Asian Journal of Pharmaceutical and Clinical Research

AJPCR (Asian J Pharm Clin Res) is peer reviewed, Monthly (Onward Jan 2017) open access Journal. This journal publishes original research in the field of Pharmaceutical and Clinical Sciences. The Journal has been designed to cover all the fields of research, which has any correlation and impact on Pharmaceutical Science. It aims to publish all the original research in field of science so a correlation can be made between these researches. Knowledge gained by such researches can be exposed to all and it can be brought in real utilization as all the branches of science are correlated and will assist all the researchers to potentiate their research capabilities.

Abstracting and Indexing
SCOPUS, Google Scholar, Elsevier, EBSCO, EMBASE, Scimago (SCImago Journal & Country Rank), CNKI (China Knowledge Resource Integrated Database), CAS, CASSI (American Chemical Society), ICAAP, Scientific commons, PSOAR, Open-J-Gate, Indian Citation Index (ICI), Index Medicus for WHO South-East Asia (IMSEAR), OAI, LOCKKS, OCLC (World Digital Collection Gateway), UIUC.

UGC Listed Journal

Innovare Academic Sciences

Vision: Impact in quality knowledge and innovation is most important radical for human welfare.

Mission: IAS contribute to human development through support to organization in getting accreditation/approval for quality education, quality research dissemination, research to innovations and finally to IPR and extension activities.

Goals: The goals of innovare academics sciences are:

- To provide support to industry and academic institute to enhance their intellectual property.
- To spread knowledge for innovations.
- To help in getting organization accreditation/approvals status.
To provide business designs in pharma and others.
To join hands with various organizers of the conference to provide a common platform for experts, researchers, educational managers, policy makers and industrialists.
To keep a record of the state-of-the-art research and to promote study, patents, design for business, accreditation and approval within its various specialities.

Associate Conferences

Recent Trends in Biomedical Sciences-2018 (Visit Here)

Department of Medical Laboratory Sciences (LSPPS) at Lovely Professional University is going to organize a national conference on Recent Trends in Biomedical Sciences 2018 (RTBS-2018) on 16th March 2018.

3rd International Conference on Academic and Industrial Innovations: Transitions in Pharmaceutical, Medical and Biosciences

(22-23 Oct 2018)
Kala Academy, Goa, India

Is your Academic organization is ready for getting excellence? Here is the Solution!
AJPCR is committed to have dynamic and potential advisory-editorial board. Those established in the field can directly send their resume. New people are first needed to serve as referee before being considered member of advisory-editorial board. Email your resume to editor@ajpcr.com

Editor-in-Chief

Dr. Anurekha Jain
Dept. of Pharmaceutical Sciences, Jyoti Mahila Vidyapeeth University, Jaipur, Rajasthan
Email: editor@ajpcr.com

Associate Editor

Dr. Neeraj Upmanyu
Peoples Institute of Pharmacy & Research Center, Bhopal, MP, India
Email: dmeerajupmanyu@gmail.com

Dr. Vikas Sharma
Shri Rawatpura Sarkar Institute of Pharmacy, Datiya, MP, India
Email: vikassharma15@gmail.com

Assistant Editor

Dr. Vimal Kumar Jain
Institute of Pharmacy, Nirmal University, Ahmedabad, Gujarat, India
Email: cognosy@gmail.com

Dr. Rupesh Kumar Gautam
ADINA Institute of Pharmaceutical Sciences, Sagar, MP, India
Email: drrupeshgautam@gmail.com

Editorial Board Members

- Dr. Debasish Maiti
 Suryamaninagar, Tripura West, Agartala, Tripura, India
- Dr. Rashad Mohammed Musleh
 University of Thamar, Yemen
- Dr. Shubhamoy Ghosh
MOST DOWNLOADED ARTICLES

- PREGELATINIZED CASSAVA STARCH...
- ANTIBACTERIAL ACTIVITY OF HYDROLYZED...
- BUCCAL PENETRATION ENHANCERS-AN OVERVIEW
- ANTI-CANCER ACTIVITY OF DATURA METEL...
- Upper Thoracic spine(D2-D3)...
- ANTIBACTERIAL ACTIVITY OF THE...
- DIPEPTIDYL PEPTIDASE-IV INHIBITORY...
- A REVIEW: LOVASTATIN PRODUCTION AND...
- TURMERIC: NATURE’S PRECIOUS MEDICINE.
- ETHNOBOTANICAL STUDIES ON SELECTED...

Dept. of Pathology & Microbiology, Mahesh Bhattacharyya Homeopathic Medical College & Hospital, Govt. of West Bengal, India

Mohd Abdul Hadi
Bhaskar Pharmacy College Affiliated To Jawaharlal Nehru Technological University, Hyderabad, India

Dr. Amer A. Taqa
Department of Dental Basic Science, College of Dentistry, Mosul University, Iraq

Mr. Atul Kabra
Department of Pharmacy, Manav Bharti University, Solan (H.P.), India

Mr. Siddharth Kausal Tripathi
Doctoral Research Associate National Center For Natural Products Research, School of Pharmacy, University of Mississippi, India

Dr. Brajesh Kumar
Escuela Politécnica Del Ejército, Sangolqui, Ecuador, Latin America

Dr. Farhan Ahmed Siddiqui
Faculty of Pharmacy, Federal Urdu University Arts, Science And Technology Karachi, Sindh, Pakistan

Dr. Deepak Kumar Mittal
Iasca Department of Itm-Universe, Gwalior, India

Dr. Jesse Joel Thathapudi
Karunya University (Deemed To Be University), Coimbatore, Tamil Nadu, India

Dr. Kumaran Shanmugam
Analytical Chemistry, Academic Faculty, (Senior Scale) & International Co-Ordinator, Department of Biotechnology, Periyar Maniammai University, Vallam, Thanjavur-613 403, India

Dr. Javed Sharifi Rad
Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, P.O. Box 61615-585 Zabol, Iran

Dr. Rajesh Mohanraj
Dept. of Pharmacology, CMHS, UAE

Dr. P. Thillai Arasu
Department of Chemistry, Kalasalingam University, Srivilliputhur 626190, India

Ms Vasundhra Saxena
Gautam Buddha Technical University Lucknow, India

Ms Vinut Dattatray Chavhan
Sinhgad Technical Education Society’S Smt. Kashibai Navale College of Pharmacy, Kondhwa-Sawswad Road, Kondhwa (BK), India

Dr. Sami Saqf El Hait
Junior Executive - Quality Control At Jamjoom Pharmaceuticals Company Limitedjeddah, Saudi Arabia

Md. Moklesur Rahman Sarker
Faculty of Medicine, University of Malaya, Malaysia

Dr. Ahmed Hashim Mohaisen Al-Yasari
Department of Physics, College of Education For Pure Science, University of Babylon,
Hilla, Iraq

- Dr. Arun Kumar
 Director & Dean, Faculty of Marine Sciences Faculty of Marine Sciences Cas In Marine Biology Cas In Marine Biology, Parangipettai- 608502 Parangipettai- 608502 Tamil Nadu, India

- Dr. Ashraf Ahmed
 Dept. of Chemistry, Aligarh Muslim University, Uttar Pradesh 202001, India

- Dr. S. Bala Murugan
 Dept. of Biotechnology, Bharathiar University, Coimbatore-641046, Tamil Nadu, India

- Dr. Sukhen Som
 Department of Pharmaceutical Chemistry, M.M.U College of Pharmacy, K.K.Doddi, Ramadevara Betta Road, Ramanagara- 562159State- Karnataka India

- Dr. Sheikh Shoib
 Department of Psychiatry, Institute of Mental Health And Neurosciences Kashmir (Imhans K), Srinagar, India

- Dr. Hao Wu
 Postdoctoral Fellow At Ngm Biopharmaceuticals, Inc,South San Francisco, CA 94080, USA

- Dr. Payal Bhaskar Joshi
 Assistant Professor Department of Chemical Engineering, Mukesh Patel School of Technology Management & Engineering (Mumbai Campus), Svkms Nmims (Deemed-To-Be-University), India

- Dr. Nagarajan Kayalvizhi
 Assistant Professor Department of Zoology, Periyar University, Salem, Tamilnadu, India

- Dr. Madhu Bala
 Scientist ‘F’ And Joint Director, Institute of Nuclear Medicine And Allied Sciences (INMAS), India

- Prof. Dr. Mamdouh Moawad Ali
 Biochemistry Department, Genetic Engineering And Biotechnology, India

- Dr. Mohanraj Rathinavelu
 Department of Pharmacy Practice, Raghavendra Institute of Pharmaceutical Education & Research, Riper, India

- Dr. (Mrs.) Neeru Nathani
 Dept. of Swasthavritta And Yoga, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, India

- Dr. Rohini Karunakaran
 Unit of Biochemistry, Faculty of Medicine, A Jimst University Batu 3 1/2, Bukit Air Nasi, Jalan Semeling, 08100 Bedong Kedah Darul Aman, Malaysia

