International Journal of Pharma Medicine and Biological Science

Volume 5, No. 3 & No. 4, 2016
www.ijpmbs.com
International Journal of Pharma Medicine and Biological Sciences (IJPMBS, ISSN 2278-5221)

Editor-in-Chief

Dr. Vasudeo Zambare
South Dakota School of Mines and Technology, Centre for Bioprocessing Research and Development, Rapid City, South Dakota, USA

Editorial Board

Prof. Enam A. Khalil
University of Jordan, USA

Prof. Suleiman M. Al-Khalil
University of Jordan, USA

Prof. Veena Agrawal
University of Delhi, India

Prof. Sanjeev Puri
Panjab University, India.

Dr. Radhakrishnan Raja
University of Southern Nevada South Jordan, Utah, USA

Dr. Mandal Manas
University of Southern Nevada South Jordan, Utah, USA

Dr. Tekeba Esthete
Andassa Livestock Research Center, Ethiopia

Dr. K. Kathiresan
Annamalai University, India.

Prof. Prakash. M. M. S. Kirthnada
Wayne State University School of Medicine, USA

Dr. S.S. Kothari
All India Institute of Medical Sciences (AIIMS), New Delhi

Dr. Ravi Rathod
Karnataka Institute of Medical Sciences, India

Prof. Uttam K. Patil
Jawaharlal Nehru University (JNU), India

Dr. Nanda K.
Dr. BR Ambedkar Medical College, India

Dr. Rishi Banerjee
Indian Institute of Technology, Bombay, India

Prof. V. Kusum Devi
Al-Ameen College of Pharmacy, India

Prof. Rajyehanth Arad
All India Institute of Medical Sciences, India

Dr. Sindh
Jawaharlal Nehru Medical College, Karnataka, India

Dr. Shikant Charde
Birla Institute of Technology and Science, Rajasthan, India

Dr. Santu Agarwal
Maulana Azad Medical College, India

Prof. Subrata Mallick
Siksha O Anusandhan University, India

Prof. Pramod Kumar Yadava
Jawaharlal Nehru University (JNU), New Delhi, India

Dr. P.E. Rajasekharan
Indian Institute of Horticultural Research (IIHR), India

Dr. Santosh K Mishra
Indian Veterinary Research Institute (IVRI), India

Prof. S.S. Ali
Indian Institute of Pulse Research, India

Prof. Habib R. Ansari
Jamia Millia Islamia (Central University), India

Prof. Jayaram Reddy
St. Joseph’s Post Graduate and Research Centre, India

Dr. V R Bhagwat
SGBH Govt Medical College, India

Dr. S. S. Shirol M. S.
KLE University & KLES Dr PK Hospital, India

Prof. Mohammed Rageeb
Mohammed Usman
Smt. S. S. Patil College of Pharmacy, India

Animal Health Research Division, Andassa Livestock Research Center, Ethiopia

Prof. Abdoul Hamide
Jawaharlal Institute of Post-Graduate Medical Education and Research, India

Dr. Yogesh T. Jaisraj
University of Gujarat, India

The current and past issues are made available on-line at http://www.ijpmbs.com/. Opinions expressed in the papers are those of the author(s) and do not necessarily express the opinions of the editors or International Journal of Pharma Medicine and Biological Sciences. The papers are published as presented and without change, in the interests of timely dissemination.
Information for Authors

Manuscript Submission

All manuscripts should be submitted to ijpmbsejournal.net.

Submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the IJPMBS or its Editorial Staff. The main author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.

Authors are asked to sign a warranty and copyright agreement upon acceptance of their manuscript, before the manuscript can be published.

Manuscripts should be written in English. Paper submissions are accepted only in PDF. Other formats will not be accepted. Authors are requested to follow IJPMBS guidelines for preparing their manuscripts. All the papers, except survey, should ideally not exceed 12,000 words (14 pages) in length. Whenever applicable, submissions must include the following elements: title, authors, affiliations, contacts, abstract, index terms, introduction, main text, conclusions, appendixes, acknowledgement, references, and biographies.

