Editorial Board

Chief Editor
Dr. Mukesh S.
M. Pharm., Ph.D (Pharm. Sci.)

Associate Editor
Dr. Asif Kargar
Maratha Mandal College of Pharmacy
Belgaum, Karnataka, India

Indian Editorial Board Members
Dr. (Mrs.) M. Himaja M.Sc., Ph.D.
Professor, Pharmaceutical Chemistry Division, School of Advanced Sciences
VIT University, Vellore-632014, Tamil Nadu, India

Dr. Milind Parle, M. Pharm., Ph.D.
Professor of Pharmacology, Dept. Pharm. Sciences,
Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India

Prof. Anant P. Haridas M.Pharm, DBM, AIC (Ph.D)
Nagpur, Maharashtra, India

Dr. Yogita Ball M.R. BAMS, M.S (Yoga), D.NHE, MA (Sans)
Consultant Ayurvedic Surgeon, Yoga and Det Consultant
Dheerghaury Ayurvedic Health Care Center, Bangalore, India

Dr. Chetan Sharma Ph.D
Department of Microbiology, Kurukshetra University
Kurukshetra, Haryana, India

Dr. Vijay Kumar M. M.V.Sc, DABT
Assistant Professor, Department of Veterinary Pharmacology and Toxicology
Veterinary College, KVAFSU, Bidar, India

Dr. Y. Prashanthi Ph. D.
Department of Chemistry, Mahatma Gandhi University,
Nalgonda, A.P., India

Dr. B.V. Ramana MD
Department of Microbiology, Sri Venkateswara Institute of Medical Sciences
Tirupati, Andhra Pradesh, India

Dr. Anubha Khale M. Pharm., Ph.D., MBA
Principal & HOD Pharmaceutics H K College of Pharmacy, Mumbai, India

Dr. Manish Jamini M. Pharm., Ph.D.
Professor, Japur College of Pharmacy
Japur, Rajasthan India

Dr. Sukhen Som M. Pharm., Ph.D.
Department of Pharmaceutical Chemistry
M.M.U College of Pharmacy, K.C. Dodd, Ramanagota- 562159 Karnataka, India

Prof. R. Sundaragunapathy M. Pharm.
Dept. Pharma. Chemistry, Swamy Vivekananda College of Pharmacy, Elayampallyam,
Trichengode, Namakkal (Dt), Tamil Nadu, India

Dr. Nitesh Kumar M.V.Sc., Ph.D.
Associate Professor, Department of Veterinary Pharmacology and Toxicology,
College of Veterinary Science & A.H., Kuthora, Rewa, MP, India

Dr. Anuag Mishra M. Pharm., Ph.D.
Associate Professor, Department of Pharmacognosy, School of Pharmacy
BBD University, Lucknow, U.P., India
Dr. Rajesh N
Department of Biochemistry, JSS College of Arts, Commerce & Science
New Delhi, India

Dr. N Rajan
Manager, Analytical Research and Development, Dr. Reddy’s Laboratories Limited
Hyderabad, India

Dr. Manideep Chakraborty
Department of Pharmacology, Shree Devi College of Pharmacy, Airport road, Mangalore
Karnataka, India

Dr. Gyanesh Singh
School of Bioengineering and Biosciences, Faculty of Technology and Sciences, Lovely Professional University (LPU), Phagwara
Punjab, India

Mr. Ajit R Bendale
Pharmaceutical Chemistry, Smt. B.N.B Swaminarayan Pharmacy College
Salkh, Vapi, Gujarat, India

Mr. Mayankkulkulshreshtha
Department of Pharmacology, BabasahebGos University
Lucknow, India

Mr. Aklhesh Dubey
Department of Pharmacodynamics, Shree Devi College of Pharmacy
Mangalore, Karnataka, India

Ms. Priyamvadajvanjainiwar
Padm. Dr. D. Y. Patil College of Pharmacy, D.Y. Patil Educational Complex, Akurdi
Pune 44 Maharashtra, India

Mr. Surya Prakash Gupta
Department of Pharmaceutical Science & Technology, AKS University
Satna, MP, India

Mr. Ashish Kapesh Chhotiai
Registered Pharmacist N.M.Virani Wockhardt Hospital, Kalavadroad
Rajkot, India

Mr. Vimal Kumar Yadav
Registered Pharmacist N.M.Virani Wockhardt Hospital, Kalavadroad
Rajkot, India

Mr. Himanshu Joshi
Inverts Institute of Pharmacy, Inverts University
Bareilly, India

Ms. Ruchi Verma
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University
Manipal, India

Mr. Kripomoy Chakraborty
Microbiology Laboratory, Department of Botany, Tripura University
India

