International Journal on Advanced Science, Engineering and Information Technology

International Journal on Advanced Science, Engineering and Information Technology (IJASEIT) is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and simulation, as well as applications, with a systematic proposed method, sufficient review on previous works, expanded discussion and concise conclusion. As our commitment to the advancement of science and technology, the IJASEIT follows the open access policy that allows the published articles freely available online without any subscription.

Frequency: 6 issues per year
DOI : 10.18517
ISSN : 2088-5334
e-ISSN : 2460-6952
Important Dates:

- Paper Submission Date: Any time
- Online Publication Date: Last date of February, April, June, August, October, December

New:
- 2020 Acceptance Rate: 14.32% | 2019 Acceptance Rate: 17.85% | 2018 Acceptance Rate: 18.20%
- IJASEIT has launched a new template since Vol. 11 (2021) No. 1 : Template IJASEIT 2021

International Journal on Advanced Science, Engineering and Information Technology is indexed in Elsevier Scopus database

Current Issue

Vol. 11 (2021) No. 1

Articles

Simple Iterative Channel Coding and Modulation for Harbor Wireless Communications

Olyvia Fransiska Andriani, Khoirul Anwar, Nachwan Mufti Adriansyah
pages: 1-11 Full text DOI:10.18517/ijaseit.11.1.11138

Transmit-Receive Subarrays for MIMO Radar Array Antenna

Syahfrizal Tahcfulloh
pages: 12-19 Full text DOI:10.18517/ijaseit.11.1.10631
Editorial Team

Editor in Chief:
Rahmat Hidayat, (Scopus ID: 57191265401) Politeknik Negeri Padang, INDONESIA

Associate Editors:
Taufik, (Scopus ID: 23670809800), California Polytechnic State University, USA
Haitham Alali, (Scopus ID: 49963007000), Amman Arab University, JORDAN
Wan Mohtar Wan Yusoff, (Scopus ID: 15019967700), Univ. Kebangsaan Malaysia, MALAYSIA
Halimah Badioze Zaman, (Scopus ID: 25825801600), Univ. Kebangsaan Malaysia, MALAYSIA
Son Radu, (Scopus ID: 7005251005), Universiti Putra Malaysia, Malaysia, MALAYSIA
Mohd Razi Ismail, (Scopus ID: 25957691400), Universiti Putra Malaysia, MALAYSIA
Takashi Oku, (Scopus ID: 56275094900), Prefectural University of Hiroshima, JAPAN
Kohei Nakano, (Scopus ID: 7402011766), Gifu University, JAPAN
Nurul Huda, (Scopus ID: 6701695514), Universiti Malaysia Sabah, MALAYSIA
Yandra Arkeman, (Scopus ID: 55946558300), Bogor Agriculture University, INDONESIA
Sate Sampattagul, (Scopus ID: 7801640861), Chiangmai University, THAILAND
Peeyush Soni, (Scopus ID: 9248907800), Asian Institute of Technology, THAILAND
Yolanda Lechon Perez, (Scopus ID: 6602826000), CIEMAT, Madrid, SPAIN
Gabriele Arcidiacono (Scopus ID: 56656284600), G. Marconi University, ITALY
Alessandra Pieroni (Scopus ID: 25929524500), Marconi International University, Florida - USA
Nguyen Hay, (Scopus ID: 15834645900) Nong Lam University, VIETNAM
Rita Muhamad Awang, (Scopus ID: 55957782400), Universiti Putra Malaysia, MALAYSIA
Anton S Prabuwono, (Scopus ID: 18134309800), King Abdulaziz Univ, SAUDI ARABIA
P Mangala C S De Silva, (Scopus ID: 7006461145), University of Ruhuna, SRI LANKA
Bich Huy Nguyen, (Scopus ID: 36191086100), Nong Lam University, VIETNAM
Paul Kristiansen, (Scopus ID: 23097563600), University of New England, AUSTRALIA
Amitava Basu, (Scopus ID: 21833738300), Bidhan Chandra Krishit Vidyalaya, INDIA
Shahrul Azman Mohd Noah, (Scopus ID: 35087633200), Universiti Kebangsaan Malaysia, MALAYSIA
Luca Di Nunzio, (Scopus ID: 57195199010), University of Rome Tor Vergata, ITALY
Rocco Fazzolari (Scopus ID:36469997900), University of Rome Tor Vergata, ITALY
Ruben Paul Borg (Scopus ID:55246483600), L-Università ta’ Malta, Msida, Malta

Editors:
Nurhamidah, (Scopus ID: 57191636504), Andalas University, INDONESIA
Editors:
Nurhamidah, (Scopus ID: 57191636504), Andalas University, INDONESIA
Ario Betha Juansilfero, (Scopus ID: 57189369470), Kobe University, JAPAN
Zairi Ismael Rizman, (Scopus ID: 36959761800), Universiti Teknologi MARA (UiTM) (Terengganu) MALAYSIA
Shahreen Kasim, (Scopus ID: 36155431900), Universiti Tun Hussein Onn - MALAYSIA
Chi-Hua Chen, (Scopus ID: 35799698800), National Chiao Tung University, TAIWAN
Aabbr Ismardi, (Scopus ID: 26633102900), Telkom University - INDONESIA
Vol. 8 (2018) No. 3

