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Abstract

Constrained nonlinear optimization formulation for calculating the worst case lower and upper bounds of relative
disturbance gain array (RDGA) for uncertain process models is presented. The proposed approach seeks the minimum
and maximum values of the relative disturbance gains subject to the constraints that the process gains and disturbance
gains are within their uncertainty ranges. RDGA ranges are useful for control structure determination and the related
robustness as they provide information regarding the sensitivity to gain uncertainties. The proposed method is
demonstrated by ternary distillation column case study. Closed loop simulation results support the analysis based on the
proposed method. It is shown that for a particular degree of uncertainties, the range of process gain determinant should
not include zero to ensure the successfulness of the calculation. For the distillation system being studied, the maximum
allowable a is 0.339 to avoid the singularity of matrix K.

Abstrak

Kondisi Terburuk Harga Relative Disturbance Gain Array untuk Sistem Distilasi Tak Pasti. Artikel ini
mempresentasikan formulasi optimisasi nonlinear berbatas untuk menghitung kondisi terburuk batas bawah dan batas
atas harga relative disturbance gain array (RDGA) untuk suatu model proses yang mengandung ketidakpastian.
Pendekatan yang diusulkan adalah untuk mencari harga relative disturbance gain minimum dan maksimum sesuai
batasan kisaran ketidakpastian yang terdapat baik pada gain proses maupun gain gangguan. Kisaran RDGA berguna
untuk penentuan struktur pengendali dan ketegarannya (robustness) karena menyediakan informasi terkait sensitivitasnya
terhadap ketidakpastian harga gain. Metode yang diusulkan kemudian diaplikasikan pada studi kasus kolom distilasi.
Hasil simulasi lintas tertutup mendukung analisis yang didasarkan pada metode yang diusulkan. Pada kasus yang
dipelajari, ditunjukkan bahwa untuk suatu derajat ketidakpastian tertentu, kisaran determinan gain tidak boleh mencakup
titik nol untuk menjamin keberhasilan perhitungan. Untuk kasus sistem distilasi yang dipelajari, harga maksimum
ketidakpastian, a adalah 0.339 untuk menghindari singularitas matrix K (gain).

Keywords: distillation control, relative disturbance gain array, relative gain array

1. Introduction [2], Niederlinski Index (NI) [3], relative disturbance

gain (RDG) and relative normalized gain array (RNGA)
With a given set of controlled and manipulated [4-5]. RGA has found widespread acceptance both in
variables, controllability analysis can then be performed academia and industry since its introduction over 40
to the system for selecting control configuration [1]. A years ago, particularly after the improvement on closed
system is said to be controllable if the controlled loop stability considerations by using NI as a stability
variables can be maintained at their setpoints in steady criteria. The RGA-NI rule for decentralized control are
states, in spite of disturbances entering the systems. For summarized as follows [6]: a) The original RGA offers
a square system, a system is controllable if the an interaction rule by its size (the paired RGA elements
determinant of the gain matrix is non zero. should be the closest to 1 and large RGA elements

should be avoided), b) The NI provides a necessary
Decentralized (multi-loop) control relies heavily on stability condition by its sign (avoid pairings with
steady state tools such as the relative gain array (RGA) negative NI), ¢) The signs of the RGA elements lead to

135
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the integrity rules (all the paired RGA elements must be
positive), d) The sensitivity of the RGA elements to
gain uncertainties presents the robustness rule.

The popularity of RGA is mainly because of its
simplicity and confirmed reliability in many case
studies. However, RGA has been known to have some
deficiencies as it does not consider dynamics and
disturbances. Based on the process and disturbance
transfer function models, Stanley et al. [4] proposed
RDG for analyzing the disturbance rejection capability
in multi-loop control. RDG overcomes one of the
limitations of RGA by allowing disturbances to be
included in operability analysis. Chang and Yu
extended this concept by introducing relative
disturbance gain array (RDGA) and generalized relative
disturbance gain array (GRDG) [7].