- Dr. Imran Ahmad Khan
 Royal Institute of Medical Sciences Multan, Pakistan

- Dr. Jitendra Gupta
 Sper Timer (Publication Committee) Regional Head U.P. State, India

- Dr. Kamal A. Badr
 Lecturer of Pharmaceutics And Industrial Pharmacy & Member of Quality Assurance Unit-
Faculty of Pharmacy- Delta University For Science And Technology, India

- Mr. Gurpreet Singh
 Department of Pharmaceutical Sciences Guru Nanak Dev University, Amritsar, Punjab (India) 143005

- Dr. Pranav Kumar Prabhakar
 Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road

- Dr. Raj Mohan Raja Muthiah
 Research Fellow (Harvard Medical School) 172 Hosmer Street, Apt 7. Marlborough, Ma 01752

- Dr. Sandip Narayan Chakraborty
 Research Asst Ii, Translational Molecular Pathology, Ut Md Anderson Cancer Center, Life Sciences Plaza, Houston, TX 77030

- Dr. Anup Naha
 Dept. of Pharmaceutics “Swarna Kutir ”, Ramnagar Road No.4, Mcops, Manipal-576 104, Karnataka, India

- Dr. Tushar Treembak Shelke
 Vice Principal , Head of Department of Pharmacology And Research Scholar, In Jspms Charak College of Pharmacy & Research, Gat No. - 720(1&2), Pune, India

- Anindya Banerjee
 Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare Govt of India

- Dr. Vijay Mishra
 Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India

- Dr. Praveen Kumar Sharma
 Department of Chemistry, Lovely Professional University, Punjab (India)-144411

- Deepansh Sharma
 School of Bioengineering & Biosciences Lovely Professional University, Phagwara Punjab, India

- Sai Prachetan Balguri
 ORISE Research Fellow at U.S. FDA

- Dr. Mohd Abdul Hadi
 Department of Pharmaceutics, Bhaskar Pharmacy college, Yenkapally (V), Moinabad (M), R.R (Dt), Hyderabad-500 075, Telangana, India

- Tanay Pramanik
 Department of Chemistry in Lovely Professional University, Punjab, India

Editorial office

Asian Journal of Pharmaceutical and Clinical Research
B-11, In front of Beema Hospital, Nayi Awadi, Mandasaur 458001, MP, India
E-mail: editor@ajpocr.com
Vol 11 Issue 2 February 2018

Table of Contents

Case Study(s)

SUCCESSFUL TREATMENT OF VENTILATOR ASSOCIATED PNEUMONIA CAUSED BY MULTIDRUG RESISTANT ACINETOBACTER BAUMANNII WITH A COMBINATION THERAPY OF CSE1034 AND COLISTIN: A CASE REPORT.
Himanshu Garg, Pratibha Dogra, Mayank Saxena
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21619
Pages: 1-3 | Share

THE ASPECT OF NEUROCOGNITIVE AND REHABILITATION ON ALEXIA WITHOUT AGRAPHIA CASE
Ketut Widyastuti, Aaa Putri Laksmidewi, Putu Eka Widyadharma
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23150
Pages: 4-6 | Share

IS TUBERCULOSIS A FAMILIAL COMMUNICABLE DISEASE? HIGH TIME TO STRENGTHEN CONTACT SCREENING
Timsi Jain, Raja Jd, Raja Jd, Ruma Dutta, Ruma Dutta, Sivaprakasam P, Sivaprakasam P, Jayashri D, Jayashri D, Gomathy Parasuraman, Gomathy Parasuraman, Yogesh Mohan, Yogesh Mohan
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23182
Pages: 7-8 | Share

Review Article(s)

SYNTHESIS AND BIOLOGICAL PROPERTIES OF PHARMACEUTICALLY IMPORTANT XANTHONES
AND BENZOXANTHONE ANALOGS: A BRIEF REVIEW.

Pooja Bedi, Richa Gupta, Richa Gupta, Tanay Pramanik, Tanay Pramanik

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22426

Pages: 12-20 | Share

AN INSIGHT ON ALGAL CELL DISRUPTION FOR BIODIESEL PRODUCTION

Aarthy A, Smita Kumari, Prachi Turkar, Sangeetha Subramanian

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22481

Pages: 21-26 | Share

CHEMICAL HAZARDS IN PHARMACEUTICAL INDUSTRY: AN OVERVIEW

Princy Agarwal, Anju Goyal, Rajat Vaishnav

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23160

Pages: 27-35 | Share

SWEET FUTURE OF STEVIA: A MAGICAL SWEETENER

Jeevan Jyoti, Maninderjeet Kaur, Vijay Mishra, Amit Mittal

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.20295

Pages: 36-42 | Share

YELLOWNESS IS A THREAT TO NEWBORN - A REVIEW

Manoj Jena, Shekhar Mohapatra S, Anshurekha Dash

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22694

Pages: 43-47 | Share

A REVIEW ON ROLE OF ANTIOXIDANTS IN DIABETES

Deepa Rajendiran, Subbulakshmi Packirisamy, Krishnamoorthy Gunasekaran

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23241

Pages: 48-53 | Share

REVIEW ON THERAPEUTIC EFFECTS MEDIATED BY OMEGA-3 FATTY ACIDS IN ALZHEIMER’S DISEASE

Sati Aarti, Bhatt Priyanka

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22435

Pages: 54-58 | Share

ULTRAVIOLET SPECTROSCOPY AND ITS PHARMACEUTICAL APPLICATIONS- A BRIEF REVIEW

Dipali M Atole, Hrishikesh H Rajput

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21361

Pages: 59-66 | Share

INFLUENCE OF GRAM-NEGATIVE STRAIN KLEBSIELLA OXYTOCA ON BIOCORROSION

Chitra S, Anand B

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.19431

Pages: 67-71 | Share

RECENT APPROACHES OF SOLID DISPERSION: A NEW CONCEPT TOWARD ORAL BIOAVAILABILITY.

Sabitri Bindhani, Snehamayee Mohapatra

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23161
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Abstract</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS VALIDATION AND REGULATORY REQUIREMENTS OF METERED-DOSE INHALERS: AN OVERVIEW</td>
<td>Ashrani Sunil, Goyal Anju, Vaishnav Rajat</td>
<td>Abstract</td>
<td>72-78</td>
<td>10.22159/ajpcr.2018.v112.22408</td>
</tr>
<tr>
<td>ANTIDIABETIC EFFECTS OF PUMPKIN (CUCURBITA MOSCHATA DURCH) FLESH AND SEEDS EXTRACTS IN STREPTOZOTOCIN INDUCED MICE</td>
<td>Novarianti Marbun, Panal Sitorus, Siti Morin Sinaga</td>
<td>Abstract</td>
<td>87-90</td>
<td>10.22159/ajpcr.2018.v112.22023</td>
</tr>
<tr>
<td>EVALUATION OF BIOACTIVITIES OF MORINDA TINCTORIA LEAVES EXTRACT FOR PHARMACOLOGICAL APPLICATIONS.</td>
<td>Thangavel Sivakumar, Bhagavathi Sundaram Sivamaruthi, Kamaraj Lakshmi Priya, Periyanaina Kesika, Chaiyavat Chaiyasut</td>
<td>Abstract</td>
<td>100-105</td>
<td>10.22159/ajpcr.2018.v112.21583</td>
</tr>
<tr>
<td>COMPARISON OF HEALTH LITERACY AMONG IRAQI WOMEN WITH DIFFERENT AGE GROUPS</td>
<td>Zena Mudhfar Al-Nema</td>
<td>Abstract</td>
<td>100-105</td>
<td>10.22159/ajpcr.2018.v112.22707</td>
</tr>
</tbody>
</table>
COMPARATIVE EVALUATION OF ACCURACY OF RECORDING BLOOD PRESSURE EITHER BY AUTOMATED OSCILLOMETRIC METHOD OR BY SPHYGMOMANOMETER IN BOTH NORMOTENSIVE AND HYPERTENSIVE PATIENTS - A PROSPECTIVE OBSERVATIONAL STUDY

Sobana R, Parthasarathy S

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21959

Pages: 109-112 | Share

ASSOCIATION OF VIRULENCE FACTOR (PANTON-VALENTINE LEUKOCIDIN) WITH MECA GENE IN STAPHYLOCOCCUS AUREUS ISOLATES IN TERTIARY CARE HOSPITAL

Nilima R Patil, Ghorpade Mr

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.19080

Pages: 113-116 | Share

CONTENT VARIATIONS OF CARBAMAZEPINE TABLETS IN IRAQI COMMUNITY PHARMACIES: APPLICATION OF HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ASSAY METHOD

Mohanad Naji Sahib

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22739

Pages: 117-120 | Share

IN VITRO ANTIMALARIAL ACTIVITY OF CHLOROFORM, N-BUTANOL, AND ETHYL ACETATE FRACTIONS OF ETHANOL EXTRACTS OF CARTHAMUS TINCTORIUS LINN. FLOWERS

Rini Hamsidi, Aty Widyaw aruyanti, Achmad Fuad Hafid, Wiw ied Ekasari, Henny Kasmaw ati, Nur Illyyin Akip, Wahyuni Wahyuni, Hajrul Malaka M

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.15856

Pages: 121-123 | Share

APPROPRIATE EMPIRICAL MANAGEMENT OF MICROBIAL INFECTIONS IN A TERTIARY CARE HOSPITAL: A COST- EFFECTIVENESS APPROACH.