Articles

Methods to Characterize Fly Ash Quality in the Field

- Triwulan, Khorin Agus Priadana, Januari Jaya Ekaputri
 pages: 646-651 Full text DOI:10.18517/ijaseit.8.3.4312

Finite Element Analysis of Osteosynthesis Miniplate for the Reconstruction of Parasympyseal Compound Fracture

- Muslim Mahardika, Romario Aldrian Wicaksono, Maria Goreti Widiastuti, Budi Arifvianto, - Suyitno
 pages: 652-656 Full text DOI:10.18517/ijaseit.8.3.4465

Neutronic Analysis of a Thorium-Fueled Reduced Moderation Boiling Water Reactor

- Dayu Fajrul Falaakh, Alexander Agung, Andang Widi Harto
 pages: 657-663 Full text DOI:10.18517/ijaseit.8.3.2834

Tobermorite Microstructure Resulted from Reaction of Low Content of Silica of Rice Husk Ash and Quicklime Mixture

- Bakri Bakri
 pages: 664-670 Full text DOI:10.18517/ijaseit.8.3.1892
Identification of Slope Stability Analysis

Ika JuliAntina, Yulindasari Sutejo, Ratna Dewi, Bimo Brata Adhitya, Reffanda Kurniawan Rustam
pages: 671-677 DOI:10.18517/ijaseit.8.3.2685

Preliminary Investigations for Policy Framework to Regulate the Utilisation of Residual Strength of Demolition Waste Aggregate in Cement Concrete Mix

M. R. Raja Shekhar, Reshma. E. K.
pages: 678-684 DOI:10.18517/ijaseit.8.3.4175

Capillary Shock Phenomenon of Groundwater at the Beginning of Rainy Season

Darwis Panguriseng, Abd. Rakhim Nanda
pages: 685-693 DOI:10.18517/ijaseit.8.3.3818

Conversion of Polypropylene Plastic Waste Into Liquid Fuel with Catalytic Cracking Process Using Al2O3 as Catalyst

Devi Rachmadena, Muhammad Faizal, Muhammad Said
pages: 694-700 DOI:10.18517/ijaseit.8.3.2586

Farm Machinery Development and Utilization System Policies for Small-Scale Rice Farming

Ujang Paman, Saipul Bahri, - Asrol, - Khairizal, Hajry Arief Wahyudy
pages: 701-707 DOI:10.18517/ijaseit.8.3.1758

Influence of Moisture Content to the Physical Properties of Unhusk Rice Grain

Renny Eka Putri, Santosa Santosa, Muhammad Makky
pages: 708-713 DOI:10.18517/ijaseit.8.3.3455
Parasitizations Levels and Temperature Tolerance of Rice Bug (Leptocorisa oratorius Fabricius) Egg Parasitoids: Mass Rearing for Biological Control

Fri Maulina, Novri Nelly, Hidrayani Hidrayani, Hasmiandy Hamid
pages: 714-719 DOI:10.18517/ijaseit.8.3.1241

Oil-Palm Plantation Identification from Satellite Images Using Google Earth Engine

Supattra Puttinaovarat, Paramate Horkaew
pages: 720-726 DOI:10.18517/ijaseit.8.3.2415

Soil Mounding Practices Towards Yield Performances of Oil Palm on Peat Soil

Shampazuraini binti Samsuri, Husein bin Abdul Gani, Siti Aminah Binti Wahab, Nurul Farhana Hazira H
pages: 727-731 DOI:10.18517/ijaseit.8.3.2751

An Immunological-Based Simulation: A Case Study of Risk Concentration for Mobile Spam Context Assessment

Kamahazira Zainal, Mohd Zalisham Jali
pages: 732-742 DOI:10.18517/ijaseit.8.3.2719

Implementation of Otsu’s Method in Vein Locator Devices

pages: 743-748 DOI:10.18517/ijaseit.8.3.4414

A Novel Packet Scheduling with Channel-Aware Algorithm for Multi-Service Flow in the LTE Network

Ida Nurcahyani, Sisdarmanto Adinandra
pages: 749-755 DOI:10.18517/ijaseit.8.3.5579
Component-connected Feature for Signature Identification

Naeli Umniati, Achmad Benny Mutiara, Tubagus Maulana Kusuma, Suryarini Widodo
pages: 756-761 DOI:10.18517/ijaseit.8.3.2880

Different Applications of the Genetic Mutation Operator for Symetric Travelling Salesman Problem

Velin Kralev
pages: 762-770 DOI:10.18517/ijaseit.8.3.4867

Continuous Innovation: A Literature Review and Future Perspective

Benny Lianto, M. Dachyar, Tresna Priyana Soemardi
pages: 771-779 DOI:10.18517/ijaseit.8.3.4359