Aims and Scopes

The focus of IJPMBS is on new and innovative integration and deployment of Pharmaceutical Sciences, Medicine and Biological Sciences. The journal will publish original research on theories, technologies, design, policies, and implementation of Pharmaceutical Sciences, Medicine and Biological Sciences. The topical issues considered by the journal covers, but not limited to, the following topics:

Pharmaceutical Sciences
- Pharmacology
- Pharmacology & Phytochemistry
- Pharmaceutical Chemistry
- Pharmaceutical Biotechnology
- Pharmacy practice
- Pharmacogenomics
- Medicinal Chemistry
- Molecular Pharmacology
- Novel drug delivery system
- Nanotechnology
- Analytical Chemistry
- Organic Chemistry
- Natural Chemistry
- Clinical Pharmacy
- Pharmaceutics

Medical Sciences
- General Medicine
- Public health & hygiene
- Tropical diseases
- Endocrinology
- Anatomy
- Neurology
- Dermatology
- Orthopedics
- Organ transplantation
- Oncology
- Pathology
- Haematology
- Nephrology
- Gynecology
- Ophthalmology
- Pediatrics
- Radiology
- Medical Biotechnology

Biological Sciences
- Biochemistry
- Biotechnology
- Genetics
- Microbiology
- Molecular Biology
- Immunology
- Biostatistics
- Botany
- Zoology
- Cytology
- Poultry Science
- Fishery Science
- Marine Biology
- Wildlife Biology
- Cell Biology
- Environmental Sciences
- Ecology & Environmental Biology
- Veterinary Science

Paper Review

All published journal papers are refereed by the international competent researchers and scientists. Therefore, a full double - blind international refereeing process is used in which:

- Papers are sent to reviewers for their peer review process.
- The reviewers' recommendations determine whether a paper will be accepted / accepted subject to change / subject to resubmission with significant changes / rejected.
- All papers are refereed, and the Editor-in-Chief reserves the right to refuse any typescript, whether on invitation or otherwise, and to make suggestions and/or modifications before publication.

Copyright

© 2016 INTERNATIONAL JOURNAL OF PHARMA MEDICINE AND BIOLOGICAL SCIENCES. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

More information is available on the web site at http://www.ijpmbs.com/.
International Journal of Pharma Medicine and Biological Sciences

CONTENTS

Volume 5, Number 3 & Number 4, 2016

Novel Method for Realizing 1000+ Electrode Array in Epi- or Subretinal Prosthesis ... 146
Diego Luján Villarreal, Dietmar Schroeder, and Wolfgang H. Krautschneider

EEG Processing System for Detecting a State of Drowsy Driving .. 154
Malika D. Kedir-Talha, Sid Ahmed Talha, Karim Meddah, and Hadjar Zatri

Flow Modelling of POLVAD-MEV Ventricular Assist Device in the Apex of the Heart-Artery Configuration .. 158
Alicja Siewnicka and Krzysztof Janiszowski

Feasibility Study of a 1000+ Electrode Array in Epiretinal Prosthesis ... 163
Diego Luján Villarreal, Dietmar Schroeder, and Wolfgang H. Krautschneider

Wearable Care System for Elderly People ... 171
Michał Frydryszak and Łukasz Tęsiorowski

Review of Brain Imaging Techniques, Feature Extraction and Classification Algorithms to Identify Alzheimer’s Disease .. 178
Ahila Arumugam Annakuty and Achala Chathuranga Aponso

Deployment of a Smart Telecare System to Carry out an Intelligent Health Monitoring at Home ... 184
Laura Vadillo, Maria L. Martín-Ruiz, and Miguel A. Valero

Application of Support Vector Machine Classifier on Developed Wireless ECG System ... 189
Arjon Turnip, M. Ilham Rizgyawan, Dwi Esti Kusumandari, and I. Dewa Putu Hermida

Framework of the Bio-Heat Transfer for Laser/Cancer Treatment .. 194
Mhamed Nour, Mohammed Bougrataya, Emmanuel Kengne, Karim El Guemhouri, and Ahmed Lakhssassi

An Android-Based Pregnancy Predicting System ... 201
Dony Nvaliendry, Cheng-Hong Yang, and Li-Yeh Chuang

Comparative Analysis of NLS Sequence Suggests the Evolutionary Origin of Nuclear Matrix-Metalloproteinase 7 during Cancer Evolution ... 206
Diyora Abdushakimova and Yingqiu Xie

Oversampling Negative Class Improves Contact Map Prediction .. 211
Grzegorz Markowski, Krzysztof Grabczewski, and Rafał Adamczak

SV-BET: Structure Variation Benchmarking and Evaluation Tool with Comparative Analysis of Split Read-Based Approaches .. 217
Eman A. Alzaid and Ghada Badr
The Suitability and Efficacy of Perioperative Antibiotics in Relation with the Surgical Wound after Appendectomy

