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Panax ginseng (C.A. Mayer) is a well-known medicinal plant used in traditional medicine

in Korea that experiences serious salinity stress related to weather changes or incorrect

fertilizer application. In ginseng, the use of Paenibacillus yonginensis DCY84T to improve

salt stress tolerance has not been thoroughly explored. Therefore, we studied the role

of P. yonginensis DCY84T under short-term and long-term salinity stress conditions in a

controlled environment. In vitro testing of DCY84T revealed high indole acetic acid (IAA)

production, siderophore formation, phosphate solubilization and anti-bacterial activity.

We determined that 10-min dip in 1010 CFU/ml DCY84T was sufficient to protect

ginseng against short-term salinity stress (osmotic stress) upon exposure to 300mM

NaCl treatment by enhancing nutrient availability, synthesizing hydrolyzing enzymes and

inducing osmolyte production. Upon exposure to salinity stress (oxidative and ionic

stress), strain DCY84T-primed ginseng seedlings were protected by the induction of

defense-related systems such as ion transport, ROS scavenging enzymes, proline

content, total sugars, and ABA biosynthetic genes, as well as genes involved in root

hair formation. Additionally, ginseng primed with DCY84T and exposed to 300mM NaCl

showed the same metabolite profile as control ginseng plants, suggesting that DCY84T

effectively reduced salt stress. These results indicated that DCY84T can be widely used

as a microbial inoculant to protect ginseng plants against salinity stress conditions.
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FIGURE 7 | Chlorophyll content, DAB and NBT staining of P. ginseng leaves. All assays used fresh samples of ginseng leaves after (A) chlorophyll content during

short period and (B) long period of salinity stress; (C) carotenoid content during short and long period of stress; (D,E) H2O2 accumulation showed dark brown color

on DAB staining, and superoxide accumulation showed a dark blue color on NBT staining. The statistical significance of three biological replicates was determined

using the student t-test (*P < 0.05 and **P < 0.01).

through the cleavage of a carotenoid precursor named xanthoxin
(Burden and Taylor, 1976). It has also been proposed that ABA
and xanthoxin arise from the breakdown of carotenoids in
plant leaves (Volkov, 2015). High transcription levels of ABA-
synthesis-related genes and antioxidant defense genes matched
with high antioxidant enzyme activity explains how the primed
ginseng seedlings can bear a long period of salinity stress. High
levels of ABA induce antioxidant defense genes, such as SOD,
GPX, APX, and CAT, that can scavenge ROS during later salinity-
related damage from osmotic or ionic stress (Bharti et al., 2016).
Chlorophyll and carotenoid breakdown often occurred in the
stressed ginseng seedlings, which might have triggered ABA
production and the antioxidant defense system (only APX and
CAT). However, the amount of antioxidant enzymes was very

low compared to that in the primed ginseng seedlings, which
explains the tolerance of the primed seedlings (but not the
stressed seedlings) during long-term salinity stress.

A later effect of salinity on living plants is ionic stress. Rising
levels of salt in the cytoplasm, mostly sodium ions, cause toxic
effects in plant cells. Ion fluxes, which control ion concentration,
are essential for salinity tolerance. The best example is halophyte
plants, which can grow at high salt concentrations (Platten et al.,
2004). Halophytes can cope with high salt conditions using
several strategies. For instance, they accumulate high sodium
in their shoots, exclude sodium from their roots, localize salts
into vacuoles, or excrete excess salt via salt glands. The role
and proportion of each strategy depends on the plant type
and habitat (Munns and Tester, 2008). However, most plant
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FIGURE 8 | PCA and PLS-DA score plots from P. ginseng samples. We analyzed the aerial and root parts of P. ginseng separately after (A) short period and (B) long

period of stress exposure. By using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), the PCA and PLS-DA analysis of metabolites are presented.