Synthesis and Optimization of Acrylic-N-Acryloxyssuccinimide Copolymer Microspheres

Alizar Ullianas, Nurely Nurely, Lee Yook Heng, Tan Ling Ling
pages: 780-784 DOI:10.18517/ijaseit.8.3.3336

Tree Vegetation Structure at the Realolo Village Bantimurung Bulusaraung National Park Maros District

Muhammad Wiharto, Siti Fatmah Hiola, Syamsinar S, Muhammad Wijaya, Hamka L
pages: 785-791 DOI:10.18517/ijaseit.8.3.4725

Compression Behavior of Fibrous Peat Stabilized with Admixtures of Lime CaCO3+Rice Husk Ash and Lime CaCO3+Fly Ash

Noor Endah Mochtar, Faisal Estu Yulianto
pages: 792-798 DOI:10.18517/ijaseit.8.3.4317
Comparison of WF & Tubular Links on the Eccentrically Brace Frame System due to Cyclic Loads

Budi Suswanto, Aniendhita Rizki Amalia, Endah Wahyuni, Najibullah Al Farisy
pages: 799-804 DOI:10.18517/ijaseit.8.3.4337

Development of Thermal Insulation Material Using Coconut Fiber to Reuse Agricultural Industrial Waste

Ryushi Kimura, Masato Ohsumi, Lusi Susanti
pages: 805-810 DOI:10.18517/ijaseit.8.3.4610

Disinfection of Escherichia coli Bacteria Using Combination of Ozonation and Hydrodynamic Cavitation Method with Venturi Injector

Eva Fathul Karamah, Fitri Amalia, Fitri Amalia, Setijo Bismo, Rioneli Ghaudenson, Setijo Bismo, Rioneli Ghaudenson
pages: 811-817 DOI:10.18517/ijaseit.8.3.3922

Adsorption of Phosphate in Aqueous Solutions Using Manganese Dioxide

Yunus Fransiscus, Restu K. Widi, Gracia O. Aprilast, Marta D. Yuharma
pages: 818-824 DOI:10.18517/ijaseit.8.3.3866

The Effect of TiO2 Particles Addition on The Characteristics of Polysulfone Membrane

Nurul Nadiah Said, Fazlena Hamzah, Nur Azrini Ramlee, Nur Najwa Yunus
pages: 825-831 DOI:10.18517/ijaseit.8.3.3901

Physicochemical Properties of Duck Feet Collagen with Different Soaking Time and Its Application in Surimi

Chong Hui Theng, Nurul Huda, Nik Aisyah Nik Muhammad, Chatarina Wariyah, Haslaniza Hashim
pages: 832-841 DOI:10.18517/ijaseit.8.3.2670
Utilization of Empty Fruit Bunch Fiber of Palm Oil Industry for Bio-Hydrogen Production

Eka Sari, Mohammad Effendy, Nufus Kanani, - Wardalia, - Rusdi
pages: 842-848 DOI:10.18517/ijaseit.8.3.3985

Responses Growth and Yield of Three Shallot Cultivars in Sandy Coastal Land with PGPR (Plant Growth Promoting Rhizobacteria)

Sumiyati Tuhuteru, Endang Sulistyaningsih, Arif Wibowo
pages: 849-855 DOI:10.18517/ijaseit.8.3.1093

Geological Mapping and Assessment for Measurement the Electric Grid Transmission Lines in West Sumatera Area, Indonesia

Husnul Kausarian, Batara Batara, Dewandra Bagus Eka Putra, Adi Suryadi, Muhammad Zainuddin Lubis
pages: 856-862 DOI:10.18517/ijaseit.8.3.4069

Tectonic Geomorphology of Upper Cimanuk Drainage Basin, West Java, Indonesia

Emi Sukiyah, Edy Sunardi, Nana Sulaksana, P. P. Raditya Rendra
pages: 863-869 DOI:10.18517/ijaseit.8.3.5441

Geotechnical Engineering Aspect Related to Pidie Jaya–Aceh Earthquake Disaster and Mitigation

- Munirwansyah, Reza Pahlevi Munirwan, Halida Yunita
pages: 870-875 DOI:10.18517/ijaseit.8.3.4189

Evaluation of Seismic Analysis Procedures for Concrete Moment-Resistant Frames with Horizontal Re-entrant Corners Irregularity

Anis S Shatnawi, Mazen Musmar, Laith I Gharalbeh
pages: 876-881 DOI:10.18517/ijaseit.8.3.5851
An Experimental Study of Bending Behaviour of Double Channel and Hollow Sections of Light Gauge Steel

Sabril Haris, Andrey Prasetio, Rendy Thamrin, Hazmal Herman
pages: 882-888 Full text DOI:10.18517/ijaseit.8.3.4192

Methodology on Empirical Study in Determining Critical Energy Efficiency Factors for Building Structural Components

