International Conference on Informatics, Technology and Engineering 2017 (InCITE 2017)

Sustainable Technology and Innovation: Opportunities and Challenges

24-25 August 2017: Bali, Indonesia

http://incite.ubaya.ac.id

A collaborative activity jointly organized by:

Universitas Surabaya
INDONESIA

Suranaree University of Technology
THAILAND

National Taiwan University of Technology
TAIWAN

Solar Energy Research Center, Dalarna University
SWEDEN

University of Wollongong
AUSTRALIA

Supported by:

Discovery Kartika Plaza Hotel
Bali, INDONESIA
IOP Conference Series: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Country</th>
<th>United Kingdom - [III] SIR Ranking of United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Area and Category</td>
<td>Engineering (miscellaneous)</td>
</tr>
<tr>
<td></td>
<td>Materials Science (miscellaneous)</td>
</tr>
<tr>
<td>Publisher</td>
<td></td>
</tr>
<tr>
<td>Publication type</td>
<td>Conferences and Proceedings</td>
</tr>
<tr>
<td>ISSN</td>
<td>17578981, 1757899X</td>
</tr>
<tr>
<td>Coverage</td>
<td>2009-ongoing</td>
</tr>
<tr>
<td>Scope</td>
<td>The open access IOP Conference Series provides a fast, versatile and cost-effective proceedings publication service for your conference. Key publishing subject areas include: physics, materials science, environmental science, bioscience, engineering, computational science and mathematics.</td>
</tr>
</tbody>
</table>

H Index: 24

SJR: The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from. It measures the scientific influence of the average article in a journal and expresses it as a ratio of citabilities over citation counts. SJR thus measures scientific influence just as a journal impact factor measures scientific influence among journals, but SJR measures influence of individual articles within journals.

Citations per document: This indicator counts the number of citations received by documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor™ (Thomson Reuters) metric.

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>0.000</td>
</tr>
<tr>
<td>2010</td>
<td>0.272</td>
</tr>
<tr>
<td>2012</td>
<td>0.15</td>
</tr>
<tr>
<td>2014</td>
<td>0.18</td>
</tr>
<tr>
<td>2016</td>
<td>0.21</td>
</tr>
<tr>
<td>2018</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Total Cites
Self-Cites
Asha Rajiv 10 months ago

Wanted to know whether the journal is scopus indexed?

reply
Scientific Committee (International Reviewers)