Eka Amelia, Bambang Arianto, and Anita Purnamayanti

Association between KEGG Biological Pathways and Adverse Drug Reactions of HIV, TB and Other Drugs Frequently Implicated in ADRs

Wilbert Sibanda

Antibiotics Efficacy Analysis on Diabetic Foot Ulcer Inpatients

Irma Susanti, Bambang Arianto, and Anita Purnamayanti
The Suitability and Efficacy of Perioperative Antibiotics in Relation with the Surgical Wound after Appendectomy

Eka Amelia¹, Bambang Arianto², and Anita Purnamayanti¹

¹Faculty of Pharmacy, University of Surabaya, Indonesia
²Department of Surgery, Haji General Hospital Surabaya, Indonesia

Email: {ekamelia3185, arianto.dr} @gmail.com, anita_p_rahman@yahoo.com

Abstract—There is no research currently exist about the use of ceftriaxone as perioperative antibiotics for appendicitis patient in Haji General Hospital Surabaya, so its relationship with the surgical wound after appendectomy is remain unknown. This research is conducted to determine the suitability and efficacy of ceftriaxone, also to identify other factors that influence the surgical wound. This was a prospective cohort study of 25 patients (age ≥ 15 years old) between June–August 2015. The specimens culture demonstrated that 12 bacteria were E. coli, 1 ESBL-producing E. coli and 12 negative. Antibiotics susceptibility testing showed that 41.67% E. coli was susceptible to ceftriaxone. There was no significant relationship between suitability of postoperative antibiotics and surgical wound after appendectomy in non-perforated cases (p=0.505), while perforated case defined a significant relationship (p=0.011). The factors which significantly related with surgical wound were gender (p=0.014) and duration of surgery (p=0.017). Ceftriaxone was still effective as perioperative antibiotics. Postoperative antibiotics were only required for perforated appendicitis, whereas prophylactic antibiotic was known to be adequate in the case of non-perforated.

Index Terms—suitability, efficacy, antibiotic, surgical wound, appendectomy

I. INTRODUCTION

Appendectomy is the gold standard therapy in appendicitis and classified as clean contaminated surgery. This procedure requires prophylactic antibiotics to prevent infections that can occur during or after surgery. Incidence of Surgical Site Infection (SSI) after appendectomy was 12.2%, where incidence of SSI in perforated appendicitis 4 to 5 times higher than non-perforated [1], [2].

The incidence of SSI after appendectomy can be reduced between 1-5% with prophylactic antibiotics. [3] Selection of antibiotic prophylaxis depends on the type of surgery, infection-causing bacteria, and the pattern of bacterial susceptibility to antibiotics at local hospital where the surgery performed. [4]-[6] Although there was already a general guideline for the use of antibiotics and some studies that can be used as a reference in the selection of antibiotics in appendectomy, but the data about the factors that affect SSI, the pattern of bacterial that cause appendicitis and it susceptibilities to antibiotics in a hospital still needed because it can be different for each hospital.

Based on these reasons, this research was conducted to determine the relationship between suitability and efficacy of ceftriaxone as perioperative antibiotic, also to identify other factors that influence the surgical wound after appendectomy.

II. METHODS

This prospective cohort study was performed at Haji General Hospital Surabaya, one of government hospital, since June until August 2015. Data was collected from 25 patients who were diagnosed to have acute, chronic or perforated appendicitis (age ≥ 15 years). Bacterial profile was isolated from appendices specimen in patients undergoing appendectomy.

All patients received 2 grams of ceftriaxone as prophylactic antibiotic (30-60 minutes before incision). After the surgery, patients received 1 grams of ceftriaxone twice daily as postoperative antibiotic.

The suitability of antibiotics compared to the result of culture and susceptibility testing from clinical microbiology laboratories. According to the results, if it show that bacterial were resistant to ceftriaxone, then ceftriaxone will be replaced by surgeon with other susceptible antibiotics.

Efficacy of antibiotic in relation with surgical wounds was observed at day 8 after appendectomy by using Southampton Wound Scoring System. Observation also performed in outpatient department for patients who discharge before day 8. Those patients who lost to follow-up were excluded. Data were analysed by using SPSS statistic for windows, version 20. The p-value of < 0.05 was considered as statistically significant.