Saeed Balubaid, Rosli Mohammed Zin, Shaik Hussein Mydin
pages: 889-896 Full text DOI:10.18517/ijaseit.8.3.4191

Experimental Study on High Strength Steel-Fiber Concrete

Sisi Nova Rizkiani, James Saputra, Johannes Adhijoso Tjandro
pages: 897-903 Full text DOI:10.18517/ijaseit.8.3.3962

Synthesis of Tobermorite Structure with Non-traditional Silica Components

Vit Cerny, Jan Fleischhacker, Magdalena Kocianova, Rostislav Drochytka
pages: 904-910 Full text DOI:10.18517/ijaseit.8.3.5853

Assessment of Time and Costs of Two Formwork Methodologies in the Philippines using BIM Simulation

Jason Maximino C. Ongpeng
pages: 911-917 Full text DOI:10.18517/ijaseit.8.3.5838

Airline Service Quality Analysis Using Integration of Fuzzy Servqual, PGCV Index, and TRIZ Methods in Indonesian Full-Service Carrier Airlines

Diana Puspita Sari, Dyah Ika Rinawati, - Midiawati
pages: 918-923 Full text DOI:10.18517/ijaseit.8.3.3889
A Simple Transistors Width Adjustment Method on CMOS Transmission Gate Switch to Reduce Hold Error of S/H Circuit

Agung Setiabudi, Hiroki Tamura, Koichi Tanno
pages: 924-929 Full text DOI:10.18517/ijaseit.8.3.4329

CDM Based Servo State Feedback Controller with Feedback Linearization for Magnetic Levitation Ball System

Alfian Ma’arif, Adha imam Cahyadi, Oyas Wahyunggoro
pages: 930-937 Full text DOI:10.18517/ijaseit.8.3.1218

Delay Tolerant Energy Efficient protocol for Inter-BAN Communication in Mobile Body Area Networks

Aarti Sangwan, Partha Pratim Bhattacharya
pages: 938-948 Full text DOI:10.18517/ijaseit.8.3.4502

Mobile Forensic Tools Evaluation for Digital Crime Investigation

Rusydi Umar, Imam Riadi, Guntur Maulana Zamroni
pages: 949-955 Full text DOI:10.18517/ijaseit.8.3.3591

A Study of Delay and Data Traffic of IEEE 802.15.4 ZigBee-Based WSN in a Smart Home

Naseem Kadhim Baqer, Ameen Mohammed-Taqy Al-Modaffer, Esam A. AlKaldy
pages: 956-962 Full text DOI:10.18517/ijaseit.8.3.5483

Developing an Artificial Neural Network Algorithm for Generalized Singular Value Decomposition-based Linear Discriminant Analysis

Rolysemt K Paredes, Ariel M Sison, Ruji P Medina
pages: 963-969 Full text DOI:10.18517/ijaseit.8.3.5677
Efficient Handwritten Digit Classification using User-defined Classification Algorithm

R. Vijaya Kumar Reddy, U. Ravi Babu
pages: 970-979 DOI:10.18517/ijaseit.8.3.5397

Data Mining for Detecting E-learning Courses Anomalies: An Application of Decision Tree Algorithm

Fatiha Elghibari, Rachid Elouahbi, Fatima El Khoukhi
pages: 980-987 DOI:10.18517/ijaseit.8.3.2756

Study of Convective Cloud Lifetime and Movement Using Radar Image and ECMWF Model

Mochammad Donny Anggoro, Bagus Pramujo
pages: 988-997 DOI:10.18517/ijaseit.8.3.4212

Optimization of Fingerprint Indoor Localization System for Multiple Object Tracking Based on Iterated Weighting Constant - KNN Method

Asti Putri Rahmadini, Prima Kristalina, Amang Sudarsono
pages: 998-1007 DOI:10.18517/ijaseit.8.3.6086
Adsorption of Phosphate in Aqueous Solutions Using Manganese Dioxide

Yunus Fransiscus1,2, Restu K. Widi2, Gracia O. Aprilasti2, Marta D. Yuharma2

1Centre for Environmental Studies, The University of Surabaya, Raya Kalirungkut, Surabaya, 60293, Indonesia
2Chemical Engineering Department, The University of Surabaya, Raya Kalirungkut, Surabaya, 60293, Indonesia

Abstract. Effort to remove phosphate from aquatic ecosystem is of great interest, not only for preventing algae bloom problem but also for recovering phosphate, as this is an essential material. Adsorption is considered as an effective method especially because the nutrient loaded adsorbent can be directly used for fertilizer. Therefore, this study investigated the potential use of manganese dioxide in natural form (pyrolusite) to adsorb phosphate in aqueous solutions. A series of batch experiments were done to elaborate the adsorption process of phosphate onto manganese dioxide. Several environmental conditions such as pH, temperature and ionic strength were applied in order to get a better understanding of the process mechanism. The results indicated that pH was obviously affected the adsorption process, meanwhile ionic strength did not play significant role. The adsorption of phosphate was higher at a lower pH and getting reduced as the pH increased. Similar to that, the percentage removal of phosphate was declined significantly in higher ionic strength, indicated that the interaction between phosphate and manganese dioxide was mainly controlled by electrostatic force. The adsorption isotherm data correlated better with Langmuir model rather than Freundlich model. The maximum adsorption capacity of manganese dioxide was 11.40 mg P/g. The kinetic data was very well fitted to pseudo second order equation suggested that chemical reaction involved in the adsorption process. Moreover, thermodynamic data confirmed that phosphate adsorption onto manganese dioxide was an endothermic process.