Onchari Divinah N, Josin Mary Simon, Sneha Tomy, Arun Prasath R, Sivakumar V

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22441

Pages: 124-127 | Share

COMPARATIVE EVALUATION OF EFFICACY OF GINGIVAL RETRACTION USING CHEMICAL AND MECHANICAL METHODS: AN IN VIVO STUDY

Parampreet Kaur Kohli, Veena Hegde

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22674

Pages: 128-131 | Share

KEY FACTORS FOR SUSTAINABLE RATIONAL USE OF MEDICINE PROGRAM IN GUNUNGKIDUL AND SLEMAN DISTRICTS, INDONESIA

Sunartono H, Prabandari Ys, Kusnanto H, Suryaw ati S

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22653

Pages: 132-137 | Share

EFFECT OF GREEN TEA LEAVES (CAMELLIA SINENSIS) AND CAROM SEEDS (TRACHYSPERMUM AMMI) EXTRACTS ON MALE MICE EXPOSED TO DIAZINON.

Manju Ohri Pai, Venkatesh S Pai, Anil K Gupta

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22353

Pages: 138-142 | Share
EVALUATION OF FUNCTIONING AND STATUS OF IMPLEMENTATION OF HEMOVIGILANCE PROGRAM OF INDIA IN THE BLOOD BANKS OF SOUTHERN KERALA
Sreekumar Pk, Pramod Kumar Tm, Partha Sarathi G, Debasis Gupt, Pallavi Prakash
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22479
Pages: 143-148 | Share

A PROSPECTIVE EVALUATION OF CAUSES AND TREATMENT OF INFERTILITY IN A TERTIARY CARE HOSPITAL, ERODE
Amala Baby, Anila A Varghese, Cindy Jose, Krishnaveni Kandasamy, Shanmuga Sundaram Rajagopal
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22108
Pages: 149-153 | Share

SILVER NANOPARTICLES FROM MEDICINALLY IMPORTANT EUPHORBIA CYATHOPORA EXTRACT: BIOSYNTHESIS, CHARACTERIZATION, AND ANTICANCER ACTIVITY.
Robert Lotha, Aravind Sivasubramanian, Meenakshi Sundaram Muthuraman
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22216
Pages: 154-156 | Share

FRACTAL ANALYSIS OF TRABECULAR BONE PATTERN IN THE MANDIBLE AS AN INDICATOR OF OSTEOPOROSIS IN WOMEN - A CLINICAL STUDY
Vijayalakshmi K, Krithika C L, Raghuram P H, Kannan A
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22719
Pages: 157-160 | Share

SCREENING FOR THE HOMOZYGOUS C.144DELC MUTATION IN AURKC GENE IN ALGERIAN INFERTILE MEN
Rezgoune Mohamed Larbi, Chellat Djalila, Abadi Noureddine, Satta Dailla
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22783
Pages: 161-163 | Share

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF SOFOSBUVIR AND VELPATASVIR DRUG PRODUCT BY REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY METHOD
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22465
Pages: 164-168 | Share

MOLECULAR DOCKING OF AMITRIPTYLINE TO CERULOPLASMIN, RETINOL-BINDING PROTEIN, AND SERUM ALBUMIN
Ramchander Merugu, Kalpana V Singh
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22721
Pages: 169-175 | Share

PRESCRIPTION AUDITING IN REGARD WITH THE PRESCRIPTION PATTERNS IN A TERTIARY CARE TEACHING HOSPITAL
A Naveen, Ramesh B, Siwani Teki
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22983
Pages: 176-180 | Share

ENERGY-BASED PHARMACOPHORE MODELING, VIRTUAL SCREENING, AND MOLECULAR
DYNAMICS TO IDENTIFY POTENTIAL INHIBITORS FOR GLYCOGEN SYNTHASE KINASE 3 BETA
Sheema Jb, Waheeta Hopper
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22962
Pages: 181-188 | Share

ISOLATION AND IDENTIFICATION OF NATURALLY OCCURRING LARVICIDAL COMPOUND ISOLATED FROM ZINGIBER ZERUMBET (L). J.E. SMITH.
Tri Murini, Mae Sri Hartati Wahyuningsih, Tri Baskoro Tungul Satoto, Achmad Fudholi, Muhammad Hanafi
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21703
Pages: 189-193 | Share

IN VITRO ANTIOXIDANT AND ANTIMICROBIAL ACTIVITY OF PHOENIX PUSILLA ROOT EXTRACT
Vijaya Bharathi S, Anuradha V, Rubalakshmi G
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22965
Pages: 194-197 | Share

INTEGRATING STRUCTURE AND LIGAND-BASED APPROACHES FOR MODELLING THE HISTONE DEACETYLASE INHIBITION ACTIVITY OF HYDROXAMIC ACID DERIVATIVES
Hai Pham-The, Huong Le-Thi-Thu
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22995
Pages: 198-206 | Share

ANTI-INFLAMMATORY EFFECT OF ELETTARIA CARDAMOM OIL ON CARRAGEENAN-INDUCED PAW EDEMA USING RATS BASED ON TUMOR NECROSIS FACTOR A, INTERLEUKIN 6, AND INTERLEUKIN 1 LEVELS IN SERUM
Nithya Sermugapandian, Rubini R, Martina V
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.20434
Pages: 207-209 | Share

ANALYSIS OF TRENDS OF HYPERTENSIONS RELATING TO THE LEAVES AND CALCULATIONS IN BLOOD IN EMPLOYEE AND RECOVERY: CASE STUDY IN PLACE OF FINAL DISPOSAL (FD) MEDAN - MARELAN.
Muharni Saputri, Urip Harahap, Muchlisam Muchlisam
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22360
Pages: 210-214 | Share

DIFFERENCES IN THE EFFECTS OF 0.05% AND 0.1% PROPOLIS FLAVONOIDS ON IN VITRO BIOFILM FORMATION BY STREPTOCOCCUS MUTANS FROM CHILDREN’S DENTAL PLAQUE
Agnes Linggriani, Mochamad Fahlevi Rizal, Eva Fauziah, Margarethia Suharsini
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22521
Pages: 215-218 | Share

ADHERENCE LEVEL AND BLOOD SUGAR CONTROL OF TYPE 2 DIABETES MELLITUS PATIENTS WHO GETS COUNSELING AND SHORT MESSAGES SERVICE AS REMINDER AND MOTIVATION
Wirawan Adikusuma, Nurul Qiyaam
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22988
Pages: 219-222 | Share

ANTIBACTERIAL AND ANTIOXIDANT ACTIVITY OF LEUCAS ASPERA FLOWERS FROM BIHAR, INDIA.
Gulnaaz Sabri, Vimala Y
ANTIMICROBIAL ANALYSIS OF DIFFERENT PARTS EXTRACT IN DIFFERENT SOLVENT SYSTEM OF A WASTE WEED - CALOTROPIS PROCERA

Dattatreya Kar, Pratap Keshari Pattanaik, Bibhudutta Pattnaik, Ananya Kuanar

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21081

Pages: 227-230 | Share

VALIDATION OF THE QUANTITATION METHODS OF 1-(B-PHENYLETHYL)-4-AMINO-1,2,4-TRIAZOLE BROMIDE SUBSTANCE BY SPECTROPHOTOMETRIC METHOD

Kucherenko Lyudmila Ivanovna, Parniuk Natalia Viktorovna, Khromylova Olga Vladimirovna

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22740

Pages: 231-234 | Share

EVALUATION OF AQUEOUS AND ETHANOLIC EXTRACTS OF SYZYGIUM CARYOPHYLLATUM FOR ANTIBACTERIAL ACTIVITIES

Raghunath Pendru, Jagan Nadipelly, Jyothinath Kothapalli, Subbannayya Kotigadde

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21687

Pages: 235-237 | Share

EVALUATION OF ANTIRADICAL SCAVENGER ACTIVITY OF EXTRACT AND COMPOUNDS FROM ETLINGERA CALOPHRYS STEMS

Sahidin I, Wahyuni Wahyuni, Muh Hajrul Malaka, Jabbar A, Imam Imran, Marianti A Manggau

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22535

Pages: 238-241 | Share

A STUDY ON ANTIMICROBIAL SENSITIVITY AND COST ANALYSIS OF ANTIBIOTICS IN PEDIATRIC UNIT AT A TERTIARY CARE HOSPITAL.