International Editorial Board Members

Dr. Prof. Mukhmonov Vladimir K.
Agrophysical Institute, 14 Grasshodanski Ave.,
St-Petersburg, 195220, Russia

Dr. Manashi K. Paul M.Sc., Ph.D.
Postdoctoral Research Scientist, Molecular Cell and Developmental Biology,
University of California Los Angeles, Los Angeles, USA, 90095

Prof. Dr. Hazim Jabbar Al-Darej M. Sc., Ph. D.
University of Baghdad, College of Agriculture,
Baghdad, Iraq
Dr. Abdul Wahab B. Pharm, RPh, M Pharm, Ph.D.
Assistant Professor, Kohat University of Science and Technology,
Kohat, KPK, Pakistan

Dr. Vivek K. Bagal Ph.D
Foreign Assistant Professor, 316 - Laboratory of Plant Molecular Physiology
School of Biotechnology, Yeungnam University, 241-1 Dae-dong
Gyeongsan City, Gyeongbuk 712-749 Republic of Korea

Dr. Chaodeshwar Chilamkurti. Ph.D
Formulations Scientist, JINSYS Therapeutics, Phoenix, AZ 85044 USA

Dr. Vivek S. Dave M. Pharm., Ph.D.
St. John Fisher College, Wegmans School of Pharmacy,
Rochester, New York

Dr. Idrees Hamad Attalla
Professor, PhD in Molecular Evolution (Uppsala University, Sweden), Department of Microbiology (Head),
Faculty of Science, Omar Al-Mukhtar University, Box 919, Al-Bayda, Libya,
Director of Research and Study at Agriculture Research Centre, Al-Bayda, Libya

Dr. Khaled Nabil Zakri Rashed
National Research Centre (NRC), Pharmacognosy Department,
Pharmaceutical and Drug Industries Research Division, Dokki, Giza, Egypt

Dr. Rashad Al Harmer
Faculty of Medicine and Pharmacy, University of Thamar, Yemen

Akhtar Rosliana Ahmad
Lecturer at the faculty of pharmacy, University of Indonesia, Makasar, Indonesia

Amit Parekh
Biologist, Hurel Corporation, 599 Taylor road
Piscataway, NJ 08854, USA

Dr. Sameer Dhingra B.Pharm., M.Pharm., Ph.D., R.Ph.
Assistant Professor, School of Pharmacy, Faculty of Medical Sciences, Mount Hope Campus
The University of the West Indies, St. Augustine, Trinidad, WI

Dr. Ayus Yurdaspor
Ege University, Faculty of Pharmacy
Dept. of Pharmaceutical Technology
Izmir Turkey

Dr. M. Hadi Sadashvi Aji, M. Pharm,PhD
Postdoctoral Researcher, National Yang Ming University,
Taipei, Taiwan

Hassan RAMMAL, Ph.D.
Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Lebanon

Dr. Brijay Aryal
Assoc. Professor, Department of Clinical Pharmacology, Chitwan Medical College Teaching Hospital
Bharatpur-10, Chitwan, Nepal

Prof. Dr. Neyam saad Ali
Head Department of Pharmaceutics, Dubai Pharmacy College, Dubai, UAE

Houcine Bennaihdi
Faculty of Sciences and Technology, Department of Technology, University of Bechar 08000 (Algeria)

M. N. Eshtaghi
Mahdoll University, Faculty of Engineering, 2525 Puthamonthon Sai 4 Salaya
Nakhorn Pathom, 73170 Thailand

Dr. Saad Touger Pharm D, M. Pharm (Pharmaceutical Chemistry), R. Ph.
Department of Pharmaceutical Chemistry, University of Lahore
Lahore, Pakistan and AIMS Institute, 100 B Johar Town, Lahore, Pakistan

Dr. Kran Kumar Vangara Ph.D.
Formulations Scientist, R & D, JINSYS Therapeutics, Inc.
444 S Ellis St, Chandler, AZ, USA

Faisal Mohammed Farhad M. Pharm
Vobi Vitalis, a research based Multinational Neutraceuticals Company
Dhaka, Bangladesh
Dr. Gokhan Zengin Ph.D.
Department of Biology, Faculty of Science, Selcuk University
42075, Campus, Konya, Turkey

Dr. Sitansu Sekhar Nanda
Myongji University
Yongin, South Korea

Dr. Murali KrishnaMattala
Fellow at US Food and Drug Administration, Silver Spring, MD
USA 20901

Dr. SundariChodavarapu
Department of Biochemistry and Molecular Biology, Michigan State University
East Lansing, MI 48824 USA

Dr. SipalReddyPalavu
Manager—Analytical R&D (inhaleton & Dermatology), Aurobindo Pharma
USA

Dr. SaiPrachetanBaguri
ORISE Fellow at U.S. FDA, 109003 New Hampshire Avenue, Silver spring
MD 20993 USA

