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Abstract: This paper proposes a multi-objective evolutionary algorithm in 
maritime logistics collaboration of two liner shipping companies in  
joint-routing network design. The model is called the ship routing problem and 
two objectives being minimised are total cost and deviation in fair cost 
proportion. The method combines NSGA-II and the principles of effective 
genetic algorithms from the literature, and an example of application with data 
background from the Indonesian archipelago is demonstrated. Both the method 
and its application in real-life problems have never been encountered in 
academic publication, therefore this research has significant contribution and 
practical values on those fronts. Three dispersal mechanisms are tested with 
two different mutation probabilities and the results suggest that different rate 
supports different mechanism. Running times are longer in higher mutation 
rate, but in general the DV(1) mechanism is faster than both DL mechanisms. 
Non-dominated solutions are found and translated to joint routings of both 
carriers. 
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1 Introduction 

Maritime transportation can be considered as the backbone of world trade and economy. 
It is estimated that 90% of global freight are transported via shipping, using different 
types of vessels across the world’s oceans and through man-made waterways (Singapore 
Logistics Association, 2010). For countries with many islands and long shorelines, the 
role of maritime logistics is also critical for domestic transportation. The clear advantage 
of waterborne compared to land-based transportation is its efficiency in dealing with 
large volume of cargoes. An important segment in maritime logistics is liner shipping that 
deals with container ships. The fleet capacity of this segment is a mere 13% of the total 
world fleet capacity, much lower than that the other segments, e.g., bulk carriers (43%) 
and oil tankers (29%) (UNCTAD, 2014). However, in terms of monetary value, container 
ships are estimated to carry 52% of global seaborne trade, equivalent to more than US$ 4 
trillion worth of goods annually (World Shipping Council, 2014). Containers extend the 
advantage of shipping due to high variety of cargoes that can be handled. 

As in any other industry, shipping also faces challenges during economy downturn. 
For example, the 2008 recession led to a depressed market and caused a heavy imbalance 
of supply and demand in shipping. As reported in UNCTAD (2010; 2011; 2012), 
shipbuilding orders placed prior to 2008 were carried out to construction despite a drastic 
slump in the world economy and this resulted in excess global capacity in the subsequent 
years. Shipping companies embark on various efforts to respond such fierce challenges, 
and collaboration with other companies is one viable path. In liner segment, a common 
collaboration theme for liner companies is the formation of alliances to enlarge service 
coverage by taking advantage of the economies of scale. 

Collaboration entails certain impacts that should be evaluated. When companies form 
an alliance, the next strategic decision will be how to assign each company’s role and 
how to fairly divide the works in their operations to serve the aggregate market demands. 
A number of factors must be determined and investigated in this phase, e.g., how many 
vessels each company shall contribute to the joint fleet, what is the route of each vessel, 
what is the resulting total profit/cost and whether or not it is acceptable by the 
collaborating parties, etc. The answers to these questions are very important and will 
determine sustainability of partnership. However, studies in this area are still scant in the 
literature. Most of the studies in maritime logistics collaboration are on the qualitative 
side and only a few quantitative studies are encountered. 

This paper aims to fill that gap in the studies of maritime logistics collaboration. The 
scope of this paper is collaboration of two liner shipping companies in determining the 
routing of their fleet. Real-life problems are seldom one-dimensional and single-objective 
optimisation models are usually built by discharging some factors with assumptions 
and/or other simplification schemes. A multi-objective approach is therefore used in this 
study to bring the problem formulation and solutions closer to reality. The first objective 
is the natural minimisation of total cost. The second objective is a novel formulation of 
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fair distribution of the total cost. The rationale behind the second objective is to control 
the impacts of collaboration so that cost is not minimised in such an unfair proportion, 
sacrificing the interests of either of the companies involved. A case study using 
Indonesian archipelago for the data background is setup to evaluate the proposed method. 
Domestic/short-sea shipping is also lacking in maritime logistics literature, and this paper 
attempts to answer the call. 

To summarise, the objectives and contributions of this paper are threefold: 

1 to introduce the concept of multi-objective optimisation in maritime logistics 
collaboration, more specifically in joint-routing network design between two liner 
companies 

2 to propose a new method by combining the key concepts and strengths of already 
established methods but designed for a partial dimension of the problem presented in 
this paper, and to investigate its properties 

3 to show an application example of the proposed method in a domestic shipping of 
the Indonesian archipelago. 

To the best of our knowledge, the ideas behind these objectives have never been reported 
in any publication. The remainder of this paper is organised as follows: Section 2 reviews 
the literature related to maritime logistics collaboration, vehicle routing problem (VRP), 
and multi-objective VRP; Section 3 describes the problem, outlines a brief overview of 
the supporting methods, and details the proposed methodology; Section 4 discusses the 
results and findings; and Section 5 concludes the paper and discusses further research 
possibilities. 

2 Literature review 

Despite the fast growth of containership fleet, research in liner shipping partnership and 
collaboration is considerably marginal. Panayides and Wiedmer (2011) surveyed 17 
academic papers published between 1999 and 2010 in this area and indicated that the 
majority rests in qualitative ground using methods such as survey, interview, descriptive 
statistics, or empirical investigation, focusing on wider perspective such as motives for 
collaboration or strategy development. Quantitative studies, structured with mathematical 
modelling and analytical investigation on the technical how-to in the execution of the 
collaboration agenda, are even fewer. Agarwal and Ergun (2010) stated that only a few 
references on qualitative study on liner shipping alliances are available and a rigorous 
quantitative study is missing. 

From the perspective of the collaborating actors, a number of studies in maritime 
collaboration are attributed to the partnership of a shipping company and a port terminal 
rather than between two or more shipping companies. For examples, Boros et al. (2008) 
optimised the call cycle time of a shipping company to a port; Álvarez-SanJaime et al. 
(2013) investigated the strategic profitability of a shipping line if it owns a dedicated 
terminal; and Asgari et al. (2013) compared the competition and cooperation strategies 
between container hub-ports and shipping companies. Different from the above group, 
studies concerning company-to-company partnership with sound quantitative analysis 
include the following. Ding and Liang (2005) used a fuzzy multi-criteria decision making 
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approach to setup criteria and model in selecting partners for strategic alliances. Lei et al. 
(2008) compared three management policies in liner partnerships: the non-collaborative 
policy, the slot-sharing policy, and the total-sharing (the total collaboration) policy, and 
concluded that the sharing policies have lots of potential to offer. Yang et al. (2011) 
investigated the influence of increasing ship size to the stability of alliance by applying 
the core theory (cooperative game theory) to study the economic performance and 
stability of liner shipping alliance. Finally, Edisiringhe et al. (2015) studied collaboration 
between shipping lines through container interchange to deal with container inventory 
imbalance issue in Sri Lanka. 

Routing of fleet is typical research in logistics. The VRP, first introduced by Dantzig 
and Ramser (1959), is a subset in this field that researchers can turn to for a reference. 
Eksioglu et al. (2009) reported in their survey that the number of VRP articles between 
1985 and 2006 reaches 918. It is not possible to cite the massive literature on VRP; 
readers can refer to the general reviews by Cordeau et al. (2007) and Eksioglu et al. 
(2009), or specific reviews by Bräysy et al. (2005) for evolutionary algorithms for 
VRPTW; Gendreau et al. (2008) for metaheuristics VRP; Josefowiez et al. (2008a, 
2008b) for multi-objective VRP; El-Sherbeny (2010) for VRPTW; Archetti and Speranza 
(2012) for split-deliveries VRP; Vidal et al. (2013) for heuristics for  
multi-attribute VRP; and Lin et al. (2014) for trends in green VRP. 