O, aerial part; 1, root part; Black icon, Mock; Red icon, DCY84T treatment; Green icon, NaCl 300mM treatment; Blue icon, DCY84T + NaCl 300mM treatment.

species are glycophytes, including ginseng. DCY84T treatment
of ginseng seedlings activated the transcription of several ion-
pump-related genes responsible for maintaining ion fluxes that
could be involved in preventing the toxic effects of ionic stress.
As high sodium levels occurred, a low affinity Na+ transporter
called HKT1 helped move Na+ into the cytosol (Laohavisit
et al., 2013). Excess Ca2+ can protect plants from Na+ toxicity.
Compelling evidence gathered over the years has shown that
after the perception of salt stress, a Ca2+ spike generated in
the cytoplasm of root cells activates a SOS signal transduction
cascade to protect cells from damage due to excessive sodium
ion accumulation (Quintero et al., 2002; Chinnusamy et al.,
2005; Quan et al., 2007). It starts by activating the SOS3 calcium
binding protein to bind and activate SOS2, a protein kinase
family member (Zhu, 2000). In this study, we found very high
expression levels of SOS3 and SOS2 in the seedlings primed
with DCY84T even before exposure to salinity stress, indicating
that SOS signaling was somehow already idle. This SOS3-
SOS2 complex was previously reported to bind with a Na+/H+

antiporter (Qiu et al., 2002; Chen et al., 2014). Our transcription
analysis demonstrated that SOS1 encodes a plasma membrane
Na+/H+ antiporter that was upregulated during salinity stress
(Shi et al., 2000; Quintero et al., 2011). On the other hand, its
isoform (located on a vacuole regulated byNHX1) did not change
significantly. These results indicate that ginseng cells tend to
pump excess sodium ions out of cells, rather than store them
in cell compartments. A similar tendency was recently reported
in Populus (Martínez-Alcántara et al., 2015), but the reverse was
reported for citrus (Peng et al., 2016) and upland cotton (Zhang

et al., 2004). This pumping process was coupled with the
electrochemical gradient generated by H+-ATPases. Apart from
the SOS2-SOS3 complex, SOS2 can independently activate the
pyridoxal kinase SOS4 to generate an active form of vitamin
B6 (Shi et al., 2002), pyridoxal-5-phosphate (PLP), as reported
(Rueschhoff et al., 2013). PLP might regulate ion channels or
transporters in salt tolerance mechanisms (Shi and Zhu, 2002).
Our finding of synergy in the high transcription levels of SOS1,
SOS2, and SOS4 confirms that previous report. Furthermore,
we found that SOS4 indirectly affected the activation of the
K+ channel AKT1 to maintain K+ levels inside the cytosol. In
these ways, the primed ginseng seedlings coped with the ionic
stress caused by sodium toxicity by pumping sodium out of
cells rather than storing it inside compartments and maintaining
potassium levels inside cells. The ion profile also revealed that
primed ginseng plants had higher K+ and lower Na+ during
salinity stress than stressed plants. A previous report on soybeans
(Martínez-Alcántara et al., 2015) described the importance of
maintaining the Na+/K+ ratio with regard to salt tolerance.

Apart from salt tolerance activity of DCY84T we also analyzed
growth-promoting activity. The strain DCY84T produces 52.96
± 1.85µg/ml and 72.83 ± 2.86µg/ml of indole-3-acetic
acid without and with L-tryptophan, respectively. We also
evaluated its growth-promoting activity by quantifying the
expression pattern of root meristem genes such as PgLAX,
PgHB8, and PgPIN. Upon priming of DCY84T, expression
was dramatically increased in all three genes compared
with salt-stressed seedlings, indicating that DCY84T has
plant growth-promoting characteristics. In addition, DCY84T
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increased nutrient availability in salt-stressed seedlings by
accumulating dehydrogenase, invertase and amylase.

In conclusion, DCY84T increased nutrient availability (mostly
sugar) and provided osmolytes to help ginseng plants tolerate
short-term salinity stress (osmotic stress). During long-term
salinity stress, activation of salt-defense-related genes such as
ABA synthesis genes, ROS scavenging genes, ion-pump-related
genes, and root meristem genes prevented both long- and
short-term salinity stress. Moreover, DCY84T exhibited growth-
promoting properties even under salinity stress. Therefore,
DCY84T can strengthen plants as a microbial inoculant in
ginseng fields affected by salinity stress.
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