Alan Kurian, Aswini V, Shiva Ranjini B, Jerry Davis M, Rama P, Vadivel Vinoth

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21075

Pages: 242-251 | Share

SCREENING OF ANTIBACTERIAL ACTIVITY OF FIVE DIFFERENT SPICES (AJWAIN, CORIANDER, CUMIN, FENNEL, AND FENUGREEK) AGAINST PATHOGENIC BACTERIAL STRAINS

Salma S, Lalitha Ramakrishnan, Vinothini J

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22652

Pages: 252-254 | Share

STUDY OF THE ANTIDEPRESSANT ACTIVITY OF FOLIC ACID AND VITAMIN-D ON RESERPINE INDUCED DEPRESSION IN MICE.

Borah L, Lahkar M, Dasgupta S

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.20408

Pages: 255-259 | Share

SCREENING AND CONFIRMATION OF DIFFERENT SYNTHETIC ADULTERANTS IN SLIMMING PRODUCTS

Sajad Fakhri, Bahareh Mohammadi, Ronak Jalili, Marziyeh Hajialyani, Gholamreza Bahrami

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22516

Pages: 260-264 | Share
SOCIO-EPIDEMIOLOGICAL EVALUATION OF TUBERCULOSIS AND IMPACT OF PHARMACEUTICAL CARE ON MEDICATION ADHERENCE AMONG TUBERCULOSIS PATIENTS

Arathi Thomas, Joyal Joy, Alan Kurian, Sivakumar V

Abstract

Pages: 265-268 | Share

PHYTOCHEMICAL STUDIES AND HIGH-PERFORMANCE THIN-LAYER CHROMATOGRAPHY ANALYSIS OF CALAMUS ROTANG LINN LEAF EXTRACTS

Pallavi Y, Hemalatha Kp

Abstract

Pages: 269-275 | Share

OREOCALLIS GRANDIFLORA PHOTOPROTECTIVE EFFECT AGAINST ULTRAVIOLET B RADIATION-INDUCED CELL DEATH

Vinueza D, Cajamarca D, Acosta K, Plco G

Abstract

Pages: 276-280 | Share

COST-EFFECTIVENESS OF HLA-B*5701 PROSPECTIVE GENETIC SCREENING OF HYPERSENSITIVITY TO ABACAVIR

Kubaeva M B, Gushchina J Sh, Loskutova E E

Abstract

Pages: 281-283 | Share

ROLE OF SERUM LIPIDS IN GALLSTONE PATHOGENESIS: A CASE–CONTROL STUDY FROM PUNJAB

Apinder Kaur, Amandeep Kaur, Satbir Kaur

Abstract

Pages: 284-288 | Share

PHYLOGENETIC CHARACTERIZATION OF LISTERIA MONOCYTOGENES ISOLATED FROM DIFFERENT SOURCES IN IRAQ

Maitham Ghaly Yousif, Ataa Khalil Al-Shamari

Abstract

Pages: 289-292 | Share

STUDY OF CHRONIC EFFECTS OF VARYING DOSAGE OF X-RAYS ON HEPATOTOXICITY IN WISTAR ALBINO RATS

Debajit C, Reshma K, Sudha K, Chiranth Chiranth, Rahul Rahul, Charu Yadav, Rajalaxmi Rai

Abstract

Pages: 293-296 | Share

INVESTIGATING THE FREQUENCY OF OCCUPATIONAL EXPOSURE IN DENTISTRY STUDENTS OF AHVAZ JUNDISHAPUR UNIVERSITY OF MEDICAL SCIENCES IN SOUTHWEST OF IRAN

Abdolreza Gilavand, Mohammad Shooriabi, Mehrnoosh Malakootian

Abstract

Pages: 297-299 | Share

ASSESSMENT OF THE STATUS OF PRIVATE AND NON-GOVERNMENTAL PHARMACEUTICALS SUPPLY WAREHOUSES IN GAZA STRIP, PALESTINE.

Mohammed Tabash, Mazer Abuqamar
NEW COMBINATION SUPPOSITORIES OF LORNOXICAM AND ALOIN FOR RHEUMATOID ARTHRITIS
Ashti M H Saeed, Maryam H Alaayedi, Athmar Dh H Alshohani
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22639
Pages: 300-307 | Share

THE POSSIBLE ROLE OF RENALASE ENZYMES IN CARDIOVASCULAR COMPLICATIONS IN CHRONIC KIDNEY DISEASE PATIENTS
Zainab A A Al-Shamma
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22921
Pages: 308-312 | Share

THE EFFECT OF COPROCESSED SUPERDISINTEGRANTS RATIO (CROSPOVIDONE-SODIUM STARCH GLYCOLATE) TO THE PHYSICOCHEMICAL CHARACTERISTICS OF ATENOLOL ORALLY DISINTEGRATING TABLETS
Nani Parfati, Karina Citra Rani, Meilany Meilany
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22778
Pages: 313-317 | Share

PHARMACOGNOSTIC STANDARDIZATION OF STEMS OF VANDA ROXBURGHII ROXB.
Hayat M Mukhtar, Vandna Kalsi
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22603
Pages: 325-328 | Share

FLAXSEED OIL ALONE AND AS AN ADJUVANT WITH PHENYTOIN IN MES-INDUCED SEIZURES IN ALBINO RATS
Rahul H Damodar, Suneel Kumar Reddy, Malvika Goyal, Pradeep B E
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22545
Pages: 329-332 | Share

ANTIBACTERIAL EFFECT OF VIRGIN COCONUT OIL ON (ACTINOMYCES SP.) THAT CAUSES DENTAL BLACK STAIN IN CHILDREN
Priscilla Lavine, Eva Fauziah, Mohamad Fahlevi Rizal, Sarw orini Bagio Budiardjo
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23199
Pages: 333-335 | Share

PHYTOCHEMICAL AND CYTOTOXIC INVESTIGATIONS OF THE HEARTWOOD OF CAESALPINIA SAPPAN LINN
Chuleeporn Ngernnak, Paw aret Panyajai, Songyot Anuchapreeda, Weerah Wongkham, Aroonchai Salai
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22903
Pages: 336-339 | Share

EFFECTS OF A PROBIOTIC MILK DRINK ON SALIVARY TUMOR NECROSIS FACTOR-ALPHA IN CHILDREN WITH ACUTE LYMPHOBLASTIC LEUKEMIA IN THE INDUCTION PHASE
Jennifer Surja Pariaputra, Sarw orini Bagio Budiardjo, Margaretha Suharsini
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23242
Pages: 340-343 | Share
HIGH-PERFORMANCE THIN-LAYER CHROMATOGRAPHY FINGERPRINT PROFILE OF BAUHINIA TOMETOSA LINN. LEAVES
Balabhaskar R, Vijayalakshmi K
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23294
Pages: 344-349 | Share

PHYTOCHEMICAL EVALUATION OF TILIACORA RACEMOSA COLEBR. USING GAS CHROMATOGRAPHY - MASS SPECTROMETRY (GC-MS)
Yogeshwari C, Kumudha P
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23361
Pages: 350-353 | Share

EVALUATION OF THE ANTIMALARIAL POTENTIAL OF STREPTOMYCES SP.
Sweetline C, Usha R
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.21230
Pages: 354-358 | Share

THE RELATIONSHIP BETWEEN LENS OPACITIES AND COLOR DISCRIMINATION ABILITY IN CATARACT PATIENTS
Alie Solahuddin, Theodorus Theodorus, Dian Ariani
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22384
Pages: 359-362 | Share

EFFECT OF SUPPLEMENTATION KAYU MANIS (CINNAMOMUM BURMANNII) EXTRACT IN NEURONAL CELL DEATH PROTECTION IN WISTAR RATS LIR-Psychotic on Haloperidol Therapy
Radiyati Umi Partan, Rachmat Hidayat, Mgs Irsan Saleh, Nita Parisa, Na Saviti Tamzil
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22024
Pages: 363-365 | Share

ASSOCIATION OF SELECTED RISK FACTORS OF CORONARY HEART DISEASE WITH LIPID PROFILE
Trilochan Sahu, Lipilekha Patnaik, Venkata Rao E, Subhashree Ray, Sandeep Kumar Panigrahi
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22667
Pages: 366-369 | Share

FORMULATION OF HAJRAL YAHUD PISHTI AND ITS IN VITRO ANTIUROLITHIATIC EFFECT
Chhaya Kumari, Dileep Singh Baghel, Birlakesh Kumar, Saurabh Singh
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23385
Pages: 370-378 | Share

IDENTIFICATION OF FATTY ACIDS IN SACHA INCHI OIL (CURSIVE PLUKENETIA VOLUBILIS L.) FROM ECUADOR
Carrillo W, Quinteros Mf, Carpio C, Morales D, Vásquez G, Álvarez M, Silva M
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.15515
Pages: 389-381 | Share