Given the NP-hardness of VRP, researchers often turn to heuristics or metaheuristics 
in their approach. The following metaheuristic-based VRP studies are worth mentioning: 
multiple ant-colony system (MACS) (Gambardella et al., 1999; Silva and Leal, 2011), 
genetic algorithms (GA) (Prins, 2004, 2009; Ombuki et al., 2006), variable 
neighbourhood search heuristic (Imran et al., 2009), hybrid metaheuristic combining 
evolutionary computation and simulated annealing (Baños et al., 2013), and scatter search 
metaheuristic (Melián-Batista et al., 2014). These papers discuss multiple objectives 
VRPTW, except Gambardella et al. (1999), Imran et al. (2009), and Prins (2004, 2009). 
More specifically, Ombuki et al. (2006) and Silva and Leal (2011) formulated total 
cost/distance and number of vehicles as two objectives to be minimised, whereas Baños 
et al. (2013) and Melián-Batista et al. (2014) used total cost/distance and workload 
imbalance as the problem objectives. It should be noted that the last four works assume 
identical vehicles. For single-objective problems, the GA of Prins (2004) for VRP and 
Prins (2009) for heterogeneous VRP (HVRP; without considering fixed costs) deserve 
further spotlight. Prior to the author’s works, GAs for VRP had been considered inferior 
compared to other metaheuristics such as the tabu search (Gendreau et al., 2002). Prins’ 
GA uses tour-splitting procedure, dispersal mechanism, and local search mutation based 
on memetic algorithms. All these components form the strengths of the GA and are 
promising to be extended for multi-objective problems. 

Shipping companies usually own heterogeneous vessels in terms of speeds and 
capacities, and fixed cost is an important consideration due to high capital cost of a 
vessel. For liner shipping with published schedule, time windows are also very critical. 
To consider these factors altogether (heterogeneity of vessels, time windows, and fixed 
costs) bring much complexity in the VRP model, which is partly why VRP is rarely 
applied in maritime logistics and not many VRP studies can be found in the literature for 
maritime cases. Some research papers in this area are discussed as follows. Sambracos et 
al. (2004) formulated a VRP and list-based threshold acceptance (LBTA) meta-heuristic 
in a problem consisting of 13 ports (including a depot port) and 25 sea links. Karlaftis et 
al. (2009) used a hybridised GA on a hub-and-spoke routing problem for a VRP with 
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homogeneous vessels, pickups-deliveries, and time deadlines. Takano and Arai (2009) 
studied an 18-port hub-and-spoke network problem using GA for heterogeneous vessels. 
Romero et al. (2013) developed a greedy randomised adaptive search procedure 
(GRASP) for a ship routing problem added by a knapsack formulation to handle partial 
deliveries and applied the proposed algorithm in a Chilean sea for a salmon supplier 
company. Agra et al. (2013) developed a VRPTW model with uncertain travel times for a 
maritime transportation problem. Lastly, the work of Hsu and Hsieh (2007) also needs to 
be mentioned in this review. The authors studied routing, ship size, and sailing frequency 
under hub-and-spoke environment. Although not utilising any VRP model, the authors’ 
multi-objective approach is relevant to the main topic of this paper. 
Table 1 Taxonomy of reviewed VRP papers 

Author(s) (year) Scope of 
logistics 

Objectiv
e 

VRP 
class 

Type of meta-
heuristic 

Nature of 
vehicles 

Gambardella et al. 
(1999) 

General Single VRPTW MACS Identical 

Prins (2004) General Single VRP GA Identical 
Sambracos et al. 
(2004) 

Maritime Single VRP LBTA Identical 

Ombuki et al. 
(2006) 

General Multiple VRPTW GA Identical 

Hsu and Hsieh 
(2007) 

Maritime Multiple - - Heterogeneous 

Imran et al. (2009) General Single HVRP VNS Heterogeneous 
Karlaftis et al. 
(2009) 

Maritime Single VRPPD GA Identical 

Prins (2009) General Single HVRP GA Heterogeneous 
Takano and Arai 
(2009) 

Maritime Single - GA Heterogeneous 

Silva and Leal 
(2011) 

General Multiple VRPTW MACS Identical 

Agra et al. (2013) Maritime Single VRPTW - Heterogeneous 
Baños et al. 
(2013) 

General Multiple VRPTW Hybrid Identical 

Romero et al. 
(2013) 

Maritime Single VRPTW GRASP Heterogeneous 

Melián-Batista et 
al. (2014) 

General Multiple VRPTW Scatter search Identical 

The metaheuristic VRP studies reviewed in this section are summarised in the taxonomy 
presented in Table 1. It is clear from Table 1 that a gap is apparent for research in 
maritime logistics collaboration with multi-objective setting and a metaheuristic 
approach. Furthermore, a more specific VRP variant that considers distinct attributes of a 
ship routing problem, i.e., heterogeneous vehicles, time windows, and fixed costs, is also 
lacking from the literature. This paper aims to develop a methodology for such problems. 
To adapt the context of VRP in a ship routing problem, few terminologies must be 
adjusted. The term ‘vehicle’ will be replaced with ‘vessel’, ‘city’ with ‘port’, and 
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‘variable cost’ with ‘bunker cost’. For the purpose of numerical experiments, its 
application in short-sea shipping (Indonesian archipelago) characterised by such 
attributes will be demonstrated. 

3 Problem definition 

This section is divided in two sub-sections. The first sub-section describes the problem 
and its pertinent data, followed by the next sub-section with the formulation of 
heterogeneous VRP with time windows (HVRPTW). 
Table 2 Data of vessels 

Carrier A 

Type Capacity 
(TEUs) 

Speed 
(knots) 

Weekly fixed 
cost (USD) 

Bunker cost 
per nm (USD) 

Units 
available 

Total 
capacity 

A1 400` 13.0 81,638.20 3.53 1 400 
A2 500 13.5 84,756.00 4.02 2 1,000 
A3 650 16.5 89,432.70 7.54 2 1,300 
A4 850 14.0 95,668.30 4.77 1 850 
Total     6 3,550 

Carrier B 

Type Capacity 
(TEUs) 

Speed 
(knots) 

Weekly fixed 
cost (USD) 

Bunker cost 
per nm (USD) 

Units 
available 

Total 
capacity 

B1 450 13.5 83,197.10 3.98 1 450 
B2 700 16.5 90,991.60 7.61 1 700 
B3 850 17.5 95,668.30 9.32 1 850 
Total     3 2,000 