This study was approved by the ethical committee of Haji General Hospital Surabaya. Patients had been given a description of the research procedures and had signed the statement of consent form.
III. RESULTS AND DISCUSSION

A. Recruitment Profile and Clinical Characteristic

During the research period, 25 patients with clinical diagnosis of appendicitis undergoing open appendectomy were considered to be involved in this research. One patient was excluded because he failed to obtain a specimen of appendix and two patients were lost to follow-up in outpatient department. Patients who completed the entire procedure was 25. Recruitment profile of patient is illustrated in Fig. 1, while the characteristics of the patients are listed in Table I.

![Figure 1. Recruitment profile](image)

Based on Table I, majority patient in this research were male (64%). The same pattern can also be seen in other studies [7], [8]. Appendicitis most common in the age of 15-25 years. This is consistent with one of aetiology of appendicitis that lymphoid hyperplasia, because lymphoid tissues at that age is very abundant. There were 11 patients with perforated appendicitis (81.81% male), these result is similar to previous study which also showed that the incidence of perforated appendicitis more frequently in male [9].

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Perforated</td>
<td>14</td>
<td>48</td>
</tr>
<tr>
<td>Perforated</td>
<td>11</td>
<td>52</td>
</tr>
<tr>
<td>Classification of surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean contaminated</td>
<td>21</td>
<td>84</td>
</tr>
<tr>
<td>Contaminated</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Dirty</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Type of surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Urgent</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Emergency</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Duration of surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1 hour</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>>1 hour - ≤2 hour</td>
<td>18</td>
<td>72</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-25 years</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>26-35 years</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>36-45 years</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>46-55 years</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>> 55 years</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

Meanwhile, 12 specimens did not show any bacterial growth or negative. Percentage of each bacterial are listed in Table II. This result is similar to previous study, thus indicating that E. coli (gram-negative bacterial) are the most responsible for the occurrence of appendicitis [10].

<table>
<thead>
<tr>
<th>Bacterial</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>ESBL-producing E. coli</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Negative</td>
<td>12</td>
<td>48</td>
</tr>
</tbody>
</table>

E. coli was estimated to be most common cause of appendicitis because one of normal flora in the gut. In addition, the nature of the E. coli bacteria that can perform fast proliferation and able to penetrate the tissue surface also support these bacteria to cause inflammation of the appendix. Bacterial adhesion to epithelial cells was the first step of the infection process, followed by the invasion and the emergence of damage to the appendix. E. coli was able to perform all of these processes with several virulence factors, which are haste-cell-surface-modifying factors, toxins, hemolysin and cytotoxin necrotizing factor type 1 [10], [11].

Inflammation caused by bacteria was associated with the main cause of appendicitis that is obstruction. Lymphoid hyperplasia and faecolith which causes obstruction of the appendix was the first step that cause normal flora in intestinal overgrowth which then lead to increased intra-luminal pressure and inhibits blood flow to the appendix so that the appendix become congested and ischemia. Immediately followed by translocation and infection by the bacteria that ultimately makes inflammation [10]. The combination between obstruction and inflammation make appendectomy and perioperative antibiotic therapy remains became the gold standard in the treatment of appendicitis [1].

The majority negative specimens were specimens of nonperforated appendicitis cases. From 12 specimens, 66.67% of culture results showed no bacterial growth. In addition, 3 of 4 patients that showed positive culture results, has been discharged from the hospital before the results were obtained. So it can not be adjusted for the suitable antibiotic susceptibility testing. Although antibiotics are used by these patients was not suitable (intermediate or resistant), but all patients in a stable condition and did not had surgical site infection.

This result was similar to previous study in Nottingham. The study showed that 60.5% of the culture did not show any bacterial growth. And 42.7% patients are already discharge of the hospital before culture results obtained, so that the culture results become less useful. This study suggests a culture routine should only be done in cases of perforated appendicitis and for patients with extreme ages (<10 or >50 years) [12]. So it seemed that culture routine and postoperative antibiotics should not be given in patients with nonperforated appendicitis.