CHIA PROTEIN CONCENTRATE (SALVIA HISPANICA L.) ANTI-INFLAMMATORY AND ANTIOXIDANT ACTIVITY
CÁrdenas M, Carpio C, Welbaum J, Vilcacundo E, Carrillo W
Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.17225
CONTENT OF NUTRIENTS COMPONENT AND FATTY ACIDS IN CHIA SEEDS (SALVIA HISPANICA L.) CULTIVATED IN ECUADOR

Cardenas M, Carpio C, Morales D, Álvarez M, Silva M, Carrillo W

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.17096

Pages: 387-390 | Share

FATTY ACIDS CONTENT IN UNGURAHUA OIL (OENOCARPUS BATAUA) FROM ECUADOR. FINDINGS ON ADULTERATION OF UNGURAHUA OIL IN ECUADOR

Carrillo W, Carpio C, Morales D, Álvarez M, Silva M

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.16967

Pages: 391-394 | Share

FATTY ACIDS COMPOSITION OF TOCTE (JUGLANS NEOTROPICA DIELS) WALNUT FROM ECUADOR

Vilcacundo E, Alvarez M, Silva M, Carpio C, Morales D, Carrillo W

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.16344

Pages: 395-398 | Share

FATTY ACIDS CONTENT OF KAHAI (CARYODENDRON ORINOCENSE KARST) SEEDS CULTIVATED IN AMAZONIAN OF ECUADOR

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.16109

Pages: 399-402 | Share

CHARACTERIZATION OF FATTY ACIDS IN SAMBO OIL (CUCURBITA FICIFOLIA L.) FROM ECUADOR

Carrillo W, Carrillo C, Carpio C, Morales D, Vilcacundo E, Alvarez M, Silva M

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.15545

Pages: 403-406 | Share

SYNTHESIS AND EVALUATION OF SOME MANNICH BASES OF QUINAZOLINONE NUCLEUS

Priya D, Srimathi R, Anjana Gv

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.22644

Pages: 407-409 | Share

DYSLIPIDEMIA AMONG THE ELDERLY IN SLUMS OF WEST DELHI

Zaozianlungliu Gonmei, Supriya Dwivedi, Gurudayal Singh Toteja, Karuna Singh, Naval Kishore Vikram, Priyanka Gupta Bansal, Suman Rathore

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.24034

Pages: 410-412 | Share

ANALGESIC AND ANTI-INFLAMMATORY ACTIVITY OF VARIOUS EXTRACTS OF CLAUSENA DENTATA (WILLD.) ROEM

Raju Kamaraj, Annamalai Maduram

Abstract || View PDF || Download PDF || DOI: 10.22159/ajpcr.2018.v11i2.23681

Pages: 413-416 | Share

SINGLE-NUCLEOTIDE POLYMORPHISMS OF CALCIUM-SENSING RECEPTOR ENCODING GENE ASSOCIATED WITH CALCIUM KIDNEY STONE DISEASE IN BABYLON PROVINCE
A COMPARISON BETWEEN INTRA-ARTICULAR 0.2% ROPIVACAINE AND 0.25% BUPIVACAINE FOR POST-OPERATIVE ANALGESIA FOLLOWING DAY-CARE ARTHROSCOPIC KNEE SURGERIES

Sai Kaushik P H, Shaila S Kamath, Surendra U Kaminuath

ASSOCIATION BETWEEN MATERNAL SERUM VITAMIN D AND EARLY PREGNANCY SPONTANEOUS ABORTION IN IRAQI WOMEN

Ashwaq Kadhim Mohammed, Vian Hussam Almansl Alqani

ASSOCIATION OF INTERLEUKIN-4 CYTOKINE AND IL-4RΑ GENE POLYMORPHISM IN Β-LACTAM ALLERGIC PATIENTS

Manal M Khadhim, Dhuha A Hassan

CLINICAL OUTCOMES OF USE OF HYDROXYCHLOROQUINE IN PARADOXICAL TUBERCULOSIS-IMMUNE RECONSTITUTION INFLAMMATORY SYNDROME IN HIV-INFECTED PATIENTS.

Pramod Kumar A, Parthasarathi G, Moths Sn, Sudheer Ap, Vht Swamy, Sri Rama
THE EFFECT OF COPROCESSED SUPERDISINTEGRANTS RATIO (CROSPOVIDONE-SODIUM STARCH GLYCOLATE) TO THE PHYSICOCHEMICAL CHARACTERISTICS OF ATENOLOL ORALLY DISINTEGRATING TABLETS

NANI PARAFATI, KARINA CITRA RANI*, MEILANY
Department of Pharmaceutics, UBAYA College of Pharmacy, University of Surabaya, Kalirungkut, Surabaya 60293, East Java, Indonesia.
Email: karinacitraran@staff.ubaya.ac.id

ABSTRACT

Objective: The objective of this study was to evaluate the effect of coprocessed superdisintegrants (crospovidone-sodium starch glycolate) ratio 1:1; 1:2; and 1:3 to the physicochemical characteristics of atenolol orally disintegrating tablets.

Methods: Orally disintegrating tablets of atenolol were prepared by direct compression method. There were three formulas which using three different ratios of coprocessed superdisintegrants (crospovidone-sodium starch glycolate). The ratio of coprocessed superdisintegrants were, 1:1 (formula 1); 1:2 (formula 2); and 1:3 (formula 3). Evaluation of the formulas was conducted before compression (pre-compression evaluation) and after compression (post-compression evaluation).

Results: The results of pre-compression evaluation showed that all the formulas have good flowability and excellent angle of repose. The results of post-compression evaluation showed that all the formulas met the specification of orally disintegrating tablets. The different ratio of coprocessed crospovidone-sodium starch glycolate (1:1; 1:2; and 1:3) caused significant differences in tablet dispersion time (p<0.05). Dissolution test showed that all the formulas met the specification of dissolution from atenolol tablet (not <85% of atenolol was dissolved in 30 min). Formula 1 showed the highest dissolution efficiency (92.91±0.11)% and area under the curve value (11149.13±13.15) compared to formula 2 and formula 3.

Conclusion: The results from this study showed that coprocessed superdisintegrants (crospovidone-sodium starch glycolate) ratio affect the physicochemical characteristics of atenolol orally disintegrating tablet. Based on pre-compression evaluation and post-compression evaluation, formula 1 was the best formula.

Keyword: Coprocessed, Superdisintegrants, Atenolol, Orally disintegrating tablets.

INTRODUCTION

Hypertension is the most common cardiovascular disease, its prevalence increases with advancing age. Hypertension is the principal cause of stroke, moreover, hypertension is a major risk factor for prevalence increases with advancing age. Hypertension is the principal cause of stroke, moreover, hypertension is a major risk factor for coronary artery disease and its complications. Atenolol is a competitive beta (1) -selective adrenergic antagonists and has been widely used in hypertension therapy [1]. Administration of conventional tablets of atenolol has been reported to exhibit poor patient compliance in geriatric patients. It is due to physiological and neurological changing which has been suffered by geriatric patients, such as difficulty of swallowing (dysphagia), hand tremors, and deficiency of memory [2].

Atenolol has a low solubility characteristic in water and gastric fluid [3]. For poorly soluble orally administered drugs, the rate of absorption is often controlled by the rate of dissolution. The rate of dissolution can be increased by increasing the surface area of available drug by various methods (micronization, complexation, solid dispersion, etc.). Another prerequisite for the fast dissolution may be the disintegration time of tablets. The faster disintegration of tablets delivers a fine suspension of drug particles, and thus, faster onset of dissolution and greater dissolution of the drug will be attained [4].

Based on these facts, the development of atenolol orally disintegrating tablets is the solution to improve the effectiveness of the drug and patient compliance in hypertension therapy. Orally disintegrating tablets disintegrate rapidly in the oral cavity so that the drug will be imbibed from the oral cavity, throat, and esophagus when the saliva move toward to the stomach [5]. Orally disintegrating tablets are novel types of tablets that disintegrate/dissolve/disperse in saliva within few seconds. This result in a rapid onset of action and greater bioavailability of the drug than those observed from a conventional tablet dosage form [6]. US FDA stated that orally disintegrating tablet is a tablet which disintegrates in oral cavity <30 s [7]. Orally disintegrating tablet also can minimize or eliminate the bitter taste of the drug or patient inconvenience [8].

In recent year drug formulation scientist has recognized that single-component excipients do not always provide the desired performance to allow certain active pharmaceutical ingredients to be formulated or manufactured adequately. Hence, there is a need to have excipient with multiple characteristics built into them such as better flow, low moisture sensitivity, superior compressibility, and rapid disintegration ability [9]. One such approach for improving the functionality of excipients is coprocessing of two or more excipients. Coprocessing is based on the novel concept of two or more excipients interacting at the sub particle level [8]. The objective of preparing coprocessed excipient is to provide a synergy of functionality improvement as well as masking the undesirable properties of the individual component. Coprocessing excipients have superior properties compared with physical mixtures of components or individual components [9].