3.1 Problem description 

Two domestic liner shipping companies operate from the same depot and serve several 
ports/cities in the Indonesian archipelago. Both companies (carriers) plan to collaborate 
by joining their service routes via capacity sharing to increase the utilisation of their 
vessels. Capacity sharing means Carrier A will allocate a portion of its capacity to be 
used by Carrier B going to a number of ports-of-call, such that Carrier B does not have to 
use its own vessels going to the same destination (except if the demand is high and 
cannot be served by one vessel), and vice versa. The problem on hand is how to design 
the new joint routing network resulting from the collaboration, optimising two objectives; 
namely, total costs and fairness in cost-sharing distribution. The first objective is 
straightforward and typical in optimisation programming. This objective is preferred over 
profit maximisation since all demands are assumed to be satisfied, thus the same amount 
of profit will be generated. The second objective is part of the novelty of this paper, and 
its formulation is motivated by the collaboration background in the problem. The idea is, 
while costs are minimised, the distribution of total cost should be in a fair proportion that 
is acceptable by the collaborating parties. 
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The carriers are of different sizes: Carrier A is larger than Carrier B in terms of fleet 
size and port demands. Carrier A owns six vessels and Carrier B has three vessels, all in 
the category of feeder vessels with capacities in the range of 400 to 850 TEUs (20-foot 
equivalent units) and speeds in 13–17.5 knots. The costs of vessels are extrapolated from 
those of larger ships in Stopford (2009), without inflation adjustment. Two cost 
components include weekly fixed/overhead costs and variable costs measured as bunker 
cost per nautical mile at a certain speed. Data of vessels are listed in Table 2. Note that 
the fixed costs are relatively high and therefore they cannot be ignored as in the case with 
most VRP studies. 

Data of ports-of-call are listed in Table 3 and the geographical spread of the cities is 
shown in Figure 1. Port demands are estimated from OECD (2012) where domestic 
throughputs of containers are reported. The figures are converted to weekly demands and 
2.5% is assumed for the demand of Carrier A and 1.25% for Carrier B. Demand of 
Jakarta is very large and cannot be served by any of the vessel in the combined fleet, thus 
for simplicity it is evenly split and half of it is assigned to a dummy city at the same 
coordinate, making a total of 13 ports-of-call excluding the depot Surabaya. Service times 
are incurred in ports by a constant of eight hours plus a fixed 40-container-per-hour 
unloading times, except for the depot where only eight hours of service time are assumed. 
Finally, time windows are formulated as due dates of the ports-of-call. Only upper time 
windows that represent due dates are formulated and none of these due dates exceeds 
seven days, hence corresponds to a weekly liner service which is equivalent to the period 
of demands. 

Figure 1  Map of Indonesia with cities being studied (see online version for colours) 

 

 

Distances between ports are measured using distancecalculator.globefeed.com. These are 
Euclidean distances and therefore need to be adjusted to reflect sea distance instead of 
land distance, e.g., between Ptk and Smr/Bpn. Adjustment factors are within the range of 
103%–180% and triangular relationships are maintained in all distances. Data of 
distances are detailed in the following URL: http://ti.ubaya.ac.id/index.php/component/ 
content/article/24-dosen/177-wibisono-jittamai-2015.html. 
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Table 3 Data of ports 

No. City Abbrev. 
Due 
date 

(hours)

Carrier A Carrier B Total 

Demand 
(TEUs) 

Port 
time 

(hours)

Demand 
(TEUs) 

Port 
time 

(hours)

Demand 
(TEUs) 

Port 
time 

(hours) 
1 Samarinda Smr 66 46 9.15 23 8.58 69 9.73 
2 Balikpapan Bpn 66 17 8.43 8 8.20 25 8.63 
3 Banjarmasin Bjm 54 57 9.43 28 8.70 85 10.13 
4 Kendari Kdi 90 7 8.18 0 0 7 8.18 
5 Makassar Mks 66 119 10.98 60 9.50 179 12.48 
6 Ambon Amb 108 7 8.18 0 0 7 8.18 
7 Tarakan Tar 108 8 8.20 0 0 8 8.20 
8 Bitung Bit 126 30 8.75 15 8.38 45 9.13 
9 Medan Mdn 126 134 11.35 0 0 134 11.35 
10 Pontianak Ptk 90 48 9.20 0 0 48 9.20 
11 Jakarta1 Jk1 78 400 18.00 200 18.00 600 23.00 
12 Jakarta2 Jk2 78 400 13.00 200 13.00 600 23.00 
13 Batam Btm 102 13 8.33 0 0 13 8.33 

Total   1,286  534     

3.2 Heterogeneous VRP with time windows (HVRPTW) 

A VRP is commonly represented as a complete undirected graph ( , )=G N  A  with a 
node set (0,1, , )N= …N  and an arc set A�. Node 0 is the depot and the remaining nodes 

\{0}∈C N  represent the customers, each of which has a non-negative demand. A  
non-negative travel cost ci,j is associated with each arc ( ,  )i j ∈A  and corresponds to the 
cost incurred for traversing the arc. The problem is called a symmetric VRP if ci,j = c j,i 
for all arcs in A�. A VRP problem statement is to determine a set of vehicle trips that 
optimise certain objective(s), such that: 

1 each vehicle starts from and returns to the depot 

2 each customer is visited exactly only once 

3 total demand in each trip does not exceed the vehicle capacity. 

In a VRPTW, customer i has to be visited within a certain time frame [ei, li] where ei is 
the earliest time and li > 0 is the latest time of a visit. A single-sided time window ei = 0 
and li > 0 is equivalent to imposing a due-date to the service. In liner shipping where 
schedule is a key attribute, arrival times at the ports-of-call are important part of the 
service for the customers. Define set V  as the set of vessels indexed by ν, each vessel 
has capacity Cν, fixed cost fν, and variable cost ,

ν
i jc  The demands to be satisfied in C  are 

represented by Di. Before presenting the formulation, the following sets and parameters 
need to be defined. 
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C  set of carriers, indexed by a 

V  set of vessels of carrier a, indexed by ν 

A  set of arcs (i, j) denoting a flow from port i to port j 

N  set of all ports {0,1 , }; {0}N= …N  is the depot 

P  set of customers, or \{0}N  

fa,v weekly fixed cost of vessel ν of carrier a 
,

,
a v
i jc  travel cost of vessel ν of carrier a if it goes from port i to port j 

,
,
a v
i jt  travel time of vessel ν of carrier a if it goes from port i to port j 

Ca,v capacity of vessel ν of carrier a 

Di total demand of all carriers at port a 

Ti due date of ship arrival time at port i 

pi service time at port i 

M a large constant 
,

,
a v
i jx  binary variables for vessel ν of carrier a in arc ,

,( , ); 1a v
i vi j x =  if the vessel traverses 

arc (i, j) and equals 0 otherwise 
,a v

is  time window for vessel ν of carrier a at port i. 