Recently Chen and Seborg [8] presented an analytical
expression for RGA uncertainty bounds. Two types of
model uncertainty were considered: worst case bounds,
where all elements of the steady state process gain matrix
are allowed to change simultaneously within their
bounds, and statistical uncertainty bounds. A different
method by using the structured singular value (p)
analysis framework was introduced for the calculation
of the magnitude of the worst-case relative gain [9].

Agustriyanto and Zhang [10] reported method for
calculating uncertainty bounds for relative disturbance
gain via optimization for the calculation of RDGA range
under model uncertainties. The model uncertainty type
considered is worst case bounds. The lower and upper
bounds of an RDGA element are calculated as two
constrained optimization problems. The method seeks
the minimum (for the lower bound) or maximum (for
the upper bound) of an RDGA element subject to the
constraints that allowable model parameters are within
their uncertainty bounds. RDGA ranges are shown to be
important for control pairing analysis. In this paper,
closed loop simulation were then performed to evaluate
the RDGA analysis.

2. Methods

The RDGA matrix of a non singular square matrix K and
a vector disturbance Kd can be determined as the
following [7]:

RDGAz[K_ldiag(K J )Tl[diag(K‘lK J ﬂ (1)

where diag(.) transforms a vector (.) into a diagonal
matrix with each element put on the corresponding
diagonal position, that is, the ith element of a vector (.) is
put on the iith entry of a matrix.

Each element of RDGA matrix is related to the
corresponding element of RGA matrix through the

following relationship:

K.K ., K
Boi=A. + g Zy gk dk

N 2)
A

di
k=i
where [, =element of RDGA matrix

A, is the ij th element of the RGA

ij
K, is the element on the ith row and kth

column of K~!

The following equation is the relation between ijth
element of RGA and steady state gains matrix [11]:

K. det(Kij)
ij

Ao=(1ftT

’ G

det(K)
In Eq. 3), K Y is the submatrix that remains after the ith
row and jth column of K are deleted.

It is obvious that ﬂij is a function of K and K, that is

Py = KK @

Assume that the uncertainty bounds for all steady state
process and disturbance gains Kj; and K,; are given, then
there will be 2(n2+n) constraints for all those gains
which can be formulated as follows:

AX <b %)

where X is a vector of size (n2+n)XxI containing all
elements of K and K; as its elements:

- T | bis a vector
X=[K, .. K, Ky k,1"

of size (2(n2 + n))xI containing the lower and upper
bound values of the corresponding elements of X, and 4
is an appropriate matrix of size (2(n2 + n))xm2 + n)
satisfying the inequalities in Eq.(5).

Therefore, the lower bound and the upper bound of f;
can be formulated as the following respectively:

Lower bound:
min £ = f(X) ©)
X
Upper bound:
max 'Bij = f(X) @)
X

both subject to the constraints in Eq.(4).

Note that f; cannot be determined if the value of det(K)
= (). Furthermore, when det(K) = 0, the process will be
uncontrollable in that some controlled variables will be
dependent to each other and will not be able to follow
independent setpoint changes. Therefore, in order to use
the above method and also to ensure the process is
controllable, the range of de#(K) should not include 0.
The range of det(K) can be considered as a function of
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all the individual elements of the gain matrix:
det(K) = g(X) ®)

The range of det(K) can be calculated by using the same
optimization method:

Lower bound:

min det(K) = g(X) 9
X

Upper bound:

max det(K) = g(X) (10)
X

both subject to the same constraints in Eq.(5).

The RDGA matrix in conjunction with the structure
selection matrix is used to determine the so called
GRDG which is useful for control structure selection. A
structure selection matrix is an n xn matrix where the ijth
entry is set equal to 1 if the element is chosen for
controller pairing or equal to zero if the element is
ignored. The value of GRDG vector element is simply
the row wise summation of RDGA with the
corresponding structure selection matrix.