Keywords — adsorption; phosphate; manganese dioxide; isotherm; kinetic; thermodynamic.

I. INTRODUCTION

Phosphate is an essential material for many applications in industrial sector such as paint and coating, a cleaning agent (detergent), pharmaceutical, water treatment and agriculture. However, besides its positive function, the accumulation of phosphate in the aquatic system creates serious problems. Phosphate may naturally occur in water body, but anthropogenic sources from domestic wastewater, industrial wastewater and runoff water from agriculture/feedlot area increase the concentration significantly [1]. It has been reported that 1.3 Mt of phosphate every year discharged into aquatic systems all over the world [2]. This oversupply condition will stimulate eutrophication condition. More than 38% of water bodies in many regions of the world were considered to have eutrophication problem [3]. Eutrophication will lead to algae bloom, abnormal growth of aquatic plants and algae. It is reported that once the concentration of phosphate in lakes or sea is over 0.03 mg/L, algae bloom will occur. The further effect will then arise since algae bloom potentially shifts the water system into anaerobic condition result in aesthetical (e.g., odor, turbidity) and health problem by producing cyanotoxins. Considering the tremendous effect of phosphate in the water system, some countries applied strict regulation. Environmental Protection Agency (EPA) stated that the maximum permissible concentration and the stringent discharge limit of phosphate ions are 0.1 mg/L and less than 0.05 mg/L respectively [4]. In Australia, the total phosphorus contaminant level in rivers and streams is controlled in the range of 0.01 – 0.1 mg/L, while the requirement for lakes and reservoirs is more stringent as 0.005 – 0.05 mg/L [5].

Based on that condition, strategic effort to eliminate phosphate has been continually developed. Several techniques have been proposed to remove phosphates such as chemical precipitation, biological process, ion exchange, membrane technology and adsorption. Chemical precipitation (by adding ferric or aluminum salts) is a relatively easy method, but the excessive sludge as by-product requires post-treatment. The biological process is an effective method to remove phosphate from water. However stability is another issue since the performance of microorganism is strongly depend on nutrients (e.g., carbon,
nitrogen, iron) availability and operational condition (e.g., pH, temperature). Meanwhile, ion exchange and membrane technology only work well for phosphate elimination if there is no other contaminant exist [6]. Therefore, among those methods, adsorption is considered the most economical, effective and reliable method [7]. Adsorption is a simple technology that requires a relatively low-cost facility, yet has been proved to be able to reduce contaminant in a high percentage. Regards to phosphate, adsorption can be applied not only for removal but also to recover it from the water system. This is important since the demand for phosphate still growing, especially for fertilizer production and detergent manufacturing, but at the same time, the phosphate reserves are gradually diminishing. Another interesting feature from this technique is that nutrient loaded filter can be used directly as phosphate fertilizer and soil conditioner [8], [9].

Various materials have been tested to be an effective adsorbent for phosphate; it was including natural minerals, industrial by-products (steel slag, fly ash, and red mud) and synthetic compound. Focus on the usage of natural minerals such as iron (hydro)oxides including amorphous hydrous ferric oxide, poorly crystalline hydrous ferric oxide goethite and akaganeite has increased as these materials have high affinity to phosphate, low cost and environmentally friendly [10]. Manganese oxides are another natural mineral with poor crystalline oxides, like a ferric oxide, which generally found in manganese-rich coatings. This mineral is considered as a potent scavenger of trace metals in soil, sediment, and rocks [11]. There was much research has been done to test the ability of manganese oxides as an adsorbent for various metals in aqueous solutions. However, there was a limited study to investigate the usage of manganese oxides for phosphate removal.

Therefore, a set of experiments was done to get further information on phosphate removal by using manganese oxides. In this work manganese oxides, ore was used as an adsorbent for phosphate in aqueous solutions. The experiments were done in a batch system with several environmental conditions, such as pH, ionic strength and temperature to elucidate the processing mechanism. The kinetic data, as well as adsorption isotherm, were also determined.