- Assoc. Prof. Azharul Karim, Ph.D. (Queensland University of Technology, AUSTRALIA)
- Prof. Dinesh Kant Kumar, Ph.D. (Royal Melbourne Institute of Technology, AUSTRALIA)
- Prof. Willy Susilo, Ph.D. (University of Wollongong, AUSTRALIA)
- Assoc. Prof. Yassierli, Ph.D. (Institut Teknologi Bandung, INDONESIA)
- Prof. Ali Altway, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Dr-Iing. I Made Londen Batan (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Assoc. Prof. Setiyo Gunawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Renanto Handogo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Mauridhi Hery Purnomo, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. Nur Irriawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Prof. I Nyoman Pujaawan, Ph.D. (Institut Teknologi Sepuluh Nopember, INDONESIA)
- Asst. Prof. Budi Hartono, Ph.D. (Universitas Gadjah Mada, INDONESIA)
- Asst. Prof. Hanung Adi Nugroho, Ph.D. (Universitas Gadjah Mada, INDONESIA)
- Asst. Prof. Dr rer nat. Lanny Sapei (Universitas Surabaya, INDONESIA)
- Asst. Prof. Nemuel Daniel Pah, Ph.D. (Universitas Surabaya, INDONESIA)
- Prof. Joniarto Parung, Ph.D. (Universitas Surabaya, INDONESIA)
- Prof. Lieveki Rialdi, Ph.D. (Universitas Surabaya, INDONESIA)
- Prof. Katsuhiro Takahashi, Ph.D. (Hiroshima University, JAPAN)
- Asst. Prof. Dr.Eng. Wahyudiono (Nagoya University, JAPAN)
- Prof. Anton Satria Prabuwno, Ph.D. (King Abdulaziz University, KINGDOM OF SAUDI ARABIA)
- Assoc. Prof. Oki Muraza, Ph.D. (King Fahd University of Petroleum & Minerals, KINGDOM OF SAUDI ARABIA)
- Assoc. Prof. Azizi Abdullah, Ph.D. (Univrsiti Kebangsaan Malaysia, MALAYSIA)
- Assoc. Prof. Siti Norul Huda Sheikh Abdullah, Ph.D. (Universiti Kebangsaan Malaysia, MALAYSIA)
- Assoc. Prof. Md. Jan Nordin, Ph.D. (Universiti Kebangsaan Malaysia, MALAYSIA)
- Assoc. Prof. Mohammad Faidzul Nasrudin, Ph.D. (Universiti Kebangsaan Malaysia, MALAYSIA)
- Assoc. Prof. Rosmadi Fauzi, Ph.D. (University of Malaya, MALAYSIA)
- Assoc. Prof. Md. Nasir Sulaiman, Ph.D. (Universiti Putra Malaysia, MALAYSIA)
- Prof. Ravindra S. Goonetilleke, Ph.D. (Hong Kong University of Science & Technology, PRC)
- Assoc. Prof. Tan Kay Chuan, Ph.D. (National University of Singapore, SINGAPORE)
- Asst. Prof. Aldy Gunawan, Ph.D. (Singapore Management University, SINGAPORE)
- Asst. Prof. Hendry Raharjo, Ph.D. (Chalmers University of Technology, SWEDEN)
- Assoc. Prof. Waree Kongprawechnon, Ph.D. (Sirindhorn International Institute of Technology, THAILAND)
- Asst. Prof. Itthisek Nilkhamhang, Ph.D. (Sirindhorn International Institute of Technology, THAILAND)
- Assoc. Prof. Vatanavongs Ratanavaraha, Ph.D. (Suranaree University of Technology, THAILAND)
- Assoc. Prof. Yupaporn Ruksakulpiwat, Ph.D. (Suranaree University of Technology, THAILAND)
- Assoc. Prof. Peerapong Uthsanakul, Ph.D. (Suranaree University of Technology, THAILAND)
Steering Committee

Chair: Assoc. Prof. Ir. Markus Hartono, Ph.D., CHFP, IPM
Honorary Members: Prof. Joniarto Parung, Ph.D.
 Prof. Suksun Horpibulsuk, Ph.D.
 Prof. Nai-Wei Lo, Ph.D.
 Prof. Mats Rönnelid, Ph.D.
 Prof. Willy Susilo, Ph.D.
Members: Assoc. Prof. Amelia Santoso, Ph.D.
 Asst. Prof. Djuwari, Ph.D.
 Mr. Agung Prayitno
 Assoc. Prof. Emma Savitri, Ph.D.
 Assoc. Prof. Budi Hartanto, Ph.D.
 Mr. Sunardi Tjandra
 Asst. Prof. Nemuel Daniel Pah, Ph.D.
 Assoc. Prof. Elieser Tarigan, Ph.D.
 Assoc. Prof. Jaya Suteja, Ph.D.
 Asst. Prof. Dr. rer. nat. Lanny Sapei
 Assoc. Prof. Hudiyo Firmanto, Ph.D.
 Assoc. Prof. Restu Kartiko Widi, Ph.D.

Organizing Committee

Chair: Assoc. Prof. Eric Wibisono, Ph.D.
Secretary: Assoc. Prof. Rudy Agustriyanto, Ph.D.
Treasurers: Ms. Dhiani Tresna Absari
 Ms. Arum Soesanti
Secretariat: Mr. Rahman Dwi Wahyudi (Coordinator)
 Ms. Yuana Elly Agustin
 Ms. Akbarningrum Fatmawati
 Ms. Yenny Sari
 Mr. Njoto Benarkah
Program: Ms. Melissa Angga (Coordinator)
 Assoc. Prof. Susila Chandra, Ph.D.
 Mr. Susilo Wibowo
 Mr. Yunus Fransiscus
 Mr. Moh. Arbi Hadiyat
 Ms. Indri Hapsari
 Ms. Susana Limanto
 Mr. I Made Ronyastra
Website: Mr. Daniel Soesanto
 Mr. Marcellinus Ferdinand Suciadi
Design: Ms. Tyrza Adelia
Documentary: Mr. Henry Hermawan
Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

To cite this article: R K Widi et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 273 012007

View the article online for updates and enhancements.