Drug delivery technologies such as orally disintegrating tablets need fast disintegrate with very good mouth feeling and physical characteristics [10]. Superdisintegrants are the class of compound which primarily aid in the rapid disintegration of orally disintegrating tablets.
tablets in the oral cavity. This class of disintegrants has been shown to be effective at excipient concentration as low as 2–10% [11]. Although the superdisintegrants primarily affect the rate of disintegration, when used at high levels it can also affect flowability of the powder, mouthfeel, tablet hardness, and friability [10]. One of the ways to overcome this problem is using a coprocessed superdisintegrants in orally disintegrating tablet formulation.

The widely used superdisintegrants are crospovidone, sodium starch glycolate, and croscarmellose sodium [12]. In the present investigation, the preparation and evaluation of atenolol orally disintegrating tablets using coprocessed superdisintegrants containing crospovidone and sodium starch glycolate were studied. The novelty of this study was the development of orally disintegrating tablets of atenolol using coprocessed crospovidone-sodium starch glycolate. Crospovidone was selected due to its high capillary activity, pronounced hydration capacity, and little tendency to form gels. Sodium starch glycolate was chosen due to its high swelling capacity. A combination of two types of superdisintegrants using coprocessed method can increase the flowability and compressibility of the powder mixture. Moreover, formulating orally disintegrating tablet using coprocessed superdisintegrants increase water uptake ratio with shortest wetting time and thereby decrease the disintegration time of the tablets by direct compression technique [8]. Ratio of crospovidone and sodium starch glycolate in coprocessed excipient influenced the physicochemical characteristics of orally disintegrating tablets. In this study, coprocessed superdisintegrants were prepared by three different ratios of crospovidone-sodium starch glycolate (1:1; 1:2; and 1:3). The effect of different ratio of superdisintegrants has been evaluated to the pre-compression parameter and post-compression parameter of orally disintegrating tablets.

Materials and Methods

Materials

Materials that were used in this study consists of atenolol p.g (Refarmed Chemicals, Lugano Switzerland), crospovidone (Kollidon® CL) p.g (BASF South East Asia Pre-Ltd), sodium starch glycolate p.g (Yung Zip Chemical INDI.CO.LTD), magnesium stearate p.g (Faci Asia Pacific PTE LTD), aspartame f.g (Ajinomoto Co. Inc.), aqua demineralisata (Laboratorium of qualitative chemistry, University of Surabaya), mannitol DC p.g (Roquette Freres, Perancis), aerosil p.g (PT. Brataco), and Whatman filter paper no 41.

Methods

Preparation of co-processed superdisintegrants (crospovidone-sodium starch glycolate)

The coprocessed superdisintegrants were prepared by solvent evaporation method [4]. Crospovidone and sodium starch glycolate (in the ratio of 1:1, 1:2, and 1:3) were blended in tumbling mixer. The powder then placed in beaker glass, and 50 ml of ethanol were added to the powder. This mixture was mixed thoroughly and stirring using a magnetic stirrer for 2 h. After stirring process, the mixture was placed in a water bath (60°C for 2 h) until ethanol was evaporated. Wet granule mass was sieved through #40 mesh, then wet granules were dried in a hot air oven at 60°C for 20 min. The dried granules were sieved through #40 mesh and stored in airtight container and protected from light for further use.

Preparation of powder mixture

Preparation of powder mixture of compression was performed by mixing the component in Table 1. Formula 1 using coprocessed crospovidone-sodium starch glycolate (1:1), formula 2 using coprocessed crospovidone-sodium starch glycolate (1:2), and formula 3 using coprocessed crospovidone-sodium starch glycolate (1:3). Atenolol and a half of Aerosil 200® mixed for 3 min using the tumbling mixer to decrease the electrostatic tendency of atenolol. This mixture then premixed with a portion of Avicel PH 102®. After that, the mixture was mixed thoroughly with coprocessed crospovidone-sodium starch glycolate, Avicel PH 102®, mannitol DC, aspartame, and mint flavor for 10 min in tumbling mixer. The powder mixture then was evaluated before compression (pre-compression test). After the pre-compression test, the powder mixture was mixed with talc, magnesium stearate, and Aerosil 200® for 3 min.

Pre-compression evaluation

Before compression, the powder mixture from each formula was evaluated by several parameters such as flowability, angle of repose, bulk density, tapped density, compressibility, Hausner ratio, and moisture content.

Flowability and angle of repose

Flowability and angle of repose were determined using the fixed funnel method. The powder mixture (± 100 g) was poured through a funnel that can be raised vertically to a maximum cone height (h) was obtained [4]. The radius of the heap (r) was measured, and the angle of repose (θ) was calculated using the formula:

\[
\tan \theta = \frac{h}{r}
\]

Time for the powder mixture to fall down through a funnel was used to calculate fluidity of the powder.

Bulk density

Bulk density of powder mixture was determined by pouring the powder into a graduated cylinder. The bulk volume (Vb) and weight of the blend (m) were determined. The bulk density was calculated by this equation [6,8]

\[
\text{Bulk density} = \frac{m}{V_b}
\]

Where,

m= Mass of powder mixture

Vb=Bulk volume of the powder

Tapped density

Tapped density of the powder mixture was determined using tapping machine. Tapped density is the ratio of the total mass of the powder (m) to the tapped volume of the powder (Vt). Volume was measured by tapping the powder for 500 times. The volume was read every 100 intervals [6,8]. Tapped volume was noted if the volume did not show a difference between two tapping intervals.

\[
\text{Tapped density} = \frac{m}{V_t}
\]

Where,

m= Mass of powder mixture

Vt=Tapped volume of the powder

Compressibility

Compressibility index is one of the methods to evaluate compressibility of the powder and flow property. Compressibility index can be calculated by comparing the bulk density (Db) and tapped density (Dt) of the powder [13].

\[
\text{Compressibility index} = \frac{D_t - D_b}{D_t} \times 100
\]

Where,

Dt is the tapped density of the powder

Db is the bulk density of the powder
Hausner ratio

Hausner ratio is an indirect index to predict powder flow [4,13]. Hausner ratio can be calculated by following formula:

\[
\text{Hausner ratio} = \frac{D_t}{D_b}
\]

Where,
- \(D_t\) is the tapped density of the powder
- \(D_b\) is the bulk density of the powder

Lower Hausner ratio (<1.25) indicates better flow than the higher ones (>1.25).

Moisture content analysis

The moisture content of the powder was set by analyzing around 5 grams of the powder. This evaluation was conducted using the moisture content analyzer. The moisture content of the powder can be calculated using this equation:

\[
\%MC = \frac{W - W_0}{W_0} \times 100\%
\]

Where,
- \(W\) is the weight of wet mass
- \(W_0\) is the weight of dry mass

Preparation of atenolol orally disintegrating tablets

Orally disintegrating tablets of atenolol were prepared by direct compression method [5]. After pre-compression evaluation, the powder mixture was prepared for tableting process. Tableting process was conducted by compress the powder mixture using the Erweka® compression machine. The powder was compressed into 300 mg tablet using 11 mm flat punches.

Post-compression evaluation

Evaluation was done to the atenolol orally disintegrating tablets of all formulations considering following parameters such as organoleptic, drug content uniformity, dimension, hardness, friability, wetting time, water absorption ratio, in vitro dispersion time, disintegration, and dissolution.

Organoleptic

Visual inspection was conducted to atenolol orally disintegrating tablets. Visual inspection consisted of color, shape, and taste of the tablets.

Drug content uniformity

The content uniformity test was carried out to ensure the homogeneity of atenolol in each tablet. Content uniformity of atenolol in orally disintegrating tablet was made out by sampling randomly 20 tablets from each formula, and then these tablets were weighed and triturated in a mortar. The powder equivalent to 25 mg atenolol was weighed accurately and dissolved in 10 ml methanol. The solution transferred to 100 ml volumetric flask and a portion of acetate buffer pH 4.6 was added. The solution was sonicated thoroughly, then acetate buffer pH 4.6 was added to the volumetric flask until 100 ml. The undissolved matter was removed by filtration through Whatman No.41 filter paper. The filtrate was pipetted 10 ml and diluted with acetate buffer pH 4.6.

Disintegration time

Disintegration of atenolol orally disintegrating tablets was conducted using Hanson and Research disintegration tester. The distilled water at 37±0.5°C was used as disintegration media in 900 ml volume. Six tablets were randomly chosen, each tablet was placed in the tube, then the basket rack was positioned in the media. The time for the complete disintegration of the tablet with no palpable mass replaced on the screen was measured in seconds.

Dissolution study

In vitro dissolution study was performed using USP Type II Apparatus (paddle type) at 50 rpm for 120 min. Acetate buffer pH 4.6 was used as a dissolution medium which was maintained at 37±0.5°C. Aliquot (10 ml) was taken at specified time intervals (0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, 105, and 120 min). An equal amount of fresh dissolution medium was replaced immediately following the withdrawal of the
sample. The absorbance of the medium was analyzed using UV-visible, double beam spectrophotometer (Shimadzu UV-1800) at 274 nm. The atenolol concentration which was released to the media was calculated. The data presented is the average of 6 determinations. A dissolution profile for each formula was plotted, and dissolution parameters such as %Q, TQ%, AUC, and dissolution efficiency (ED) were determined.