There are various numerical methods that can be used to
solve this constrained optimization problem, such as grid
search, random jumping method, the generalized reduced
gradient algorithm, etc [12-13]. By using grid search
optimization, RDGA in Eq.(1) can be evaluated at all
combination points that are specified between the
uncertainty bounds of K and K, in nested loop and hence
RDGA ranges are determined by sorting out the
minimum and maximum values of each element from all
the computed RDGAs. This method requires huge
number of RDGA calculation which cannot be avoided.
By dividing each element of each gain into only 2 equal
segments (3 nodes) then for 3x3 size of K matrix and
3x1 K, matrix, it will require 3°" 531,441
calculations. This method generally is not preferred since
the number of segments/nodes must be increased for
more precise calculation. Moreover, most plant wide
control problem involves many control, manipulating
and disturbance variables which contribute to the rapid
increase of the number of calculation.

In random jumping method, random values of each
element of K and K, between their bounds are generated
and the RDGA is evaluated at this point. Calculation is
performed for large number of random points of K and
K; and the RDGA ranges are picked from the total
results. This method is simple and fairly acceptable for
this purpose. Other advance optimization techniques
may require gradient of the function for generating new
point for iteration. However, the availability of the
optimizer such as Matlab Optimization Toolbox (e.g.
fmincon) makes computation become faster and able to
provide accurate results without bothering about
derivatives of the function which is often difficult to
obtain. The formulated problem can be readily solved in

this Matlab environment. A satisfactory result can be
obtained by initiating the optimization from different
starting point within the bounds if the objective function
exhibits many local optima.

3. Results and Discussion

In this example we consider the two distillation column
system for separating benzene, toluene and m-xylene
[14]. The process transfer function matrix, G(s), and the
disturbance transfer function matrix, G,(s), of the Ding
and Luyben (DL) column are as follows:

—115¢~%
Q3 +1)Gs+1)
375 6”13 _12e7105 1
(4s4D@s+)?  (3+D@s+D  (555+D@s+)
206¢ 198 _7507 238 2318
| Qas+D)(I8s+])  (373s+D(2s+])  (A25+D@s+]) |

0 0

~1.95¢758

(125 +1)2
1.52¢ 05 (12)
(125 +1)2 (55 +1)
—445.778
| (405 +1)(10s+1)2 |

Gy (s)=

The process outputs are:

y1 = composition of benzene from top of column 1

¥, = composition of toluene from top of column 2

y3 = composition of m-xylene from bottom of column 2.

The manipulated variables are:
u; = heat transfer to reboiler 1
u, = reflux rate at column 2

u3 = heat transfer to reboiler 2

The disturbance variable is:
d = feed composition type 3 (30%, 40%, 30%) or 4
(20%, 60%, 20%).

The nominal value of RDGA calculated using Eq.(1) is:

1 0 0
RDGA=| 042 041 0.17 (13)
~0.79 0.66 1.13

Assume now that the uncertainty bounds for all process
and disturbance steady state gain K; and K are given
by
‘AK ..
y

Sal&

i (14)
‘AKdZ.‘ < a‘kdi‘ (15)
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Similar to what have been done for the nominal case
[7], GRDG analysis is performed for the three cases of
uncertain models. The results are compared to the
nominal value analysis. The controller structures are
limited to be of diagonal, block diagonal (bd), and full
multivariable structures.

The uncertainty ranges for RDGA calculated by random
jumping method are shown below in Eq.(16—18) for the
case of & =0.01, 0.1 and 0.25 respectively.

1<4,<1 0<4,<0 0</,,<0 |(16)
RDG=| 0.40< <043 0.38<f,,<044 0.16<f,,<0.19
-081< B, <076 0.60< B, <0.72 1.05< ;<121

lsﬂllsl OS,BIZSO OSﬂBSO (17)
RDG@ =] 0.28< ,821 <0.62 0.06< ﬂ22s0.68 0.02< ,823 <0.37
—1.15§ﬂ31§—0.54 0.08£ﬂ32§152 0.19£ﬂ33§2.01

124, <1 024,20 024520 118)
RDGA =| 0.16< f, <110 -1.16< f,) <107 -032< f,, <132
195 fy <030 -171< f) <402 -223< i <4l