Related content

- Diatomite as high performance and environmental friendly catalysts for phenol hydroxylation with H₂O₂. Yuxin Jia, Wei Han, Guoxing Xiong et al.

- Characterization of C12A7-O Catalyst and Mechanism of PhenolFormation by Hydroxylation of Benzene. Ting Dong, Zhao-xiang Wang, Tao Kan et al.

- The effect of the natural bentonite to reduce COD in palm oil mill effluent by using a hybrid adsorption-flotation method. Ratni Dewi, Ratna Sari and Syafruddin
Table of contents

Volume 273
2017

International Conference on Informatics, Technology and Engineering 2017 (InCITE 2017)
24–25 August 2017, Bali, Indonesia

View all abstracts

Accepted papers received: 15 November 2017
Published online: 28 November 2017

Preface

OPEN ACCESS
International Conference on Informatics, Technology and Engineering 2017 (InCITE 2017)
+ View abstract View article PDF

OPEN ACCESS
Peer review statement
+ View abstract View article PDF

Papers

The Role of IT in Sustainable Enterprise

OPEN ACCESS
Text-based CAPTCHAs over the years
Y W Chow and W Susilo
+ View abstract View article PDF

Computer vision system for egg volume prediction using backpropagation neural network
J Siswanto, M Y Hillman and M Widiasri
+ View abstract View article PDF
Hydrolysis of alkaline pretreated banana peel
A Fedmawati, K Y Gunawan and F A Hediwijaya

Closed-loop simulation of decentralized control using RGA for uncertain binary distillation column
R Agustiyanto and J Zhang

An efficiency improvement in warehouse operation using simulation analysis
N Sametapapong

Modeling of the minimum variable blank holder force based on forming limit diagram (FLD) in deep drawing process
S Gandra, I M I Elston, W Beseta and A S Premono

Single-tier city logistics model for single product
N I Seraghi, S Nur Bahaqi, Suprayogi and I Syabr

Inventory model optimization for supplier-manufacturer-retailer system with rework and waste disposal
A R Dwicahyanii, E Khollidah, W A Jauhari, C N Rosyidii and P W Laksono

A periodic review integrated inventory model with controllable setup cost, imperfect items, and inspection errors under service level constraint
R S Soja, W A Jauhari and P W Laksono

A joint economic lot-sizing problem with fuzzy demand, defective items and environmental impacts
W A Jauhari and P W Laksono
Development of coordination system model on single-supplier multi-buyer for multi-item supply chain with probabilistic demand
G Olivia, A Santoso and D N Prayogo

View abstract View article PDF

Using genetic algorithm to determine the optimal order quantities for multi-item multi-period under warehouse capacity constraints in kitchenware manufacturing
D Saraswati, D K Sari and V Johan

View abstract View article PDF

From ISO 9001:2008 to ISO 9001:2015: Significant changes and their impacts to aspiring organizations
Y Sari, E Wibisono, R D Wahyudi and Y Lio

View abstract View article PDF

Improving delivery routes using combined heuristic and optimization in a consumer goods distribution company
E Wibisono, A Santoso and M A Sunaryo

View abstract View article PDF

The effect of different concentrations of tween-20 combined with rice husk silica on the stability of o/w emulsion: A kinetic study
L Sapai, I G Y H Sandy, I M K D Suputra and M Ray

View abstract View article PDF

Constrained optimization via simulation models for new product innovation
Nugroho A Pujowidianto

View abstract View article PDF

Affective design identification on the development of batik convection product
H Prastawa and R Purwaningsih

View abstract View article PDF

Estimating life cycle cost for a product family design: The challenges
T J Suteja, A Karim, P K D V Yerlagadda and C Yan

View abstract View article PDF
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>View abstract</th>
<th>View article</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>An integrative fuzzy Kano model for logistics services</td>
<td>M Hartono, T K Chuan, D N Prayogo and A Santoso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The impact of expatriates directors on the Indonesian company’s performance</td>
<td>I M Ronyastra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival analysis for customer satisfaction: A case study</td>
<td>M A Hadiyat, R D Wahyudi and Y Sari</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pattern analysis of fraud case in Taiwan, China and Indonesia</td>
<td>A H Kusumo, C F Chi and R S Dewi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor altitude stabilization of QuadRotor based on type-2 fuzzy and fuzzy PID</td>
<td>H Wikakseno, Y G Yusof, C Kristanto and L Haryanto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigating the role of Fuzzy as confirmatory tool for service quality assessment (Case study: Comparison of Fuzzy SERVQUAL and SERVQUAL in hotel service evaluation)</td>
<td>R D Wahyudi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