The multiple carriers HVRPTW can be formulated as follows: 

, , ,,
, ,0,

,

Minimise a v a v a va v
i j i jj

a ν j i j

f x x c
∈ ∈ ∈ ∈

⎛ ⎞⋅ + ⋅
⎜ ⎟
⎝ ⎠

∑∑ ∑ ∑
C V A A

 (1) 

Subject to: 
, ,

,
,a

a v a v
ii j

a v i j

x c D i
∈ ∈ ∈

⋅ ≥ ∀ ∈∑∑ ∑
C V A

P  (2) 

, ,
, ;a v a v

i ai j
i j

D x C a ν
∈ ∈

≤ ∀ ∈ ∈∑ ∑
P N

C V  (3) 

, ,
, , 0 ; ;a v a v

i k k j
i j

x x k a v
∈ ∈

− = ∀ ∈ ∈ ∈∑ ∑
N N

P C� V  (4) 

,
0, 0 ; ;a v

ajx i a v= ∀ ∈ ∈ ∈N C V  (5) 

, ; ;a v
i ais T i a v≤ ∀ ∈ ∈ ∈P C V  (6) 

, , , ,
, ,(1 ) ; ; ;a v a v a v a v

i ai i j i j js t p M x s i j a v+ + − − ≤ ∀ ∈ ∈ ∈ ∈N P C V  (7) 

, , , ,
, ,(1 ) ; ; ;a v a v a v a v

i ai i j i j js t p M x s i j a v+ + − − ≤ ∀ ∈ ∈ ∈ ∈N P � C V  (8) 
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,
, {0,1} , ; ;a v

ai jx i j a v∈ ∀ ∈ ∈ ∈A� C V  (9) 

,
0 0 ;a v

as a v= ∀ ∈ ∈C� V  (10) 

, 0 ; ;a v
ais i a v≥ ∀ ∈ ∈ ∈N C V  (11) 

The objective function (1) minimises total cost that is composed of the fixed cost if a 
vessel is used, and the variable cost derived from the travel cost. Constraints (2) and (3) 
warrant demand fulfilment in each port without violating capacity of the vessel used. 
Constraints (4) balance the incoming and outgoing trips in each port. The next two sets of 
constraints regulate the trips by preventing looping in the same node in (5) and assigning 
not more than one tour to one vessel in (6). 

Time windows are formulated by introducing variables ,a v
is  that represent the time 

vessel v of carrier a starts to service customer i. Constraints (7) are the upper-bound of 
,a v

is  and constraints (8) indicate that a vessel cannot arrive at port j before 
, travel time from port  to port service time at port .a v

is i j i+ +  If arc (i, j) is not traversed 

by vessel v of carrier ,
,( 0),a v

i ja x =  the constraints become redundant due to M. Sub-tour 
breaking constraints are not required as their function is replaced by constraints (7) and 
(8). The rest of the equations describe the nature of decision variables. Variables ,

,
a v
i jx  are 

binary integer and ,a v
is  are continuous, thus the model is a mixed integer programming. 

4 Methodology 

In this section, the first sub-section presents overview of the basic methods that form the 
foundation of the proposed method. The proposed method will be outlined afterwards. 

4.1 Overview of the basic methods 

In addition to the linear programming formulation, this paper proposes a new method 
inspired by two different methods, each of which is oriented towards a different 
background of the problem. First, NSGA-II (elitist non-dominated sorting genetic 
algorithm) from Deb et al. (2000) will be used to tackle the multi-objective part. Second, 
aggressive but effective GA for VRP/HVRP from Prins (2004, 2009) will be responsible 
for the routing part. The strengths of these two methods are combined and used to build a 
method to find the Pareto optimal set of the particular problem discussed in this paper. 
The method can therefore be considered as a hybrid multi-objective metaheuristic. 

4.1.1 Elitist non-dominated sorting genetic algorithm (NSGA-II) 
One approach in multi-objective optimisation (MOO) is finding a set of  

non-dominated solutions, also called the Pareto set. Non-dominated set is defined as 
follows. Suppose we have two objective functions f1 and f2, both are to be minimised, and 

1
1f  and 1

2f  are the solutions of decision vector x1 for f1 and f2, respectively, and 2
1f  and 

2
2f  are the solutions of decision vector x2 for f1 and f2, respectively. It is said that x1 
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dominates x2 if at least one component of f1 is smaller than the corresponding component 
of f2 and none is greater. If, for example, 1

1f  is smaller than 2
1f  but 1

2f  is greater than 
2

2 ,f  or on the contrary, 1
1f  is greater than 2

1f  but 1
2f  is smaller than 2

2 ,f  no solution 
dominates the other and these are referred as the Pareto or non-dominated set of optimal 
solutions (Zitzler et al., 2003). Another approach in MOO is by assigning a weight vector 
to the objective functions, thereby allowing aggregation of the objectives into a single 
function and transforming the problem to a single-objective optimisation. However, in 
reality, quantifying such precise weights is all but a simple task even for experienced 
users in the field. The Pareto approach is free from such problem and it returns several 
alternative solutions to the decision makers who can exercise other higher-level 
considerations that probably have not been embedded in the model. This approach is 
more practical especially when decision makers are indecisive of the weights or when a 
trade-off relation of objective functions is not a priori known. 

Figure 3  Example of order crossover operator 

    i = 4  j = 6    
    ↓  ↓    
P1 : 4 8 7 3 6 5 2 10 9 
P2 : 3 5 4 2 7 9 10 8 6 
          
C1 : 2 7 9 3 6 5 10 8 4 
C2 : 3 6 5 2 7 9 4 10 8 

NSGA-II is an MOO technique based on evolutionary search algorithm proposed by Deb 
et al. (2000) as a refinement from the earlier version of the algorithm called NSGA from 
Srinivas and Deb (1994). A significant difference between the two methods is that 
NSGA-II uses an elite-preserving mechanism to prevent good solutions from being 
discarded by the genetic operators during iterations. After an initial parent population is 
generated, crossovers are performed to produce child population. Both populations are 
then combined and a number of best solutions, dictated by population size, from the 
combined population are carried out to the subsequent iterations. NSGA-II classifies 
population members based on ranks and distance measures which set the criteria to 
determine best solutions. The procedure is called crowding distance selection, and its 
intuitive explanation can be described by referring to Figure 3. In this Figure, the shaded 
area is the feasible region in the solution space of two objective functions f1 and f2, and 
the true Pareto front for a min-min problem (minimisation of both objective functions) is 
indicated by the bold curve line A-B. From any point of solution in the feasible region, 
the search in NSGA-II progresses towards the Pareto front A-B. The algorithm sorts the 
solutions based on non-domination principles and assigns a rank to each non-dominated 
front. In Figure 3, in addition to A-B, two Pareto fronts are depicted, i.e., lines a-e and 1–
3. The line a-e has a higher rank than line 1–3 because it is closer to the true Pareto front  
A-B, so with population size of five, solutions a, b, c, d and e will pass to the next stage 
and become the new parent population whereas solutions 1, 2 and 3 will be eliminated. 

If the population size is less than five, the solutions a-e compete and this is where the 
distance measures have their role. In addition to progressing as close as possible (and as 
fast as possible) to the true Pareto front, another concern in any MOO technique is the 
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spread of the found Pareto members. The wider is the spread, the higher is the quality of 
solutions. As seen in Figure 3, solutions a and e that lie in the edges of the highest-rank 
Pareto front are given highest distance measure to guarantee them of being selected to the 
next iteration. Solutions in the ‘inner’ part of that front (b, c, d) are given distance 
measures based on how crowded their locations are relative to the adjacent solutions. 
Using this principle, following solutions a and e, the descending order of the remaining 
solutions in that front is d, c and b. Therefore, if only four solutions are to be taken to the 
next round, solutions 1, 2, 3 and b will be left out. 