As a comparison, Eq. (19-21) below are the results
computed by using Matlab Optimization Toolbox. It is
shown that wider ranges can be obtained compared to
previous results using random jumping method.
Therefore the GRDG analysis for uncertain system

14, <1 0<f,<0 0<f,<0 1(20)
RDGA) =| 0.28< B, <0.62 -0.11<f,)<0.74 -0.02< B,,<0.49
SL17< fy 053 -0.18< f) <177 -0.13< 3 <226

1<p, <1 0<f,<0 0<f,,<0 12n
RDGA4 =| 01554 <116 -351<f, <193 -108<f) <335
-2185 fi <028 -7.98< ) <860 -7.13< B <1116

GRDG analysis for the nominal model (Table 1) shows
that the block diagonal controller bd [(1,3),2] offers the
best disturbance rejection capability [7]. Small values of
GRDG elements are preferable since they reflect the
ratio of net load effect over the open loop load effect.
The GRDG values for the three cases of model
uncertainties are presented in Table 2.

For = 0.01, it is obvious from Table 2 that the block
diagonal controller bd [(1,3),2] will be recommended.
However, as the value of « increased to 0.1 and 0.25, it
can be predicted that bd [(1,3),2] will be no longer the
best choice. The performance of this control structure
may not be as good as the diagonal control structure.

Table 1. GRDG for the Nominal Model of the DL Column

) ) . Control Structure GRDG
presented in this paper will be based on the RDGA Diagonal [1.00 041 L13]"
results computed by Matlab Optimization Toolbox due bd [(1.2).3] [1'00 0.83 1'13]T
to 1ts accuracy bd [(1,3),2] [1.00 041  0.34]"

1<, <1 0<f,<0  0<p<0 |(19) bd [(2,3),1] [1.00 058  1.79]"
RDGAl =| 0.40< ﬂzl <044 037< ﬂ22 <045 0.15< ﬂ23 <0.20 Full [100 1.00 100]T

-0.82< 3, <-0.75 0.57<f,, <075 1.02< B3 <1.23
Table 2. GRDG for Uncertainty Models of the DL Column
Control structure a=0.01 a=0.1 a=0.25
Diagonal 1<, <1 1<6, <1 [ 1<6, <1
0.3695< 6, <0.4488 -0.1101< 6, £0.7390 —3.5142< 6, <1.9336
| 1.0215< 5, <1.2324 | —0.1254 < 6, <2.2611 | | —7.1287 <6, <11.1648 |
bd [(1,2),3] [ 1< <1 i 1<5,<1 ) 1<6, <1
0.7714 < 6, < 0.8842 0.1699 < 5, <1.3639 —3.3636< 5, <3.0956
| 1.0215 < 5, <1.2324 | -0.1254 < 6, <2.2611 | —7.1287 <6, <11.1648 |
bd [(1,3),2] 1<5 <1 1<6,<1 ) 1<, <1
0.3695 < 0, <0.4488 -0.1101< 5, £0.7390 -3.5142< 6, <1.9336
0.2045 < 8, <0.4782 ~1.2980< 5, <1.7356 |  [—9.3091< 6, <10.8822
bd [(2,3),1] 1<6,<1 ] 1<6,<1 1<6 <1 T
0.5188 <6, <0.6439 -0.1292 <, <1.2242 —4.5984 < 6, <5.2858
| 1.5899 <, <1.9803 | | —0.3017 < 6, < 4.0287 | | —15.1130 £ 6, £19.7644 |
Full [ 1<6, <1 1<, <1 1<6, <1
0.9207 < 8, <1.0793 0.1508 < 6, <1.8491 —4.4478 < 6, < 6.4478
| 0.7729 < 6, <1.2261 | | —1.4743 < 6; <3.5032 | —17.2934 <6, <19.4818 |
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Figure 1 shows that the maximum allowable a for this
system is 0.339 to avoid singularity of matrix K. Closed
loop simulation was then performed to evaluate the
control performance. PI controllers were used. For
tuning purpose, the system is disturbed by the sequence
of step disturbance as shown in Figure 2 and the
following set-point changes: y; set-point was changed
from 0 to 1 at £ = 450 min; y, set-point was changed
from 0 to -1 at ¢+ = 550 min; y; set-point was changed
from 0 to 1 at =650 min.