R K Widi, A Budhyantoro and A Christiano

Department of Chemical Engineering, University of Surabaya, Raya Kalirungkut, Surabaya 60293, Indonesia

E-mail: restu@staff.ubaya.ac.id

Abstract. The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/ H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

Keywords: bentonites; phenol; Fe; hydroxylation

1. Introduction

Hydroquinone is used extensively as a photography chemicals, antioxidants, polymerization inhibitors, flavoring agents and drug intermediates [1]. Several utilizations reflect that hydroquinone is one of the important chemicals that have gained interest from many researchers. There are a lot of efforts on catalyst synthesis development for improving the phenol conversion and hydroquinone selectivity. The reaction might be oxidizing the reaction products, catechol and hydroquinone, synthesizing undesirable heavy molecules, like benzoquinones. Phenol hydroxylation has become an important industrial process to synthesize hydroquinone and catechol. This process involves the reaction of phenol with H2O2 which is simple and environmental friendly. The reaction has been widely investigated using various homogenous and heterogeneous catalysts. The heterogeneous catalysts are preferred over the homogeneous ones because they give a high phenol conversion with high product selectivity and can be separated easily from the reaction mixture. Some researchers use titanium silicate [2–4], TiO2 in supports such as silica [5], alumina [6], zeolite [7, 8], and activated carbon [9], zeolite MCM [10], copper-iron complexes [11, 12] as a heterogeneous catalyst for phenol hydroxylation. The other researchers also examined the activity of phenol hydroxylation on zeolite MCM [10] and copper-iron complexes [11, 12].
Among several heterogeneous catalysts, supported Fe is widely used. Fe has been a catalyst of interest for the reaction over other metals because it gives high phenol conversion at mild reaction conditions and high product selectivity. There are several ways to improve the catalytic performance of Fe catalysts, such as immobilization of Fe on MCM [13, 14] and on wood-based activated carbon [15].

In our previous work we described that use of modified betonies as a Fe supporting material to facilitate Fe dispersion depicted promising catalysts for the phenol hydroxylation with hydrogen peroxide [16, 17]. We used betonies as it is abundant material in Indonesia and it has special characteristic in its porous structure to facilitate Fe dispersion. In this paper we report more focus on the effect of Fe loading into the modified betonies, and the effect of temperature and reaction time toward catalyst activity on phenol hydroxylation.

2. Experimental

2.1. Materials
Clay (natural Pacitan bentonite), FeCl₂ (Merck), Cetyl-Tetramethylammonium Bromida, CTMA-Br (Merck), Noah (Merck), Al(OH)₃ (Merck).

2.2. Instrumentation
The chemical analysis of the solids was carried out by Fourier Transform Infra Red Spectrophotometer (FTIR, Broker Tensor 27, Germany). The specific surface areas were obtained from the BET method. Nitrogen adsorption was determined with an ASAP 2010 Adsorption Analyzer from Micrometrics. The concentration of phenol, hydroquinone and cathecol was measured by High Performance Liquid Chromatography (HPLC) from Knauer.

2.3. Procedure
The starting clay was a natural Pacitan bentonite, extracted from Pakistan, Indonesia. Noah and Al (molar ratio of OH to Al = 0.8) was mixed to generate the pillaring agent solution. Modification of betonies was carried out by mixing betonies, pillaring agent solution and intercalating agent (Cetyl-Tetramethylammonium Bromida, CTMA-Br) with ratio [gram bentonite/ volume of solution] = 1 gram/50 mL, and it was heated at 343 K for 5 hours. The obtained solid was dried and calcined at 773 K for 4 hours with nitrogen and oxygen stream. This modified bentonite was then impregnated with Fe solution. The Fe concentrations were 0.01 M, 0.05 M, and 0.1 M. After impregnation process, Al-CTMA bentonite was calcined at 773 K for 4 hours with nitrogen and oxygen stream. The catalytic oxidation reaction of phenol in a diluted aqueous medium was carried out in a batch glass reactor equipped with thermometer and reflux condenser. It was open to the atmosphere and thoroughly stirring with magnetic stirrer. The temperature was varied at 333 K, 343 K and 343 K for 3, 4 and 5 hours. The hydrogen peroxide solution was added stepwise during a reaction time. The molar ratio of phenol to hydrogen peroxide was 1:1. The weight ratio of catalyst to phenol was 1:10. The course of the phenol conversion and selectivity was followed by high performance liquid chromatography (HPLC). For all chromatographic separations, a Knavery HPLC System was used, including Euros her II 100-3 C18, 100 x 3 mm ID column. The mobile phase was methanol:water (40:60 v/v) with the flow rate was 0.5ml/min at room temperature. UV 254 nm (10 mm cell, 5 Hz, 0.2 sec.) was used as detector. Conversion is defined as the ratio of consumed phenol over the fed phenol for the reaction. Selectivities of products are the ratio of produced product over the consumed phenol. The desired product was hydroquinone.
3. Results and discussion