4.1.2 Prins’ genetic algorithm 

Prins (2004) developed a simple yet effective GA for the basic VRP and extended his 
work for HVRP (Prins, 2009). The strengths of the GAs come from the formulation of 
tour-splitting procedure called Split, dispersal mechanisms to prevent identical solutions 
(clones) in the population, and mutation operator using local search. The first component 
helps partition the chromosomes into feasible trips while the latter two components are 
the key for faster convergence of the GAs to the best solution. 

Split transforms the original distance matrix of cities to an acyclic auxiliary graph 
( , ),=H N A  then works on this graph as a minimum-cost path problem. The purpose of 

the procedure is to partition a chromosome of permutation of ports (without trip 
delimiters) to a set of feasible trips. Feasibility of the trips can be tested against 
constraints such as vessel capacities, time windows, etc. For HVRP cases, complexity of 
the problem increases and necessitates a dynamic programming approach. The increasing 
complexity also leads to possibility for infeasible splitting. 

The population is managed using some kind of memetic algorithm with two integral 
components: dispersal mechanisms and local search mutation. In Prins (2009), two types 
of dispersal mechanism are tested. The first mechanism measures the distance d(A, B) as 
the number of pairs of adjacent cities in chromosome A that are no longer adjacent in 
chromosome B. Suppose A = (1, 2, 3, 4, 5) and B = (3, 1, 4, 5, 2), then (1, 2), (2, 3) and 
(3, 4) are no longer adjacent in B, thus d(A, B) = 3. Given D(P, C) as the minimum 
distance of a new chromosome C to population P and a non-negative threshold distance 
limit (DL), C is accepted as a population member if and only if (12) holds, where n = 
number of cities. The value of DL changes throughout GA generations, either 
increasingly or decreasingly, proportionate to the number of iterations. For example, with 
n = 13, 50 generations, and increasing DL, DL = 1 would be assigned for generations 1 to 
16, DL = 2 for generations 17 to 32, and DL = 3 for the rest. 

{ }( , ) 1..0.25 ( 1)D P C DL DL n> ∈ × −  (12) 

The second mechanism is controlled by a parameter called the dispersal value (DV) that 
also serves as a threshold for accepting new population members. The gap of fitness 
value between the new chromosome C and all other chromosomes in population P is 
measured and C is accepted if and only if (13) holds, or in other words if the fitness-value 
gap of the new chromosome C and each of the other chromosomes in P is larger than the 
DV (pt = chromosome number t in the population; S = population size). 

( )( ) 1..tF C F p DV t S− > ∀ =  (13) 
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The dispersal mechanisms as explained above maintain the population on being spaced, 
which is an important factor for faster convergence of the search process. Another trick in 
the population management of Prins’ GA is the inclusion of several good chromosomes 
at the start of iterations so the search has a good several starting points. This is achieved 
by employing some heuristics in GA for VRP (Prins, 2004) and random generation of 
chromosomes followed by Split in GA for HVRP (Prins, 2009). 

In the main iterations, binary tournament is performed to select two parent members. 
These parents then ‘mate’ using order crossover (OX) operator (see an example in Figure 
3 with crossover points at the 4th and 6th nodes) to produce two children, but only one will 
be selected and join the population if it satisfies the spaced criteria as regulated by the 
dispersal mechanism. A mutation process is triggered with probability pm and it alters the 
chromosome structure of the new child. The mutation operator uses a local search that 
works by scanning the O(n2) neighbourhoods of n (cities) via a sequence of moves as 
shown in Figure 4. Each time an improvement is made by any move, the process restarts 
from move one and it goes on until no improvement can be made by the last move. This 
version of local search is called LS1 and works well on HVRP cases where all vehicles 
are used. Further local search is possible by considering changes of the trips’ vehicles. 
This is called LS2 and it works by scanning both the O(n2) neighbourhoods of n (cities) 
and O(k2) neighbourhoods of k (vehicles). The complexity of LS1 is O(n2) but that of LS2 
is O(n2k2) since the latter scan takes place inside the former. In other words, LS2 is more 
powerful than LS1 but much slower. 

Figure 4 Local search mutation operator 

LS1: u and v are nodes in different trips; x is the successor of u, y is the successor of v 
M1. Relocate u to a different trip, 
M2. Swap u and v, 
M3. Replace (u; x) and (v; y) by (u; y) and (v; x), 
M4. Replace (u; x) and (v; y) by (u; v) and (x; y). 
  
LS2 = LS1 + the following: 
F is the set of free vehicles; T1 and T2 are two different trips 
M1. The two trips exchange their vehicles, 
M2. T1 gives its vehicle to T2 and takes one in F, 
M3. T2 gives its vehicle to T1 and takes one in F, 
M4. Both T1 and T2 exchange their current vehicle with a free one. 

4.2 Model development 

One of the objectives of this paper is to introduce the concept of multi-objective 
optimisation in maritime logistics collaboration, more specifically in the scope of  
joint-routing network design. There have been a number of studies on multi-objective 
VRPTW as discussed in Section 2, but none considers the use of heterogeneous vehicles 
that also considers fixed costs because they are not oriented toward the applications in 
maritime logistics. Furthermore, in some of the studies, in addition to the natural total 
cost/time/distance minimisation as the first objective, the second objective is formulated 



   

 

   

   
 

   

   

 

   

   238 E. Wibisono and P. Jittamai    
 

    
 
 

   

   
 

   

   

 

   

       
 

as minimisation of the number of vehicles. If the fixed cost of vehicles is very significant 
as in the case in shipping, these two objectives will be very likely correlated and the 
problem can be treated as a single-objective problem. 

In this paper, we propose a second objective that reflects a fair distribution of the total 
cost. Such a distribution is considered fair if its proportion is in line with the proportion 
of the capital contributed to the joint operations. The deviation between the targeted and 
actual total costs of each carrier is calculated, summed for all carriers, and subject to 
minimisation. Wibisono and Jittamai (2015) proposed the idea of this sharing policy and 
named it proportionate-sharing policy. The authors also showed that the policy leads to a 
smaller variance compared to the other sharing policies, thus is more reliable for 
planning. Before moving forward with formulation of the objectives, we need to 
introduce the parameters qA as the cost proportion of Carrier A and qB = 1 – qA as the cost 
proportion of Carrier B. Recall in our data in sub-section 3.1 that Carrier A contributes six 

vessels and Carrier B contributes three vessels to the joint fleet, thus 2
3Aq =  and 1 .

3Bq =  

The total cost in equation (1) needs to be broken down for each carrier to ease readability 
and we have (14) for the total cost of Carrier A and (15) for the total cost of Carrier B. 

, , ,,
, ,0,

,A

a v a v a va v
Ai j i jj

v j i j

f x x c TC
∈ ∈ ∈

⎛ ⎞⋅ + ⋅ =
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
V A A

 (14) 

, , ,,
, ,0,

,B

a v a v a va v
Bi j i jj

v j i j

f x x c TC
∈ ∈ ∈

⎛ ⎞⋅ + ⋅ =
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
V A A

 (15) 

( )A A A B ATC q TC TC δ− + =  (16) 

( )B B A B BTC q TC TC δ− + =  (17) 

Define δA as the total cost of Carrier A minus its targeted proportionate cost (16), and, 
likewise, δB for the total cost minus the targeted proportionate cost of Carrier B (17). 
Now, we are ready to formulate the dual objectives of the problem as follows, subject to 
the same set of constraints (2) to (12): 

Minimise A BTC TC+  (18) 

Minimise A Bδ δ+  (19) 

The second objective function (19) minimises total absolute deviation of discrepancies 
between carrier’s fair cost proportion and carrier’s total cost. This equation is nonlinear 
but can be transformed to a linear form using (20)–(22). 