B. Bacterial Profile

Identification of the bacteria that causes appendicitis is conducted to determine any bacterial profile associated with the emergence of the disease. All results of specimens culture showed the bacteria that cause appendicitis were Escherichia coli (E. coli), one of them was Extended Spectrum Beta Lactamase (ESBL).
recommended as perioperative antibiotics in patients with appendicitis, foremost in Haji General Hospital. Results of antibiotic susceptibility testing showed that E. coli had 100% susceptibility to meropenem, ceftaxime and fosfomycin; 91.67% susceptibility to piperacillin-tazobactam; 66.67% susceptibility to gentamicin; 58.33% susceptibility to amikacin, cefepime, aztreonam and levofloxacin; 50% susceptibility to cefotaxime, cefazidime, ampicillin-sulbactam and ciprofloxacin; 41.67% susceptibility to ceftriaxone, amoxicillin-clavulanic and chloramphenicol; 33.33% susceptibility to cotrimoxazole and tetracycline. Cefotaxime and cefuroxime were no longer recommended because the susceptibility of E. coli only 16.67%. In this study, cefazolin and ampicillin were highly not recommended because 100% E. coli resistant to those antibiotics.

There was 1 ESBL-producing E. coli that cause perforated appendicitis. This bacteria only susceptible to amikacin, piperacillin-tazobactam, meropenem, cefotaxim and fosfomycin. Although it has been many years since it was first discovered in 1983, ESBL-producing bacteria was known as a bacteria that capable of producing the new class of enzyme β-lactamase. These bacteria are capable to hydrolyzing oxyimino groups making them survived from β-lactum antibiotics except carbapenem and cephamycin. Frequently, these bacteria are also capable of encoding plasmid and acquire resistance properties through the process of mutation that causes aminoglycoside and quinolone ineffective. The majority of ESBL-producing bacteria are multidrug resistant, so the choice of therapies to treat diseases caused by bacteria of this group is become restricted [13].

E. coli resistance to antibiotics can occur by several mechanisms. To fight the group of penicillin, sefalosfamin and carbapenem, E. coli produces enzymes that capable to hydrolyzing the β-lactam ring, which are enzyme β-lactamase, ESBL and serine-carbapenemase [14]. β-lactamase is an enzyme that is clinically very important, produced by gram negative bacteria such as E. coli, and encoded by chromosome and plasmid. Genes encoding β-lactamase is transferred through a transposon, but it can also be a one integrase composition. β-lactamase is able to hydrolyze almost all β-lactum class of antibiotics that has ester and amide bond in the structure, such as penicillin, sefalosfamin, monobactam and carbapenem. This process can be inhibited by β-lactamase inhibitor, such as clavulanic acid, sulbactam or tazobactam [15, 16]. This mechanism also explains the high sensitivity of E. coli to antibiotics piperacillin-tazobactam.

In this case, the patients was initially receiving ceftriaxone as antibiotic prophylaxis and postoperative, but after received the results of culture and susceptibility testing, surgeon directly replace ceftriaxone with meropenem because the result showed that the bacteria is resistant to ceftriaxone. This was similar to a case report of perforated appendicitis caused by ESBL-producing E. coli in Japan, which concludes that beside appendectomy and abcess drainage, suggested therapy with carbapenem class of antibiotics such as meropenem for 2 weeks to overcome abscess and prevent the emergence of other bacteria which are multidrug-resistant [13].

Meropenem is abactericidal antibiotic. This antibiotic has a high affinity to bind with high molecular weight penicillins-binding protein (PBP) that makes bacterial lysis and death. Meropenem's target on E. coli was on PBP 2 and PBP 3. The advantages of meropenem are able to withstand the process of hydrolysis by β-lactamase and mutation-mediated plasmid or bacterial chromosome. Furthermore, meropenem was not affected by the strains of Enterobacteriaceae producing plasmid-mediated β-lactamase SHV and TEM, the Extended-spectrum β-lactamase (ESBL), which is able to hydrolyze sefalosfamin third generation antibiotics. Therefore, meropenem was the right choice in cases of appendicitis caused by ESBL-producing E. coli [17].

D. Relationship between Suitability and Efficacy of Antibiotics in Relation with Surgical Wound

Relationship between suitability and efficacy of antibiotics can only be performed on postoperative antibiotics due to limited variable of prophylactic antibiotics. We used the statistical correlation between suitability of postoperative antibiotics and surgical wound grading. There was no significant relationship between suitability of postoperative antibiotics and surgical wound after appendectomy in non-perforated cases (p=0.505), while perforated case defined a significant relationship (p=0.011). It showed that postoperative antibiotics were only required for perforated appendicitis, whereas prophylactic antibiotic was known to be adequate in the case of non-perforated.