3.1. Catalyst characterization

Figure 1 shows the FTIR spectra of fresh (unmodified) bentonite and CTMABr-Al-Fe modified bentonite before and after calcinations. The absorption peak in the region 3623.05 cm\(^{-1}\) indicates –OH asymmetric stretching from Al–OH, Si–OH and H–O–H in bentonite. The presence of alkyl groups were shown by absorption peak in the region 2920.25 cm\(^{-1}\) (–CH\(_3\) stretching asymmetric), 2851.20 cm\(^{-1}\) (–CH\(_2\) stretching symmetric), and supported by absorption peak of 1471.28 cm\(^{-1}\) (C–H bending vibration). These peaks proved that CTMABr molecules might lay on the bentonite surface to form pillared bentonite. The absorption peak in the region 1030 – 1040 cm\(^{-1}\) indicated asymmetric stretching O-Si-O, O-Fe-O and O-Al-O group in material. These bands exhibited a slight shift to the higher wave numbers due to the formation of new system polymerization of shifted to the O-Al-O and O-Si-O in the pillared bentonite. The difference of width absorption region in the range of 950 – 1200 cm\(^{-1}\) proved that the Fe pillars are formed permanently in the bentonite. The FTIR spectra and X-Ray diffractogram characterizations and its analysis have been described in more detail before [16, 17].

Figure 1. FTIR spectra fresh (unmodified) bentonite and CTMABr-Al-Fe modified bentonite before and after calcinations.

The determination of distribution of pore size and surface area of pillared bentonite can be done by using adsorption N\(_2\) gas analysis. The observation focused on the influence of existing Fe metal to pillar height and porous size of bentonite. The success of intercalating, pillaring and impregnation process can be indicated by increasing of porous size and its distribution. The created material will be better, if the number of mesopore (> 20 Å) is higher. The high surface area and mesopore size distribution allowing the dispersion of a large number of catalytically active species [18]. The effect of Fe concentration to created pore is shown by figure 2 and table 1.

Figure 2. Pore size distribution of modified-bentonite.
Table 1. The effect of Fe concentration on average pore radius of modified-bentonite.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Average Pore Radius (Å)</th>
<th>Specific Surface Area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh bentonite</td>
<td>14,380127</td>
<td>59,746942</td>
</tr>
<tr>
<td>CTMABr-Bent-Al</td>
<td>24,203416</td>
<td>38,039192</td>
</tr>
<tr>
<td>CTMABr-Bent-Al-Fe (0,01 M)</td>
<td>26,112431</td>
<td>19,024643</td>
</tr>
<tr>
<td>CTMABr-Bent-Al-Fe (0,05 M)</td>
<td>21,235114</td>
<td>22,589425</td>
</tr>
<tr>
<td>CTMABr-Bent-Al-Fe (0,1 M)</td>
<td>35,919653</td>
<td>44,333773</td>
</tr>
</tbody>
</table>

BET analysis which is listed on table 6 shows that fresh bentonite pores are distributed in the micro size (≤ 20 Å) and has high specific surface area (59.75 m²/g). The disadvantage of fresh bentonite is that it has impermanent porosity. Fresh bentonite will swell when it is hydrated and collapse when it is dehydrated. Increasing Fe concentration along impregnation process will affect the increase of the average pore radius. Figure 2 shows that pore size distribution tend to increase in the range of micropore to mesopore. Fe impregnated bentonite that has been calcinated, the bentonite structure change into amorphous. It has lower crystallinity but the pore volume is getting higher as shown by XRD [16, 17] and BET analysis. Table 1 show that the biggest average pore radius is that of CTMABr-Bent-Al-Fe (0.1 M). This phenomenon was supported by data in figure 3 which showed that CTMABr-Bent-Al-Fe (0.1 M) had pore size distribution in the range of mesopore.

