international students in Japan.

Simona Vasilache is an assistant professor in the Graduate School of Systems and Information Engineering at the University of Tsukuba in Japan. She completed her undergraduate studies at the Politechnica University of Bucharest, Romania, and she obtained her PhD from the University of Tsukuba in Japan. Her research interests include human computer interaction, software engineering, formal methods, cultural aspects of e-learning, as well as intercultural communication. For the past 5 years she has been teaching a culturally diverse group of

Environmental Sciences (1)

Wednesday, May 10, 2017 08:30-10:00 Room B

Session Chair: Prof. Ayca Erdem

ICCBES-0026

Investigation and Assessment of Energy and Resource Integration into Sewage Treatment and Waste Heat Recovery

Kuang-Chih Chang | *Ministry of Economic Affairs* Ya-Feng Wang | *Chung Yuan Christian University* Tien-Chin Chang | *National Taipei University of Technology* Lin-Han Chiang Hsieh | *Chung Yuan Christian University* Ciao-En Hu | *National Taipei University of Technology*

ICCBES-0011

Seasonal Evaluation of the Sanitary Quality of the Alexandrian Mediterranean Coast Using Microbial Indicators Amira M. Hamdan | *Alexandria University*

ICCBES-0046

Current Research Trends in Environmental Engineering: Content Analysis of Publications on Micropollutants

Merve Ozkaleli | *Akdeniz University* Ayse Gunay | *Akdeniz University* Meltem Asilturk | *Akdeniz University* Cigdem Moral | *Akdeniz University* Ayca Erdem | *Akdeniz University*

ICCBES-0101

Effect of Dopants on Pt/y-Al₂O₃ Catalyst in Propane Dehydrogenation

Nattanon Chartsakulsaka | *Chulalongkorn University* Adisak Guntidaa | *Chulalongkorn University* Joongjai Panpranota | *Chulalongkorn University* Kongkiat Suriyeb | *SCG Chemicals* Piyasan Praserthdama | *Chulalongkorn University*

ICCBES-0108

The Effect of Loading Sequence of the La-Promoted WO₃/Sio₂ Catalysts in the Cross-Metathesis of Ethylene and 2-Butene and Self-Metathesis of Propylene

Thotsapan Kornpitak | *Chulalongkorn University*

Joongjai Panpranot | *Chulalongkorn University*

Piyasan Praserthdam | *Chulalongkorn University*

Biological Engineering / Biological Sciences / Chemical

Engineering

Thursday, May 11, 2017 08:40-10:10 Room B

Session Chair: Prof. Lanny Sapei

ICEAI-0018

Optimized Hot Air Flow Distribution System for Increasing the Dialyzer Drying Process Performance

Mohammad Fard | *Novatisteb Company* Ali Rezaee | *Novatisteb Company*

ICCBES-0066

A Method for the Quantification of 18F-FDOPA in PET Imaging for Parkinson's Disease Correlation to Brain Structures

Printaporn Sanguansuttigul | King Mongkut's University of Technology Thonburi Teerapol Saleewong | King Mongkut's University of Technology Thonburi Sayaphat Suksai | Srinakharinwirot University Kitiwat Khamwan | Chulalongkorn University Saknan Bongsebandhu-Phubhakdi | Chulalongkorn University

ICEAI-0029

Simulations of Geometrical Effects on Transport Properties Through Micro- and Nanopores Attaphon Chaimanatsakun | *Kasetsart University*

Deanpen Japrung | *Thailand Science Park* Prapasiri Pongprayoon | *Kasetsart University*

ICEAI-0056

High-Grade Biosilica Isolated from Diluted Acids Leached Rice Husk Lanny Sapei | University of Surabaya Natalia Suseno | University of Surabaya Karsono Samuel Padmawijaya | University of Surabaya Jessica Natalia Wibowo | University of Surabaya Chandra Widjaja | University of Surabaya

ICCBES-0115

Effects of Natural Steroid Sand Fish (*Holothuria Scabra*) for Uterus Development of Post Menopausal Women

Etty Riani | *Bogor Agricultural University* Chairunissa | *Bogor Agricultural University* Hera Maheswari | *Bogor Agricultural University* Farah Bilqistiputri | *Lampung University* Nastiti Kusumorini | *Bogor Agricultural University*