The use of postoperative antibiotics was no longer recommended by guidelines and some studies. Guidelines by the Surgical Infection Society and the Infectious Disease Society of America about the diagnosis and management of complications of intra-abdominal infections in adults and children mentioned that in the case of acute appendicitis without perforation, abscess or peritonitis, only required narrow spectrum antibiotics prophylaxis and should be discontinued within 24 hours [18].

Therefore it was recommended for cases of non-perforated appendicitis without complications not need to provide postoperative antibiotic, since prophylactic antibiotics was adequate to reduce the risk of surgical site infection after appendectomy. Very important if it can be applied in Haji General Hospital Surabaya, because it can reduce the use of antibiotics which were not necessary, reducing the risk of complications that may occur from the use of antibiotics (antibiotic-related complication), such as antibiotic-associated diarrhea, decrease the risk of the spread of bacterial resistance to antibiotics and decrease antibiotic-associated economic burden for both patients and hospitals.

E. Factors that Influence the Surgical Wounds after Appendectomy

The following factors were analyzed by using statistical correlation to identify the relationship with surgical wound: classification of surgery, type of surgery,
diagnosis, duration of surgery, age, gender and body mass index. The factors which significantly related with surgical wound were gender and duration of surgery. Summary of the correlation test results are list in Table III.

<table>
<thead>
<tr>
<th>No</th>
<th>Factors</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Duration of surgery</td>
<td>p = 0.017</td>
</tr>
<tr>
<td>2</td>
<td>Gender</td>
<td>p = 0.014</td>
</tr>
<tr>
<td>3</td>
<td>Type of surgery</td>
<td>p = 0.210</td>
</tr>
<tr>
<td>4</td>
<td>Diagnosis</td>
<td>p = 0.478</td>
</tr>
<tr>
<td>5</td>
<td>Age</td>
<td>p = 0.672</td>
</tr>
<tr>
<td>6</td>
<td>Body Mass Index</td>
<td>p = 0.696</td>
</tr>
</tbody>
</table>

This was consistent with the results of a cohort study in Thailand that assessing the risk of surgical site infection in patients appendectomy. According to the study, gender and duration of the operation was also a factor for the increased risk of surgical site infection after appendectomy, whereas other factors that also affect the increased risk of surgical site infections was the duration of antibiotic prophylaxis, age, increasing the American Society of Anaesthesiologists (ASA) score, length of hospitalization before surgery, emergency surgery and the type of operator skill differences [19].

F. Study Strengths and Weaknesses

The strengths of this study is this was the first prospective cohort study about perioperative antibiotics in appendicitis patients who underwent appendectomy in Haji General Hospital of Surabaya and we were able to get an overview of the susceptibility pattern of the bacteria that cause appendicitis to some antibiotics. The study limitation was its a small sample size, although this sample already meet the minimum number of samples but if we carried more samples, the results of the research will be able to describe the real situation in the population of appendicitis patient.

IV. CONCLUSION

Ceftriaxone was still effective as perioperative antibiotics. Postoperative antibiotics were only required for perforated appendicitis, whereas prophylactic antibiotic was known to be adequate in the case of non-perforated.

ACKNOWLEDGMENT

The authors wish to thank Haji General Hospital Surabaya Indonesia especially Dr. Novita Arbianti, Sp.MK (Département of Clinical Microbiology, Haji General Hospital Surabaya, Indonesia).

REFERENCES

Eka Amelia was born in Palangka Raya January 3rd 1985. She received her bachelor of pharmacy at Muhammadiyah University of Surakarta and her master of pharmacy at University of Surabaya. She is working in Pharmacy Department at General Hospital Palangkaryua City, Central Borneo Province, Indonesia.
Bambang Arianto was born in Surabaya on August 2nd, 1963. He is working at Department of Surgery, Haji General Hospital Surabaya, lecturer at Faculty of Medicine Hang Tuah University Surabaya and Muhammadiyah University of Malang. He is also an instructor of Advance Trauma Life Support and Emergency Care Training. He was joining in Indonesian Physician Organization and Indonesian Surgeon Organization.

Anita Purnamayanti was born in Surabaya on May 29th, 1968. She is a lecturer at Faculty of Pharmacy University of Surabaya. Her former working experience was as the head of Pharmacy Department at Karya Bhakti Hospital Bogor, Indonesia. She is a treasurer in Indonesian Pharmacist Association at East Java Province, Indonesia.