RESULTS AND DISCUSSION

Preparation of co-processed superdisintegrants (crosopovidone-sodium starch glycolate)

Coprocessed superdisintegrants were prepared by the solvent evaporation method. Coprocessed superdisintegrant was prepared using crosopovidone-sodium starch glycolate in three different ratios (1:1; 1:2; and 1:3). The result of Fourier-transform infrared (FT-IR) study and differential scanning calorimetry (DSC) study showed that crosopovidone and sodium starch glycolate which was utilized in this study meet the specifications [15]. The results of FT-IR and DSC analysis showed that there was no chemical change between these two superdisintegrants. The results revealed that there was only physical entanglement of crosopovidone and sodium starch glycolate. This condition leads to synergism of these two superdisintegrants [16,17].

Preparation of powder mixture

Three formulas of orally disintegrating tablets of atenolol have been prepared in this study. Powder mixture of orally disintegrating tablets of atenolol were prepared using three different compositions of coprocessed superdisintegrants (Table 1). Crosopovidone was chosen as one of the components of coprocessed disintegrants because it swells very little, spongy in nature, so produce porous tablets, and act by capillary action. Sodium starch glycolate was also chosen because it swells in three dimensions 7–12 folds in <30 s [17]. A directly compressible vehicle such as microcrystalline cellulose (Avicel® PH 102) and mannitol were used as filler. Microcrystalline cellulose was used as filler due to its ability to act as dry binder. Microcrystalline cellulose can improve the compactibility or tableability of the compression mix [18]. Mannitol was used as filler to enhance mouthfeel [19]. Mannitol also improve patient compliance by imparting a cool sensation and sweet mild taste. Directly compressible mannitol can flow well, so that mannitol improves the flow properties of other materials [20]. Aspartame was used as a sweetener. It enhanced flavor systems and also used as a taste masking agent. The sweetening power of aspartame is approximately 180–200 times to sucrose [20]. Mint flavor was used as a flavoring agent. It can enhance the characteristics, taste, and odor of atenolol orally disintegrating tablets. Magnesium stearate was used as a lubricant, Aerosil® 200 was used as glidant, and talc was used as antiadherent.

Pre-compression evaluation

The results of pre-compression evaluation of atenolol orally disintegrating tablet can be seen in Table 2.

Based on the results of pre-compression parameter, it can be concluded that all formulas (formula 1, formula 2, and formula 3) have good flow velocity. All formulas have flow velocity between 4 and 10 g/s, indicating good flow velocity for direct compression [12]. The flow velocity of the powder blend is essential to predict the ability of powder blend to fulfill the dies during compression stage. The homogeneity of powder flow will produce a low variation of tablet weight [12,13]. Angle of repose has been used to characterize the flow properties of powders.

Angle of repose is a characteristic related to interparticle friction or resistance to movement between particles. The results of angle of repose showed that all formulas exhibited excellent flow properties, because the value of angle of repose was 25°–30° [15]. The compressibility index and Hausner ratio have become the simple, fast, ad popular methods to predict powder flow characteristic and compressibility characteristic. Powder blends of formula 1 categorized as poor flow and compressibility character; moreover, formula 2 and formula 3 can be categorized as passable material for direct compression [15]. Powder blends of formula 1 consist of high fines proportion so that the flow characteristic was poor. Moisture content of powder blend was an essential parameter for direct compression. There was a limitation when the powder blend contains high moisture content. The high moisture content in a powder blend causes the probability of picking during the compression stage become higher. Based on the results in Table 1, it can be seen that the higher sodium starch glycolate proportion in coprocessed superdisintegrants cause the higher moisture content of powder blend. This condition occurred due to sodium starch glycolate is a hygroscopic material [21]. Relative humidity of production room must be controlled during production to obtain desired tablet characteristics. Overall, the results of pre-compression parameter showed that the powder blend was suitable to be developed using direct compression method.

Post-compression evaluation

The compressed tablets were evaluated for physiochemical parameters and dissolution. The results of pre-compression evaluation are tabulated in Table 3.

Atenolol orally disintegrating tablets were produced in this study were white, round shape, no odor, sweet, and mint flavor. Drug content of all formulations was observed between 99.48±0.13% and 99.96±0.51%. Drug content in all formulas met the specification of atenolol content which has been stated in compendia (90.0–110.0%) [15]. Drug content for all formulations showed that the ability of the powder to flow and fulfill the die were uniform [14]. Consequently, this condition caused the uniformity of drug distribution into the tablets. The values of thickness and diameter of the tablet showed uniformity in die fill, good flow properties, and good powder compressibility. All the formulas produce appropriate thickness and diameter dimension of the tablets (Fig. 1).

Wetting time test is not standard USP test, but it is useful for quality control and provides a correlative evaluation to water uptake rates. Unlike the disintegration test, the wetting test uses minimal water, which is representative of the quantity of moisture available in the oral cavity [11]. The wetting time for all the formulated tablets was in the range of 6.67±0.58–7.67±0.58 s. The faster wetting time of the tablets produces better disintegration time. The results of wetting time

Table 1: Formula of atenolol orally disintegrating tablet using coprocessed crosopovidone-sodium starch glycolate

<table>
<thead>
<tr>
<th>Contents</th>
<th>Formula 1 (mg)</th>
<th>Formula 2 (mg)</th>
<th>Formula 3 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atenolol</td>
<td>25</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Crosopovidone (CPV)-sodium starch glycolate (SSG)</td>
<td>179.28 (CPV: SSG=1:1)</td>
<td>179.28 (CPV: SSG=1:2)</td>
<td>179.28 (CPV: SSG=1:3)</td>
</tr>
<tr>
<td>Avicel PH 102®</td>
<td>44.82</td>
<td>44.82</td>
<td>44.82</td>
</tr>
<tr>
<td>Mannitol DC</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Aspartame</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mint flavor</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Talk</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Aerosil 200®</td>
<td>179.28</td>
<td>179.28</td>
<td>179.28</td>
</tr>
</tbody>
</table>
showed that atenolol orally disintegrating tablets which were produced in this study have fast wetting time. Moreover, there was no significant difference (p>0.05) of wetting time between formula 1, formula 2, and formula 3. The water absorption ratio test was conducted to predict the amount of water which can be absorbed by orally disintegrating tablets. The higher water absorption ratio describes the higher water which can be trapped in the structure of the tablets. This phenomenon indicates that the amount of water to cause disintegration was higher in the tablets which have a high water absorption ratio. Water absorption ratio of three formulas was founded in the range 37.83±14.55%–273.50±19.43%. Orally disintegrating tablets which have lower water absorption ratio were more preferable to develop. Water absorption ratio of three formulas was more than 100%. This was due to the characteristics of sodium starch glycolate which absorbed water until 200–300 \cite{23,24}. It was observed form the previous study that the disintegration process started by wetting of the tablets \cite{25}. Moreover, wetting time test was necessary to be conducted in the orally disintegrating tablets evaluation. Based on the results of statistical analysis, it can be concluded that there was no significant difference of water absorption ratio among all formulas (p>0.05).

Disintegration study showed that all formulas fulfill the specification which has been stated in compendia (<1 min) \cite{7}. There was a significant difference of disintegration time between three formulas. The increased of sodium starch glycolate proportion in coprocessed superdisintegrants crospovidone-sodium starch glycolate, caused the disintegration time of the tablets became slower. Each superdisintegrants has a different characteristic in terms of wicking and disintegration. Crospovidone is a cross-linked homopolymer of N-vinyl-2-pyrrolidone which has good water wicking characteristics and smaller disintegration times due to hydrophilic pores created in compression \cite{11,12}. Contrary, sodium starch glycolate at high concentrations has tendency to coagulate and swell in the presence of water. This condition can create a wicking barrier and reduce the disintegration times of atenolol orally disintegrating tablet \cite{11,12}.

In vitro dispersion time test was conducted to predict the ability of orally disintegrating tablets to disintegrate in small volumes of saliva (±6 ml). This test condition described the factual condition in the oral cavity. In vitro dispersion study explained that there was a significant difference of in vitro dispersion time between formula 1 and formula 2 (p<0.05), also formula 1 and formula 3 (p<0.05). There was a decrease of in vitro dispersion time with successive increases of sodium starch glycolate concentration in coprocessed superdisintegrants. Formula 1 had the lowest in vitro dispersion time (23.67±3.21 s). Based on this fact, it can be concluded that formula 1 dispersed in the mouth quickly and released the drug early as compared to other formulas \cite{6}.