Minimise Minimise max. { , } Minimise a b a b b a y− = − − =  (20) 

y a b≥ −  (21) 

y b a≥ −  (22) 

The single-objective HVRPTW in 3.2 is run to find the optimal route of each carrier 
separately using each carrier’s data of vessels and demands. The resulting total costs of 
all carriers are summed and compared to the joint-routing total cost to validate the 
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financial impact of collaboration. Next, the dual-objective HVRPTW is minimised and 
maximised on each objective. The obtained minimum values on each objective are none 
other than points A and B in Figure 2, i.e., the extreme points in the true Pareto front. 
These two solutions alone may not suffice as decision alternatives given their extreme 
nature where one best solution is achieved at the expense of the other. However, these are 
nonetheless true Pareto points, therefore cannot be ignored. As part of the elitism 
principle of NSGA-II, these solutions will be included and always kept as population 
members. As to the maximum values, these are needed as required parameters in the 
crowding distance procedure of the algorithm. Lingo 11.0 on an Intel i5-2430M processor 
running at 2.4 GHz and 4 MB of RAM on Windows 7 Ultimate is used for the above 
optimisation. 

Figure 2 NSGA-II ranking principles (see online version for colours) 

f1

f2

A

B

a

b

c

d
e

1

2

3

 

After the key parameters are found by means of optimisation, the search algorithm is 
performed using Matlab R2100b on the same computer. The algorithm is developed by 
combining the principles of NSGA-II for the multi-objective part and Prins’ GA for the 
evolutionary search process. The main algorithm is detailed in Figure 5. After input data 
and parameters are read, the parent population is initialised. The population is halved and 
each group weighs on each objective. This approach is necessary because on every 
solution (chromosome) that is generated by random permutation, Split is called to form 
the trip partition and the procedure needs to know on what ground a good partition should 
be constructed. Population number one uses the minimum-cost solution already found by 
the linear programming optimisation. Population number two is built with the ray 
heuristic that works by forming a rotating ray centred at the depot with the zero degree 
starts at West. This heuristic is very suited to the problem given the relative position of 
the depot to the other ports where the depot is centrally located. A cost-based Split 
(splitcost) is then performed on this second chromosome. The inclusion of good solutions 
in the initial population can help jump-start the search exploration. Population number 
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three up to half of the population size are generated randomly, each is evaluated by Split 
and spaced criteria according to the dispersal mechanism being used. The other half of 
parent population are generated in a similar fashion: population number (halfpop + 1) 
uses the minimum-deviation solution; population number (halfpop + 2) uses ray heuristic 
evaluated by deviation-based Split (splitdevn); and the rest of the population use random 
generation, evaluated by splitdevn and spaced criteria. 

Figure 5 MOEA-HVRPTW main algorithm 

01. read input data and parameters; halfpop = popsize / 2; 
02. initialise parent population: 
 a) parent #1: mincost; 
 b) parent #2: ray heuristic, splitcost; 
 c) parent #3 – parent #halfpop: random, splitcost(feasible, spaced); 
 d) parent #(halfpop + 1): mindevn; 
 e) parent #(halfpop + 2): ray heuristic, splitdevn; 
 f) parent #(halfpop + 3)–parent #popsize: random, splitdevn(feasible, spaced); 
03. initialise child population by binary tournament and order crossover: 
 a) child #1–child #halfpop: bintourn, OX, splitcost(feasible, spaced); 
 b) child #(halfpop + 1)–child #popsize: bintourn, OX, splitdevn(feasible, spaced); 
04. for iter = 1:maxiter 
05. combine parent population and child population; 
06. select members from the combined population to create new parent population; 
07. create new child population using modified crowded tournament; 
08. end 

Afterward, a population of child is initialised. The regular binary tournament is applied to 
select two parents to produce offspring using order crossover operator. As in the parent 
initialisation, splitcost, splitdevn and spaced criteria are the backbone of the process. 
With one parent population and one child population, the iterations can start. These are 
executed through lines 04 – 08, which are standard NSGA-II iterations except for line 07 
where some principles of Prins’ GA are inserted in the algorithm to form the modified 
crowded tournament. The pseudo-code of this procedure is listed in Figure 6. 

The pseudo-code in Figure 6 is more detailed than that of the main algorithm in 
Figure 5 for better clarification of this important procedure. The code is listed for the 
creation of only half of the targeted new child population. The creation of the other half is 
a replication and the only change needed is to replace splitcost with splitdevn so each half 
of the new child favours each of the two objectives. 

The parent population becomes an input to this procedure. Two parents are selected 
randomly, then compete via the crowded tournament. The working principle of crowded 
tournament is basically as explained on Figure 2: two chromosomes are compared based 
on their ranks; if the ranks are equal, then their distance measures become the deciding 
criteria. Two random parents again compete and the two winners perform crossover to 
produce child chromosome C (lines 5–6). Splitcost then detects whether C can be feasibly 
partitioned into trips (lines 7–10) and if successful, the rest of the lines are executed. If 
mutation is triggered, C is improved by a local search on trip and vessel exchanges, and 
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temporarily copied to M (lines 11–12). Next, M is compared to all members of the  
first-rank Pareto set on its non-domination status. If M is not dominated by all first-rank 
Pareto members, then it is marked for acceptance (lines 13–15). This test is called 
overriding rule since if it is passed, spaced requirement is no longer checked. 

Figure 6 Modified Crowded tournament procedure (for half population) 

01. ctrchld = 1; 

02. while ctrchld <= halfpop 

03.  nosplit = true; spaced = false; 

04.  while nosplit and not(spaced) 

05.   select two parents by crowded tournament; 

06.   apply OX to produce new child C; 

07.   splitcost(C, feasible); 

08.   if feasible 

09.    nosplit = false; 

10.   end 

11.   if not(nosplit) and randnum < pm 

12.    M = mutation(C); 

13.    if M belongs to Pareto rank 1 

14.     mutoverride = true; else mutoverride = false; 

15.    end 

16.    if not(mutoverride) 

17.     check spaced against both parent population and child population; 

18.     if spacedprnt and spacedchld 

19.      mutspaced = true; else mutspaced = false; 

20.     end 

21.    end 

22.    if mutoverride or mutspaced 

23.     C = M; 

24.    end 

25.   end 

26.   if not(nosplit) 

27.    if C belongs to Pareto rank 1 

28.     override = true; else override = false; 

29.    end 

30.   end 

31.   if not(nosplit) and not(override) 
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Figure 6 Modified Crowded tournament procedure (for half population) (continued) 

32.    check spaced against both parent population and child population; 
33.    if spacedprnt and spacedchld 
34.     spaced = true; else spaced = false; 
35.    end 
36.   end 
37.  end %while 
38.  if (not(nosplit) and override) or (not(nosplit) and spaced) 
39.   accept C in new child population; 
40.   ctrchld = ctrchld + 1; 
41.  end 
42. end %while 

If the new mutated chromosome M does not belong to the first-rank Pareto, it is tested for 
spaced criteria against both parent and child populations (lines 16–21). If either of the 
overriding or spaced tests passes, M is copied back to C (lines 22–24). The temporary 
copy of C to M is necessary since if mutation is not triggered, C is subject to the same 
tests for overriding rule (lines 26–30) and spaced criteria (lines 31–36). Finally, if either 
of the tests on C passes (and Split is feasible from the beginning), lines 38–41 perform 
acceptance of the new chromosome to the new child population, and a counter is 
increased for the next generation process. 