![Figure 3. N₂ isotherm adsorption on fresh and modified bentonite.](image)

3.2. Catalytic activity test
The phenol hydroxylation reaction follows the proposed reaction mechanism below (scheme 1).

![Figure 4. Proposed reaction pathway of phenol hydroxylation](image)
Figure 5 depicts the result of phenol hydroxylation reaction at 333 K. This result describes that the most active catalyst was Comair-Bent-Al-Fe (0.1M), since this catalyst gave the highest propane conversion and hydroquinone selectivity. This result is consistent with the BET data showing that the catalyst CTMABr-Bent-Al-Fe (0.1M) has the biggest pore radius and specific surface area. This characteristic of the catalyst leads the phenol reactant to be adsorbed and could be contacted in longer time with peroxide. In addition, this data are also consistent with the previous work which described that the more Fe is loaded, the more active is the catalyst since the catalytic activity needs the presence of ion Fe to oxidize phenol molecules. The mechanism of oxidation of phenol is as follows [19]:

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{OH}^-
\]

Phenol radical + Fe\(^{3+}\) → Product + Fe\(^{2+}\)

Catechu has been postulated to be produced in the catalyst external surface while hydroquinone is formed inside the pores [20]. The barrier of reactants to diffuse into the porous network of the pillared bentonite can be the reason for reduced hydroquinone selectivity, although thermodynamically \(\sigma\)- and \(p\)-products have equal possibility.

Figure 5. Phenol hydroxylation on different type of catalyst at 333K for 3 hours (X Phe = Conversion of Phenol; S HQ = Selectivity of Hydroquinone; S CAT = Selectivity of Cathecol; S BQ = Selectivity of Benzoquinone).

Figure 6. Effect of reaction temperature on Phenol hydroxylation on CTMABr-Bent-Al-Fe (0.1M) for 3 hours (X Phe = Conversion of Phenol; S HQ = Selectivity of Hydroquinone; S CAT = Selectivity of Cathecol; S BQ = Selectivity of Benzoquinone).

Figure 6 shows that phenol conversion increased, in line with increasing reaction temperature. Increasing reaction temperature affected the phenol conversion. This is due to the fact that energy given to the system is high enough resulting in the increase in the reaction rate.
The effect of reaction time is shown in figure 7. It can be observed that the phenol conversion reached a maximum value of 78% with the reaction time of 4 hours. However, the phenol conversion slightly decreased when reaction time further increased to 5 hours. It can also be described that selectivity of hydroquinone decreased when reaction time increased, which may be attributed to the fact that hydroquinone was further oxidized to generate more by-product, i.e. 1,4-benzoquinone, in a longer time. Over-oxidation of hydroquinone occurred because more energy was needed to form 1,4-benzoquinone due to its low structure stability. The results show that higher phenol conversion did not tend to produce high amount of hydroquinone. It is probably because of the energy given to the system was excessive and enhanced the over-oxidation to produce 1,4-benzoquinone.

4. Conclusion
In general, the modification of bentonite shows prospective support material for Fe as catalyst. The catalytic activity tests for phenol hydroxylation show that Fe loading plays an important role to the catalytic performance. Reaction conditions are very important to get the best result in term of the highest phenol conversion and also the highest selectivity to hydroquinone. Besides the composition of the catalyst precursor, synthesis method, drying method, activation method, all reaction parameters (such as, reactant ratio, reactant-catalyst ratio, reaction time and reaction temperature) are important variables that require further research in obtaining optimized combination for the best phenol hydroxylation to hydroquinone.

Figure 7. Effect of reaction time on Phenol hydroxylation on CTMABr-Bent-Al-Fe (0.1M) at 333K (X Phe = Conversion of Phenol; S HQ = Selectivity of Hydroquinone; S CAT = Selectivity of Cathecol; S BQ = Selectivity of Benzoquinone).

Acknowledgment
The authors acknowledge: Ministry of Research, Technology and Higher Education of the Republic of Indonesia, Research Grant (Hibah Berbasis Kompetensi 2017) for funding.

References