II. MATERIAL AND METHOD

A. Material

All chemicals including KH₂PO₄, KMnO₄, H₂SO₄, Sodium oxalate, HNO₃, NaOH, HCl were purchased in analytical grade and used directly without any further treatment. A private company in Surabaya supplied pyrolusite as the manganese oxide ore for this research. This material was sieved to get a size of 100 mesh and washed with demineralized water before the usage. To determine the manganese oxides content in the minerals, a simple titration was performed by weighing out 1 g of pyrolusite and put it into a conical flask with 40 mL of 0.5N Sodium oxalate. 50 mL of diluted H₂SO₄ was added before heating process. After black colored of particles disappeared, the solution was titrated against 0.3N KMnO₄ until the colorless turn into pink. The result indicated that the content of manganese oxides (MnO₂) was 84.76% (w/w). Also, the characterization of surface functional groups of pyrolusite was done by Fourier Transform Infra Red (FTIR, Shimadzu).

Fig.1. FTIR spectrum of MnO₂ (Pyrolusite)

Refers to the Figure 1, the peak at about 590 cm⁻¹ is a result of stretching vibration of the Mn-O and Mn-O-Mn bonds. The peak at 1085 cm⁻¹ indicates a vibration of hydroxyl groups that are joined to Mn atoms. As for peak at 1519 cm⁻¹ arises from bending vibration of O-H and H₂O, which implies that water molecule exists in nanostructures. Meanwhile, peak at about 3464 cm⁻¹ describes the stretching vibration on O-H bond and bending vibration of the absorbed water molecule in the lattice [12].

B. Method

1) Effect of pH and Ionic Strength: Adsorption batch experiments to investigate the effect of pH and ionic strength was done by preparing 200 mL of phosphate solution with an initial concentration of 10 mg/L into a conical flask. 2.5 g/L of MnO₂ (pyrolusite) was added into the flask before mixing process on thermoshaker at 160 rpm. A variation on pH was set at 2, 4, 6 and 8. pH adjustment was done by using either 0.1 M HCl or NaOH. Sampling was done in a certain interval until the phosphate concentration reached an equilibrium condition. Solution samples were filtered using membrane filter 0.45 μm (Agilent) before phosphate analysis with UV-Spectrometer (Agilent). Ionic strength variation was arranged by using NaCl at 0.01 M, 0.1 M and 1 M. All tests were conducted at temperature 25.5°C.

2) Adsorption Isotherms: Experiments for isotherms study were performed with initial concentrations of 10 – 100 mg/L. All processes were the same with the previous explanation, except for sampling time, which was set 24 hours to make sure equilibrium condition was reached. The collected data of adsorbed phosphate onto MnO₂ at equilibrium condition were then analyzed with two adsorption models, Langmuir and Freundlich.

Langmuir model :

\[
q_e = \frac{q_{max}C_e}{1 + bC_e}
\]

(1)
Freundlich model :
\[q_e = k_f q_e^n \]
(2)

where \(C_e \) is the phosphate concentration in the solution at equilibrium (mgP/L), \(b \) is Langmuir constant related to the affinity of binding sites (L/mg), \(q_{\text{max}} \) is the maximum adsorption capacity (mg/g), \(k_f \) is a Freundlich constant related to roughly adsorption capacity (mgP/L), \(n \) is the constant related to adsorption density.

3) Adsorption Kinetics: Adsorption kinetics was defined from an experiment with one initial concentration of phosphate (10 mg/L) at 25.5°C. Phosphate concentration was analysed until an equilibrium condition achieved. Two equations were applied to define whether the process fit to pseudo-first order or pseudo-second order.

Pseudo first order:
\[\log(q_e - q_t) = \frac{k_1}{2.303} + \log q_e \]
(3)

Pseudo-second order:
\[\frac{t}{q_t} = \frac{1}{2Kqe^2} + \frac{1}{q_e} \]
(4)

Where \(q_t \) is phosphate concentration over the sampling time (mgP/L), \(q_e \) is phosphate concentration at equilibrium condition (mgP/L), \(K_1 \) is pseudo first order constant (L/min) and \(K \) is a pseudo second order constant (g/mg.min)

4) Thermodynamic Data: Thermodynamic data were collected from experiments with different temperature applied (25.5°C, 35°C and 45°C). T, e values of standard enthalpy change (\(\Delta H^0 \)), standard entropy change (\(\Delta S^0 \)) moreover, Gibb’s free energy (\(\Delta G^0 \)) were determined to ascertain the nature of adsorption process under different temperature condition. Those three parameters can be calculated by applying the following equations :

\[K_d = \frac{c}{C_e} \]
(5)

\[\ln K_d = \frac{\Delta S^0}{2} - \frac{\Delta H^0}{2RT} \]
(6)

where \(C_e \) and \(C_r \) are the removed and remaining concentrations of phosphate, respectively. \(R \) (8.314 Jmol\(^{-1}\)K\(^{-1}\)) is the ideal gas constant. \(T \) is the temperature in Kelvin.

While free energy changes (\(\Delta G^0 \)) is defined from:

\[\Delta G^0 = \Delta H^0 - T\Delta S^0 \]
(7)

The values of \(\Delta H^0 \) and \(\Delta S^0 \) were determined from the slope and y-intercept of the plot between \(\ln K_d \) versus \(1/T \) [2].