The next section reports the experiment results and discusses key findings from the 
running of the algorithm. 

5 Results and discussions 

The results of linear programming optimisation are reported in Table 4. Table 4 shows 
that the collaborative joint-routing results in lower total cost compared to the total cost if 
the carriers work independently. Another observable point is the comparison of the 
minimisation results of each objective separately under collaboration, or the comparison 
of the two extreme Pareto points. When only the total cost is minimised, the deviation is 
not concurrently minimised, and the routing suggests that Carrier B is forced to use two 
of its most expensive vessels (those with the highest capacity). On the other hand, when 
only the deviation is minimised, even near to non-existent, the total cost shoots up as both 
carriers are scheduled to route all their vessels. This suggests a conflicting nature between 
the two objectives, and other non-dominated alternative solutions are worth exploring 
using the algorithm developed in the previous section. 

Various scenarios involving different dispersal mechanisms and controlled 
parameters are tested. Three dispersal mechanisms are used and named DV(1), DL(+), 
and DL(–). The DV(1) mechanism uses a dispersal value of 1 and run for 50 generations. 
The DL-based mechanisms use increasing (or decreasing) distance limits from 1 to 3 (or 
3 to 1), equally spread on 50 generations. 
 

 



   

 

   

   
 

   

   

 

   

    Multi-objective evolutionary algorithm for a ship routing problem 243    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 4 Results of linear programming optimisation 

Per-carrier optimisation 
Carrier A: Minimise cost Carrier B: Minimise cost 
Cost: $589,605.50 Cost: $304,554.90 
Total Cost: $894,160.40  

Routing: Routing: 
A1: Sby→Btm→Mdn→Sby B1: Sby→Jk2/Jk1→Sby 
A2: Sby→Bpn→Bit→Sby B2: Sby→Bpn→Smr→Bit→Sby 
A2: Sby→Smr→Tar→Sby B3: Sby→Bjm→Mks→Sby 
A3: Sby→Bjm→Ptk→Sby  
A3: Sby→Mks→Kdi→Amb→Sby  
A4: Sby→Jk2/Jk1→Sby  

Both-carriers optimisation 

Minimise cost Minimise deviation 
Cost: $548,692.44 Cost: $891,170.59 
Deviation: $83,568.52 Deviation: $0.04 

Routing: Routing: 
A1: – A1: Sby→Tar→Sby 
A2: – A2: Sby→Ptk→Mdn→Sby 
A2: – A2: Sby→Btm→Sby 
A3: Sby→Bjm→Mks→Bit→Sby A3: Sby→Amb→Sby 
A3: Sby→Bpn→Smr→Tar→Sby A3: Sby→Bjm→Bpn→Bit→Sby 
A4: Sby→Kdi→Amb→Sby A4: Sby→Jk2→Sby 
B1: – B1: Sby→Smr→Sby 
B2: Sby→Jk1→Ptk→Sby B2: Sby→Mks→Kdi→Sby 
B3: Sby→Jk2→Btm→Mdn→Sby B3: Sby→Jk1→Sby 
TCA = 324,010.70 TCA = 594,113.75 

δA= −41,784.26 δA= 0.02 
TCB = 224,681.74 TCB = 297,056.84 

δB= 41,784.26 δB= –0.02 

Prins (2004, 2009) proposed an aggressive set of parameters, i.e., higher mutation rate 
(10%–50%) and small population size (30–50), leading to fast convergence. In our study 
here, we are interested to test a smaller mutation rate of 5% in addition to the suggested 
aggressive 20%. Mutation rates beyond these figures have also been tested, but a higher 
rate leads to a poor convergence whereas a lower rate dampens the search speed. The 
running times of around six hours are still acceptable given the strategic level of planning 
where the results can be used for a period of several months. 

The population size is set at 100. Smaller population size does not work in this case 
since instead of finding one best solution, the objective is to find a set of non-dominated 
solutions. The randomisation effects in the chromosome construction are controlled with 
the ‘rng’ function in Matlab so the results from different scenarios are comparable. The 
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ray heuristic results in the following order of ports: Sby–Jk1–Jk2–Mdn–Btm–Ptk–Bjm–
Bpn–Smr–Tar–Mks–Kdi–Bit–Amb. Table 5 details the final solutions found in different 
scenarios. 

Table 5 listed the Pareto members found in six scenarios. The bolded solutions are 
unique solutions within a scenario that are not found in the other scenarios. The italicised 
solutions are untrue Pareto, i.e., they are non-dominated only within a scenario where 
they reside but if all solutions are combined, they become dominated. For example, 
solution 890,079/1.25 is non-dominated in DV(1); pm = 0.20, but dominated by 
881,273/0.11 in DL(+); pm = 0.20. Known-not-found (KNF) solutions are the Pareto 
points not found in one scenario. For example, in DL(–); pm = 0.20, the four KNF 
solutions are the unique solutions in the other mechanisms. 
Table 5 Final solutions from various scenarios 

DV(1); pm = 0.05 DV(1); pm = 0.20 
No. Cost Devn. No. Cost Devn. 

1 548,692.44 83,568.52 1 548,692.44 83,568.52 
2 607,837.82 729.35 2 600,788.37 10,128.61 
3 622,997.69 393.77 3 607,837.82 729.35 
4 695,639.25 16.44 4 622,997.69 393.77 
5 877,828.08 1.33 5 872,653.77 104.74 
6 885,871.69 0.82 6 872,761.33 33.03 
7 891,170.59 0.04 7 871,781.90 32.11 
   8 877,835.85 3.85 
   9 879,423.07 3.26 
   10 881,439.11 1.91 
   11 881,794.96 1.32 
   12 890,078.82 1.25 
   13 891,170.59 0.04 
Unique: 2  Unique: 0  
Untrue: 1  Untrue: 8  
KNF: 6  KNF: 7  
Inf. split.: 1,730  Inf. split.: 1,589  
Runtime: 5.06 hrs.  Runtime: 5.07 hrs.  

DL(+); pm = 0.05 DL(+); pm = 0.20 

No. Cost Devn. No. Cost Devn. 

1 548,692.44 83,568.52 1 548,692.44 83,568.52 
2 600,788.37 10,128.61 2 606,035.08 22,495.61 
3 607,837.82 729.35 3 607,837.82 729.35 
4 622,997.69 393.77 4 622,997.69 393.77 
5 629,684.60 358.44 5 870,955.68 25.30 
6 872,613.36 131.68 6 873,754.08 17.49 
7 872,653.77 104.74 7 878,709.61 11.99 
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Table 5 Final solutions from various scenarios (continued) 

DL(+); pm = 0.05 DL(+); pm = 0.20 

No. Cost Devn. No. Cost Devn. 