Mr. Syed Masudur RahmanDevan
Department of Pharmacy, Noakhali Science and Technology University
Sonapur, Noakhali-3814, Bangladesh

Mr. AkbarRosilahahAhmed
Faculty of pharmacy, University of Indonesia
Malasor, Indonesia

Mr. AnilParle
Biologist, Hulet Corporation
599 Taylor road, Piscataway, NJ 08854, USA

Mr. Hossen Ramna
Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese
University
Lebanon

Mr. HouneBenmehdi
Faculty of Sciences and Technology, Department of Technology
University of Bechar 08000 Algeria

Mr. M. N. Eshtaghi
Mehrdad University, Faculty of Engineering, 2525 Putthamonthon Sai 4 Soiya, NakornPathom
73170 Thailand

Mr. FuadMohammedFarhad
Vida Vitalis, A research based Multinational Neutraceuticals Company
Dhaka, Bangladesh

Mr. ManishGurjar
Faculty of Medicine, AMU, Johor Bahru, Malaysia
Review Articles

A REVIEW ON CURCUMIN: WOUND HEALING PROPERTIES AND BIOMARKERS OF WOUND HEALING
Vikram Choudhary *, M.G. Shrivakumar
DOI: 10.7997/2230-8407.099179

PHYSICOCHEMICAL, PHARMACOLOGICAL AND ANALYTICAL PROFILE OF FOLIC ACID: A COMPREHENSIVE REVIEW
Vikes Padoy, Yogesh Rohila, Mangatje Choudhary, Ajith Choudhary, Viqas Bhaveer *
DOI: 10.7997/2230-8407.099180

Research Articles

EFFECT OF TRANSITION METAL DOPING ON THE STRUCTURAL, OPTICAL, THERMAL PROPERTIES, AND ANTIMICROBIAL ACTIVITY OF ZINC OXIDE NANO PARTICLES
Alyaa Jabbar Ahmed *
DOI: 10.7997/2230-8407.099181

ERYTHROMYCIN: ITS GLYCOGENIC EFFECT IN AN INFECTIOUS PATIENTS
Omar Rashid Sadoq *, Mahnouh Abu Mowais
DOI: 10.7997/2230-8407.099182

PRINCIPAL COMPONENT ANALYSES (PCA)-COMBINED HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) FOR DIFFERENTIATION OF BOVINE AND PORCINE GELATIN IN VITAMIN C GUMMIES
Zithan *, Farida Nusseirin, Suman, Ofa Surendri Dette
DOI: 10.7997/2230-8407.099183

INVESTIGATION OF VARIABLES RELATED TO THE FORMULATION OF APOKABAN NANOSTRUCTURED LIPID CARRIERS
Inowalq M. Ghareeb *
DOI: 10.7997/2230-8407.099184

THE THIRD-GENERATION CEPHALOSPORIN USE IN A REGIONAL GENERAL HOSPITAL IN INDIA
DOI: 10.7997/2230-8407.099185

PHYTOCHEMICAL INVESTIGATION AND ANTIOXIDANT ACTIVITIES OF CERTAIN HAWORTHIA AND GASTERIA SPECIES
DOI: 10.7997/2230-8407.099186

ROLE OF PHYSICIANS IN DRUG ADHERENCE OF GERIATRIC PATIENTS IN THE UNITED ARAB EMIRATES
Moh Abdoa Ibrahim *, Zobba Edeh, Kachem Selam Al-Oweis
DOI: 10.7997/2230-8407.099187

CALCULATION THE RISK FACTORS FOR DEVELOPING TYPE 2 DIABETES AMONG AJMAN UNIVERSITY STAFF, AJMAN, UAE
Sweyen Shamselah *, Ala Faragallah, Sundus Qasm, Yazen Al-Hari
DOI: 10.7997/2230-8407.099188

LEPTIN LEVEL: RELATIONSHIP WITH NUTRITIONAL, INFLAMMATORY AND CARDIOVASCULAR RISK FACTORS IN NON-DIABETIC IRAQI PATIENTS
Zahab A. A. Al-Shanmoa *, Jintaar Yousif Alzki
DOI: 10.7997/2230-8407.099189

KNOWLEDGE, ATTITUDE, AND PRACTICES OF MOTHERS TOWARD STARTING OF COMPLEMENTARY FEEDING FOR THEIR INFANTS
Samer Israr Mohammed *, Dhuflaq Nidal Ali Khalil, Sarah Aasod
DOI: 10.7997/2230-8407.099190

α-MYXYR AND β-ISOSTEROID FROM BARK EXTRACT OF RHIZOPORA MACROZOMATA LANK., AND THEIR CYTOTOXIC ACTIVITIES AGAINST HELA CELL LINE
Mohung J. Numk Haribi Soekanto *, Abyar Ahmad, and Sahihin
DOI: 10.7997/2230-8407.099191