III. RESULTS AND DISCUSSION

Results of adsorption experiment in different conditions are presented below.

A. Effect of pH and Ionic Strength

In all pH condition, the amount of adsorbed phosphate onto manganese dioxide was high at the beginning, indicating a spontaneous reaction, and gradually decreased until an equilibrium stage (after 2.5 hours). Fig. 2 portrays that pH is a significant factor in determining sorption process of phosphate onto manganese dioxide. The higher the pH value, the amount of absorbed phosphate reduced. In this experiment, the most suitable pH for the adsorption of phosphate onto manganese dioxide was 2. The effect of pH can be explained, related to the pH\(_{\text{pzc}}\) (point of zero charges) of manganese dioxide. pH\(_{\text{pzc}}\) is a pH in which the net charge of chemical substances in the aqueous solution is zero. At pH < pH\(_{\text{pzc}}\) the adsorbent’s surface will positively charge, while at pH > pH\(_{\text{pzc}}\) the surface charge will be negative. The manganese dioxide has a low pH\(_{\text{pzc}}\) (1.4<pH\(_{\text{pzc}}<4.5\) [8], later on, it was reconfirmed that the pH\(_{\text{pzc}}\) is about 4.2 [11], [12]. Thus, if the pH solution above 4.2 the surface site of adsorbent will have more negative charges because of deprotonation, in which more hydrogen ions leave the sites. Since the domination species of phosphate are negatively charged (H\(_2\)PO\(_4^-\), HPO\(_4^{2-}\)), the interaction with adsorbent will be unlikely. More favorable interaction exists at pH below 4.2 due to protonation at the surface site of manganese dioxide results in more positively charged. In addition to that, at lower pH value the presence of phosphate hydrate ions is ampler than its anhydrate. Thus interaction with the active sites of adsorbent will be much more comfortable. A pH-dependent process indicates that the adsorption of phosphate onto manganese dioxide is driven...
by different charges interaction or so-called surface complexation. Phosphate adsorption onto metal oxides has been reported as a dependent process. The amount of adsorbed phosphate tended to increase by decreasing solution pH [5].

Application of ionic strength in different level was intended to explain the sorption mechanism. The increase of ionic strength will reduce the adsorption capacity if electrostatic interaction applies between adsorbate and adsorbent. In contrary, the adsorption capacity will increase along with the increase of ionic strength if different mechanism pertains. The result, as can be seen in Fig. 3., shows a higher level of ionic strength (indicated by the higher concentration of NaCl) the removal of phosphate decreased significantly (about six times lower). The additional concentration of NaCl produces more ions speciation that inhibits the interaction between phosphate and manganese dioxide. This is in another way, indicates that the sorption mechanism of phosphate onto manganese dioxide is driven by electrostatic interaction or surface complexation rather than ligand exchange.

B. Adsorption Isotherms

Adsorption isotherm was used to explain the distribution of adsorbate in liquid and solid phase. Two models, Langmuir and Freundlich, were applied to identify the adsorption isotherm. Data analysis for adsorption isotherms (as can be seen in Fig.4a and 4b) suggested that the adsorbent performance fit better to Langmuir model than Freundlich model, indicated by the higher value of R^2 (0.9955 compared to 0.9397) assuming:

- Manganese dioxide has homogeneous active sites
- A monolayer adsorption process between manganese dioxide and phosphate
- There is no further interaction among adsorbed phosphate

Thus, based on the preferred model, maximum adsorption capacity of manganese dioxide was 11.40 mgP/g (Table I).

Comparison of the performance of manganese dioxide for adsorbing phosphate in aqueous solution to other natural materials or industrial by-products as reported from previous works can be seen in Table II. The maximum adsorption capacity of manganese dioxide is similar to magnetite, about 1.4 times of iron oxide tailings, almost two times higher than vesuvianite and fly ash and 2.4 times of dolomite. This result is promising for further development.

C. Adsorption Kinetics

Adsorption kinetics was applied as one of the most important factors to identify the adsorption efficiency and working mechanism of adsorbent. The removal of phosphate from aqueous solutions was occurred relatively fast, in 2.5 hours the adsorption process reached an equilibrium condition. A rapid adsorption rate could be ascribed to the high driving force provided by the concentration gradient of phosphate in aqueous solutions and the large number availability of active sites on the surface of manganese dioxide [4]. Measurement on phosphate concentration at 24 and 48 hours was done, and there was no indication of
further reaction (no additional removal) or desorption confirming that effective process was found at the initial phase (Fig.5.)

Fig. 5. % Removal of Phosphate as a Function of Time, pH = 2, T = 25.5°C, initial concentration = 10 mg/L.

To further evaluate the adsorption mechanism of phosphate onto manganese dioxide, two model equations, pseudo first order, and pseudo second order were employed. Experimental data, the concentration of phosphate over the time periods of monitoring \(q_t\) and concentration of phosphate at equilibrium condition \(q_e\) were fitted to both models (Fig. 6a and 6b).