The output values are recorded for 1000 min simulation
time with 1 min sampling time. Table 3 shows the
controller parameters which were obtained via
optimization for both disturbance rejection and set point
tracking during the specified time by minimizing the
sum squared of error (SSE).

Simulations were then performed for the arbitrarily
altered process and disturbance gains (which reflect
model uncertainties) as follows:

G =Gy (l+a) Gy(l-a) Gyy(l+a) (22)
G31(1—a) G32(1+a) G33(1—a)

_ Gpl-a)

Gy =G r(+a) (23)
G3(-a)

The profile of the considered disturbance in simulation
is similar to that used for tuning purpose (Figure 2) but
with larger magnitude: Ad = +5 at ¢ = 50 min; Ad = +5
at = 150 min; Ad = -15 at t = 250 min; Ad =+5 at t =
350 min.

Figure 3 shows the results for three different values of a
ranging from 0 to 0.25. It is shown that closed loop
performance deteriorates as the level of model
uncertainties is increased. For a = 0.339 as shown in
Figure 4, the control structure bd[(1,3),2] with controller
parameters obtained based on the nominal model
obviously fails to achieve the required control objectives.

200

-200

det(K)
A
&
8

ool det(K) min

-1000
0

alpha

Figure 1. Range of det(K) vs a

GRDG analysis for uncertain models indicates that for
increased values of a (0.1 and 0.25) control structure
bd[(1,3),2)] may not be the best choice compared to the
diagonal control structure. In order to verify the above
analysis, closed loop performance was also investigated
for the diagonal control structure. Table 4 shows the
controller parameters which were obtained via
optimization for the diagonal control structure (y;-uy, y,
— Uy, y3 — Uz).

Table 3. Controller Parameters for the Control Structure

bd[(1,3),2]
Controller K. T;
Ge -1.14 36.55
Ges1 0.01 0.29
Ges -0.09 2.55
Gess 1.19 15.42
G 1.18 9.49

15+

0.5+

-1

. . . . . . . .
0 100 200 300 400 500 600 700 800 900
Time [min]

Figure 2. Profile of Disturbance for Controller Tuning
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Figure 3. Simulation Results for Example 2, bd[(1,3),2], (¥

setpoint, --—.——.—- yfora=0,-——-- y for e =0.1,
——yfor a=0.25)
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Figure 4. Simulation Results for Example 2, bd[(1,3),2],
=0.339, (=e=e=- y setpoint, —— y for a = 0.339)

Table 4. Controller Parameters for the Diagonal Control

Structure
Controller K. T;
Gen -1.15 33.32
Ge2 1.08 8.53
G133 1.17 13.29

Figure 5 shows the simulation results for three different
values of o (¢ = 0, 0.1 and 0.25). It can be seen that the
diagonal control structure with nominal controller
settings gives better performance than bd[(1,3),2] when
o = 0.25. The SSE values from the two different control
structures are presented in Table 5. It is shown that for
small values of a (¢ = 0 and 0.01), the control
performance of bd[(1,3),2] is better than that of the
diagonal structure, i.e. with lower SSE values. The
results support the above GRDG analysis that as the
value of a is increased to 0.1 or 0.25 (Table 4), it
becomes harder to see that bd[(1,3),2] is the best choice
or not.