8 872,658.85 101.36 8 878,719.60 4.26 

9 872,761.33 33.03 9 879,261.52 2.91 

10 874,082.54 28.60 10 881,273.35 0.11 

11 876,649.16 12.52 11 891,170.59 0.04 

12 878,793.89 6.90    

13 883,899.38 2.24    

14 886,973.25 2.04    

15 890,655.38 0.68    

16 891,170.59 0.04    

Unique: 0  Unique: 1  

Untrue: 10  Untrue: 6  

KNF: 6  KNF: 7  

Inf. split.: 2,149  Inf. split.: 2,184  

Runtime: 6.13 hrs.  Runtime: 6.14 hrs.  

DL(–); pm = 0.05 DL(–); pm = 0.20 

No. Cost Devn. No. Cost Devn. 

1 548,692.44 83,568.52 1 548,692.44 83,568.52 

2 600,788.37 10,128.61 2 600,788.37 10,128.61 

3 877,832.28 1.47 3 607,837.82 729.35 

4 878,475.54 0.18 4 622,997.69 393.77 

5 891,170.59 0.04 5 629,684.60 358.44 

   6 873,730.58 1.82 

   7 874,042.13 1.66 

   8 877,832.28 1.47 

   9 881,074.66 0.45 

   10 891,170.59 0.04 

Unique: 1  Unique: 2  

Untrue: 1  Untrue: 2  

KNF: 9  KNF: 4  

Inf. split.: 1,938  Inf. split.: 2,353  

Runtime: 5.88 hrs.  Runtime: 5.99 hrs.  

Notes: 1 bold: unique solutions 
2 italic: solutions non-dominated within scenario 
3 KNF = known not found. 
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Figure 7 Scatter plots of population (see online version for colours) 
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Figure 7 Scatter plots of population (continued) (see online version for colours) 

 

The combination of the numbers of unique, untrue Pareto, and the KNF solutions 
determines the strength of a mechanism in a multi-objective experiment. Higher number 
of unique solutions and fewer untrue Pareto and KNF solutions are the criteria sought by 
a robust mechanism. In this particular case, the performance of a mechanism depends on 
the scenario parameters and no single mechanism shows superiority to the rest. More 
specifically, DV(1) works better with smaller mutation rate, DL(–) favours more 
aggressive rate, but DL(+) does not show a clear preference. Running times are higher 
with pm 0.20, which is natural since mutation is triggered more often leading to faster 
convergence. This is shown in Figure 7 where the solutions in the right-hand plots are 
more concentrated in the bottom-left area of the feasible space (the supposed Pareto front 
for a min-min problem), whereas the left-hand plots exhibit solutions that are still ‘inside’ 
the feasible region. In general with the computation time, the DV(1) mechanism is more 
efficient than the DL mechanisms. Part of the long running times are suspected due to the 
inherent complexity of the problem that weighs the efficiency of Split. 

Finally, two non-dominated routing solutions with reasonable costs (below $700,000) 
and not too extreme deviations are provided in Table 6 as examples and the first solution 
is visualised in Figure 8. It is obvious that the number of routes in the obtained solutions 
is fewer than that in the per-carrier optimisation listed in Table 4. Moreover, with total 
costs not too far away from the minimum-cost solution in Table 4, these can be 
considered acceptable for both carriers. Carrier B can now use its smallest vessel B1 
instead of being forced to use both of its two expensive vessels, B2 and B3. Note that, 
initially, in the minimum-cost solution, Carrier B is the ‘losing’ party because its total 
cost is $41,784 larger than its targeted proportionate cost, whereas Carrier A benefits 
from the partnership by a saving of that amount (see Table 4). In the two solutions in 
Table 6, it is now Carrier B that gets the benefit at the expense of Carrier A, however, the 
discrepancy of $5,064 or $365 is much lower than that in the minimum-cost solution. 
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Table 6 Two non-dominated routing solutions 

Cost: $600,788.37 Cost: $607,837.82 
Deviation: $10,128.61 Deviation: $729.35 
Routing: Routing: 
A1: Sby→Btm→Mdn→Sby A1: Sby→Btm→Mdn→Sby 
A2: – A2: – 
A2: – A2: – 
A3: Sby→Bpn→Smr→Tar→Sby A3: Sby→Jk2→Ptk→Sby 
A3: Sby→Jk2→Ptk→Sby A3: Sby→Bpn→Smr→Tar→Sby 
A4: Sby→Kdi→Amb→Sby A4: Sby→Kdi→Amb→Sby 
B1: Sby→Mks→Bit→Sby B1: Sby→Mks→Bit→Sby 
B2: Sby→Bjm→Jk1→Sby B2: – 
B3: – B3: Sby→Bjm→Jk1→Sby 

TCA = 405,589.88 TCA = 405,589.88 

δA = 5,064.30 δA = 364.67 
TCB = 195,198.49 TCB = 202,247.93 

δB = –5,064.30 δB = –364.68 

Figure 8 Routing visualisation of solutions (see online version for colours) 

 

 

6 Conclusions and further remarks 

In this paper, we propose a new method to solve a multi-objective problem in maritime 
logistics collaboration of two liner shipping companies in the scope of joint-routing 
network design. The ship routing problem is formulated with two objectives: 
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minimisation of total cost and minimisation of deviation in fair cost proportion. An 
MOEA method NSGA-II and the tenets of effective genetic algorithms from the 
published literature are used to build the proposed algorithm. The algorithm is tested on 
data generated from the Indonesian archipelago. Neither our method nor an example of 
its application in a real-life problem has ever been documented in the literature, therefore 
this research bears high practical values and significant contribution in this domain. 

The first step taken is to prove the benefit of collaboration with regard to the total 
costs. The total cost of which carriers work independently and that of collaboration in 
capacity sharing are compared, and the optimisation results show that the collaboration 
alternative leads to a lower total cost. However, it is realised that the obtained minimum 
cost does not satisfy the interests of both carriers; in this case, Carrier B is forced to use 
its expensive vessels. The second objective is introduced to avoid this problem by 
regulating so that the cost proportion is closed to the proportion of fleet contribution, thus 
serves as a balancing factor in the collaboration efforts. Our algorithm is built to solve 
this problem by finding a number of solutions that does not sacrifice too much either of 
the carriers. 

Three dispersal mechanisms are tested with two different mutation probabilities and 
the experiment results show that different probability supports different mechanism, 
except for DL(+) that indicates no preference. Specifically, mutation rate 0.05 works well 
with DV(1), whereas mutation rate 0.20 is better with DL(–). In all scenarios, running 
times are higher in mutation rate 0.20, and in general the DV(1) mechanism is faster than 
both DL mechanisms. Finally, examples of non-dominated solutions found by the 
algorithm are translated as the joint-routing of both carriers to indicate the practical 
outcomes of this research. 

Expensive computation time is noted as an area that deserves further improvement. 
The algorithm is coded and run on Matlab and a switch to a more efficient programming 
language such as Java could remedy the situation. In addition to that technical factor, 
improvement in the algorithm could also be pursued with attention given to improving 
the Split procedure and reducing the amount of infeasible splitting in the chromosome 
construction phase. Furthermore, different crossover operators from the OX used in the 
algorithm are also worth exploring for a possibility for a more efficient algorithm. 
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