Based on regression coefficients, adsorption process of phosphate onto manganese dioxide was much better represented by pseudo-second-order model \(R^2 = 0.9999\) compared to the pseudo-first-order model \(R^2 = 0.8341\). This indicates that chemisorption rather than physisorption drives adsorption mechanism and only induces a monolayer system. This finding inline with isotherm model that follow Langmuir equation, which is also, assume a monolayer adsorption process. A similar finding was reported by previous work, suggesting that the adsorption process of phosphate onto manganese dioxide involves valency forces through sharing or exchanging electrons between adsorbate and adsorbent [2], [9], [17].

D. Thermodynamic Data

Temperature is a significant factor in determining the adsorption process. The result of adsorption experiment in different temperature conditions showed that the removal of phosphate from aqueous solutions slightly increased with the increase of temperature. The highest removal, 62.63%, was achieved at the highest temperature applied, 45°C (Fig.7.).

This phenomenon can be explained as the increase in temperature there will be dehydration on phosphate ions, results in unstable binding between the ions. The more unstable the binding will make the adsorption of phosphate onto manganese dioxide sites easier. It seems more energy needed to enhance the adsorption process. By increasing temperature, more energy will be provided thus the interaction between phosphate ions and active sites of manganese dioxide will be more intense, results in more adsorbed phosphate.

To evaluate the adsorption mechanism of phosphate onto manganese dioxide, the thermodynamic parameters \(\Delta G^0, \Delta H^0, \Delta S^0\) were determined in various temperatures (298.65 ; 308.15 and 318.15 K). A plot of ln \(K_d\) versus 1/T was found to be linier, as can be seen in Fig.8. From that plot, the values of \(\Delta H^0\) and \(\Delta S^0\) were ascertained. Then, from both parameters the value of \(\Delta G^0\) could be calculated.
The adsorption mechanism. The decrease in essential pieces of information (Table III) that explain the temperature. The negative value of manganese dioxide was not spontaneous. Or, it can be said indication that the nature of phosphate adsorption by is more favor at high than at low temperature. This is an isotherm was fitted to Langmuir better compared to study, the most effective process was at pH = 2. Adsorption used as an adsorbent to remove phosphate from aqueous solutions. Positive value of phosphate onto manganese dioxide is weak. Meanwhile, the bigger at lower temperature. The positive value of is needed to enhance the reaction, the energy requirement is structural changes in adsorbate and adsorbent [3].

The analysis of thermodynamic data revealed several essential pieces of information (Table III) that explain the adsorption mechanism. The decrease in ΔG^0 value with the increase of temperature suggests that the adsorption process is more favor at high than at low temperature. This is an indication that the nature of phosphate adsorption by manganese dioxide was not spontaneous. Or, it can be said that the spontaneity of adsorption is driven by the temperature. The negative value of ΔG^0 confirms that energy is needed to enhance the reaction, the energy requirement is bigger at lower temperature. The positive value of ΔH^0 denotes that the adsorption process is endothermic and irreversible, probably due to non polar interactions [2]. However, the low value of ΔH^0 the point to the adsorption of phosphate onto manganese dioxide is weak. Meanwhile, the positive value of ΔS^0 indicates that randomness at the solid-liquid interface increases during the adsorption process of phosphate onto manganese dioxide. It also reflects the affinity of the adsorbent for phosphate and suggests some structural changes in adsorbate and adsorbent [3].

Many scientific reports have mentioned that endothermic reaction drives the adsorption process of phosphate for most adsorbents, for example, iron oxide tailings, bentonite, red mud, [3], [14], [18]. Referring to the low values of standard Gibbs free energy that have been obtained in this study, the use of manganese dioxide as an adsorbent for phosphate will save energy consumption.

IV. CONCLUSIONS

Manganese dioxide in natural form (Pyrolusite) can be used as an adsorbent to remove phosphate from aqueous solutions. The adsorption process was pH dependent. In this study, the most effective process was at pH = 2. Adsorption isotherm was fitted to Langmuir better compared to Freundlich model. The maximum adsorption capacity of manganese dioxide following the Langmuir is 11.40 mg Phosphate/g. Pseudo-second order model best represented the adsorption kinetics characteristic. Indicating that adsorption process is mainly driven by chemical reaction (chemisorption). Thermodynamic data demonstrated that the adsorption process of phosphate onto manganese dioxide is endothermic and at high affinity. Compared to several natural materials, manganese dioxide (Pyrolusite) presented a considerably higher adsorption capacity for phosphate removal. However, modification to enlarge its capacity needs to be investigated to find the optimum condition of the adsorbent utilization.

ACKNOWLEDGMENT

The authors would like to thank ECOMEC for supplying Pyrolusite and some preliminary technical data used in this study. Special thanks to Laboratory of Bioprocess Technology and Environmental Process for providing all necessary instruments for analysis.

REFERENCES