The closed loop performance in term of SSE as
presented in Table 5 were obtained based on controller
setting for the nominal process (i.e. a = 0). However, for
uncertain systems, it is not necessary to find controller
settings for the nominal model. Table 6 provides
alternative controller settings for both bd[(1,3),2] and
diagonal structures which were obtained based on the
altered gains in Eq. (22) and Eq. (23) for different
values of a. Optimization tuning method was used to
obtained the best performance (minimum SSE) for each
case. Each set of controller setting was then tested on
other values of a and their closed loop performances in
term of SSE are compared in Table 7. The following
conditions are used for both tuning and simulation
purposes: 1) A series of step disturbance (Ad) = +1, +1,

-3 and +1 at £ = 50, 150, 250 and 350 min respectively,
2) y, set-point was changed from 0 to 1 at £ = 450 min,
3) v, set-point was changed from 0 to -1 at = 550 min,
4) y; set-point was changed from 0 to 1 at z = 650 min,
5) simulation time = 1000 min.

Closed loop performance comparison presented in Table
7 can be summarized as the following: 1) For controller
parameters which were obtained based on the altered
gains at a = 0.01, similar closed loop performance as
that using nominal model based settings are obtained.
On these settings, bd[(1,3),2] gives better performance
(smaller SSE values) when tested on low a values (0,
0.01 and 0.1) while the diagonal control structure gives
better performance on other a values, 2) Controller
parameters based on a = 0.1 also show that bd[(1,3),2]
is better when the system is tested on a =0, 0.01 and 0.1
for the specified altered process, 3) By using controller
parameters which were obtained based on a = 0.25, the
closed loop performance shows that the diagonal control
structure is better for all cases, 4) Both bd[(1,3),2] and
diagonal control structures give relatively similar SSE
values when tested on a = 0.1. This evidence support
the GRDG prediction that as the value of a increased to
0.1 and 0.25, it becomes harder to see that bd[(1,3),2] is
the best choice or not.
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Figure 5. Simulation Results for Example 2, Diagonal, a =
0,0.1and 0.25, ( ----- y setpoint, —-—.y fora =0, y
for a=0.1,—y for @ = 0.25)

Table 5. SSE Comparison between bd[(1,3),2)] and the
Diagonal Control Structure

o bd[(1,3),2] Diagonal
0 835.75 937.80
0.01 842.69 939.52
0.1 977.78 996.70
0.25 2238.6 1601.10
0.339 1.8131x10° 3314.60
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Table 6. Controller Parameters based on Different VValues

of a
o Control Controller K. T;
Structure
0.01 bd[(1,3),2] Gei -1.14 32.01
G 0.10 1.81
Ge1s -0.23 6.24
Ge33 1.26 15.17
Ge 1.19 8.76
diagonal Ge i1 -1.16 33.65
G 1.07 8.31
Ge33 1.18 13.43
0.1 bd[(1,3),2] Gt -1.20 41.09
Gesi 2.9896x10*  0.01
Ge1s -0.14 4.37
Ge33 1.38 15.49
Gen 1.11 7.55
diagonal G -1.23 37.13
Ge2 0.96 6.62
Ge33 1.30 14.24
0.25 bd[(1,3),2] G -1.14 33.35
Ge31 0.0011 1
Ge1s -0.19 21
Ge33 1.62 10.57
Gen 0.82 4.46
Diagonal G -1.25 37.42
Gen 0.73 4.25
Ge33 1.49 10.07

Table 7. SSE Comparison for bd[(1,3),2] and Diagonal
Structures for Different Controller

Control
Settings

a as controller a for closed loop bd[(1,3),2] diagonal

setting basis  performance test SSE SSE

0.01 0 32.85 37.41
0.01 33.09 37.46

0.1 38.05 39.50

0.25 116.39 60.53

0.339 12327 134.98

0.1 0 34.81 38.22
0.01 34.79 38.12

0.1 36.81 38.94

0.25 73.24 56.75

0.339 474.71 126.30

0.25 0 82.04 72.74
0.01 74.20 66.34

0.1 45.87 45.04

0.25 50.90 51.53

0.339 94.82 94.66

4. Conclusions

An alternative method for determining worst case lower
and upper bounds RDGA ranges for uncertain process
models is presented in this paper. Constrained
optimization is used to find the uncertain RDGA ranges.
The proposed method is applied to the ternary
distillation column. It is shown that the proposed
method is easy to use and gives accurate results. Closed
loop simulation results confirm the analysis based on
the proposed method.
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