The tablet must have good integrity and mechanical resistance during production and distribution process. Hardness test was carried out with all formulas, and the results showed suitable hardness for orally disintegrating tablets. The hardness of atenolol orally disintegrating tablets was found to be in the range of 2.40–3.50 kg. The specification of tablet hardness in orally disintegrating tablets is 2.0–4.0 kg \cite{6,12}. The results of friability and abrasion test revealed that atenolol orally disintegrating tablets which have been made in this study was within 1%, and was in the range of 0.20–0.44%. These results indicate that all formulations have good physical strength and can withstand the mechanical shocks which can be observed during handling, shipping, and transportation \cite{19}.

In vitro dissolution study was conducted in a USP apparatus 2, paddle method using acetate buffer pH 4.6 as dissolution medium. Paddle speed was maintained at 50 rpm during this study. Samples were collected at predetermined time intervals and replaced with an equal volume of fresh medium. The collected samples, then analyzed using UV-VIS spectrophotometer. The dissolution profile of atenolol orally disintegrating tablet formula 1, formula 2, and formula 3 can be seen in Fig. 2. Based on this dissolution profile, several dissolution parameters can be calculated. The results of dissolution parameters are shown in Table 3: The results of post-compression evaluation of atenolol orally disintegrating tablets (formula 1, formula 2, and formula 3).

Fig. 1: Atenolol orally disintegrating tablet

Table 2: The results of pre-compression evaluation of powder blend (formula 1, formula 2, and formula 3)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Formulation code</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow velocity (g/s)</td>
<td></td>
<td>6.32±0.07</td>
<td>5.56±0.00</td>
<td>5.56±0.00</td>
</tr>
<tr>
<td>Angle of repose (%)</td>
<td></td>
<td>29.25±0.00</td>
<td>27.9±0.62</td>
<td>25.74±0.78</td>
</tr>
<tr>
<td>Carr’s index (%)</td>
<td></td>
<td>29.15±0.22</td>
<td>25.1±0.48</td>
<td>23.28±0.50</td>
</tr>
<tr>
<td>Hausner’s ratio</td>
<td></td>
<td>1.41±0.03</td>
<td>1.35±0.09</td>
<td>1.304±0.008</td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td></td>
<td>5.89±0.13</td>
<td>6.00±0.10</td>
<td>6.19±0.19</td>
</tr>
</tbody>
</table>

Table 3: The results of post-compression evaluation of atenolol orally disintegrating tablets (formula 1, formula 2, and formula 3)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organoleptic</td>
<td>White, round shape, no odor, sweet, and mint flavor</td>
<td>White, round shape, no odor, sweet, and mint flavor</td>
<td>White, round shape, no odor, sweet, and mint flavor</td>
</tr>
<tr>
<td>Assay (%)</td>
<td>99.48±0.13</td>
<td>99.48±0.51</td>
<td>99.96±0.51</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>11.1±0.00</td>
<td>11.1±0.00</td>
<td>11.1±0.00</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>4.0±0.10</td>
<td>3.8±0.10</td>
<td>3.8±0.10</td>
</tr>
<tr>
<td>Wetting time (s)</td>
<td>6.67±0.58</td>
<td>7.00±0.00</td>
<td>7.67±0.58</td>
</tr>
<tr>
<td>Water absorption ratio (s)</td>
<td>237.83±14.55</td>
<td>258.75±3.98</td>
<td>273.50±19.43</td>
</tr>
<tr>
<td>Hardness (kg)</td>
<td>3.50±15.06</td>
<td>2.15±11.23</td>
<td>2.40±0.46</td>
</tr>
<tr>
<td>Disintegration time (s)</td>
<td>6.00±0.00</td>
<td>7.00±0.00</td>
<td>54.3±0.04</td>
</tr>
<tr>
<td>Dispersion time (s)</td>
<td>23.67±3.21</td>
<td>54.30±4.04</td>
<td>55.00±3.60</td>
</tr>
<tr>
<td>Friability (%)</td>
<td>0.25±0.09</td>
<td>0.20±0.09</td>
<td>0.25±0.09</td>
</tr>
<tr>
<td>Abrasion (%)</td>
<td>0.25±0.09</td>
<td>0.44±0.15</td>
<td>0.40±0.17</td>
</tr>
</tbody>
</table>
Table 4: Dissolution parameters of atenolol orally disintegrating tablet formula 1, formula 2, and formula 3

<table>
<thead>
<tr>
<th>Formula</th>
<th>TQ% (min)</th>
<th>% Q</th>
<th>AUC (% m)</th>
<th>ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula 1</td>
<td>1.70±0.01</td>
<td>92.75±0.00</td>
<td>11149.13±13.15</td>
<td>92.91±0.11</td>
</tr>
<tr>
<td>Formula 2</td>
<td>1.93±0.04</td>
<td>93.27±0.64</td>
<td>11023.51±9.62</td>
<td>91.87±0.08</td>
</tr>
<tr>
<td>Formula 3</td>
<td>1.69±0.05</td>
<td>91.85±1.70</td>
<td>11001.15±11.04</td>
<td>91.68±0.01</td>
</tr>
</tbody>
</table>

ED: Dissolution efficiency, AUC: Area under curve

Fig. 2: Dissolution profile of atenolol orally disintegrating tablet formula 1, formula 2, and formula 3 (formula 1, formula 2, and formula 3)

Table 4. The dissolution parameters consist of specified time for drug dissolved (TQ%), the amount of the drug dissolved in a specified time interval (%Q), area under curve (AUC), and ED. Dissoiuion requirement of atenolol tablets in the 1st stage (S1) is more than 85% of atenolol must be dissolved in the dissolution medium at 30 min. All formulas that have been carried out in this study meet the specification.

There was a significant difference of AUC value and ED among all formulas (p<0.05). The results showed that formula 1 had the highest AUC value and ED. Dissolution efficiency of formula 1 folded 1.01 compared to formula 2 and formula 3. The increased of sodium starch glycolate proportion in coprocessed superdisintegrants caused inhibition of atenolol release from orally disintegrating tablets. The higher proportion of sodium starch glycolate in orally disintegrating tablets can produce a thick gel layer so that the release of the drugs from the tablets will be inhibited.

The dissolution profiles of orally disintegrating tablets of atenolol using coprocessed crospovidone-sodium starch glycolate showed better dissolution compare to the dissolution profile of orally disintegrating tablets of atenolol using single component of superdisintegrants. TQ% of orally disintegrating tablets of atenolol which are using single component of superdisintegrant were 12 min, moreover, TQ% of orally disintegrating tablets of atenolol from this formulation were approximately 1.69–1.93 min [6]. Based on post-compression data, it can be revealed that there was an inverse correlation between disintegration time and ED (r>0.9). The faster disintegration time produced high ED of atenolol. It was due to the onset of dissolution occurred faster in the tablets which had faster disintegration time. In this study, the mechanism of tablet disintegration was influenced by the characteristics of coprocessed superdisintegrants. Such a difference characteristics of superdisintegrants can affect drug dissolution [25]. Coprocessed superdisintegrants rapidly deformed, which leads to the breakdown of the tablet [26]. In addition, water in the hydrophilic pores may also help to break hydrogen bonds present between starch grains and produced heat, both of which may aid in disintegration [11,12].

Coprocessed mixture played an important role in decreasing disintegration time and enhanced the drug release [27].

CONCLUSION

The results from this study showed that coprocessed superdisintegrants (crospovidone-sodium starch glycolate) ratio affect the physicochemical characteristics of atenolol orally disintegrating tablet. Based on pre-compression evaluation and post-compression evaluation, formula 1 which using coprocessed was the best formula. Formula 1 showed the fastest wetting time (6.67±0.58 s), disintegration time (6.02±0.00 s), and in vitro dispersion time (23.67±3.21 s) among all formulas. The faster disintegration time of atenolol orally disintegrating tablets from formula 1 caused a significant impact in dissolution characteristics. Onset of dissolution of formula 1 became faster compared to formula 2 and formula 3. Moreover, ED of formula 1 (92.91±0.11) was higher than formula 2 and formula 3. Based on these facts, it can be concluded that coprocessed superdisintegrants of crospovidone-sodium starch glycolate (1:1) were the best composition to produce atenolol orally disintegrating tablets with desired physicochemical characteristics.

ACKNOWLEDGMENTS

The authors are thankful to KEMENRISTEK DIKTI, Indonesia, for providing research grants in 2017 (No. 24/SP-Lit/LPPM-01/Dikti/FF/N/2017) to execute this research.

AUTHORS CONTRIBUTION

Guidance for the work, dissolution study, data interpretation and corrections, and writing of the manuscript were done by first author Nani Parfati. Experimental design of formulation, consideration of manufacturing process parameter, physico-chemical analysis and characterization, and writing of the manuscript were done by second author Karina Citra Rani. Experimental working, data generation, and reporting of data summary were done by Melilany.

CONFLICT OF INTERESTS

There is no conflict of interests

REFERENCES

11. Mittapalli RK, Qhattal HS, Lockman PR, Yamsani MR. Varying