INTER SIMPLE SEQUENCE REPEAT (ISSR) AND START CODON TARGETED POLYMORPHISM (SCOT) AS DISCRIMINATION TECHNIQUES BETWEEN CERTAIN APPLE AND PEAR CULTIVARS.
Sehm S. El-Hawary, Mona E. EL-Tantawy, Farid N. Kirollos, Wala E. Hammam *
DOI: 10.7997/2230-8407.099192
IN VITRO HAIR GROWTH STIMULATING ACTIVITY OF ETHANOL EXTRACT AND ITS FRACTIONS FROM RAMPAL LAMPUNGS (LYCOPODIUM ESCULENTUM MILL) LEAVES
Zulfiqar Okbtes, Hameymo Moeklwardoyo, Resmi Myructhi
DOI: 10.7897/2230-8407.999193

BIOSYNTHESIS OF A POLYESTER POLY(3-HYDROXYBUTYRATE) FROM CRUDE PALM OIL (CPO) BY USING BACILLUS SP. UAAC 21501
Akhil Djanza*, Rustini Rusdian, Putri Andini, Rika Sari Laffari, Assika Permata Dewi, Nada Permata Suci
DOI: 10.7897/2230-8407.999194

INTENTIONS AND PERCEPTIONS OF IRAQI PHARMACY STUDENTS TOWARD POSTGRADUATE EDUCATION
Padia Thamir Ahmad*, Sara Asaad Kadhim, Fatimah Zuhair Ali
DOI: 10.7897/2230-8407.999195

FORMULATION AND EVALUATION OF ORAL FILMS OF ATOMOXETINE HYDROCHLORIDE
Lakshmi P.K.*, Malavika P, Vidya K
DOI: 10.7897/2230-8407.999196

SYNTHESIS AND PHARMACOLOGICAL EVALUATION OF 6-SUBSTITUTED 2-AMINOBENZOIC ACID DERIVATIVES
Venkateswarlu L.K., Sarangapani M. Lpender Ria Estawat, Rajeshwar Vadivelu
DOI: 10.7897/2230-8407.999197

EVALUATION OF IN VITRO ANTI-OXIDANT AND ANTI-DIABETIC POTENTIAL OF KASAMBI JUNE FRUIT (PERICA GRANATUM LINN) FLOWER EXTRACT
Hamidood Rehman, Sabiha Shafi
DOI: 10.7897/2230-8407.999198

EFFECT OF ROASTING ON PROBIOTIC POTENTIAL OF SOYBEAN (GLYCINE MAX)
Jayashri G. Mahane*, Sachin M. Uttamwar, Poonam A. Pethkar, Seetha V. Shirodkar
DOI: 10.7897/2230-8407.999199

A STUDY ON NEUROLOGICAL SIGNIFICANCE OF VITEX NEGUNDI L.
Sukhbir Lal Khokha*, Um Prakash, Sandeep Jain
DOI: 10.7897/2230-8407.999200

PHYTOCHEMICAL SCREENING AND IN VITRO THROMBOLYTIC ACTIVITY OF CLERODENDRUM PHLOMOSIS RODS
Gowri A. *, Manish Shashidhar, Anita Murali, Madhavan V
DOI: 10.7897/2230-8407.999201

HPTLC ANALYSIS AND STABILITY STUDY OF PHYLLANTHUS EMBIAZEWI IN TABLET FORMULATION
Saji Prakash Gandhi*, Sohan Satyanarayan Chilangle, Mahadev Harunand Sondge, Ashvin Ramchandra Gawhane
DOI: 10.7897/2230-8407.999202

IN VITRO ANTIOXIDANT ACTIVITY OF AQUEOUS FRUIT EXTRACT OF SOLANUM TORVUM SW.
Mhala warsadi, S. Divya R. and Thalanababu R
DOI: 10.7897/2230-8407.999203

DEVELOPMENT AND VALIDATION OF ULTRA PERFORMANCE LIQUID CHROMATOGRAPHIC METHOD FOR THE ANALYSIS OF PULMONARY DRUG PRODUCT CONTAINING FUMITREMOL FORAMATE AND FLUTICASONE PROPIONATE
Prashanti Chengave*, Madhavi Kuchane
DOI: 10.7897/2230-8407.999204

EXTRACTION MAXIMA AND UV-SPECTROPHOTOMETRIC METHOD FOR ESTIMATION OF IN VITRO HYDROCHLORIDE
Jeyara Jyothi B.*, Navya B
DOI: 10.7897/2230-8407.999205

AN ALTERNATIVE TOTAL SYNTHESIS OF (-)-PYRENEPHOROL
Sridhar Hasula, Bharathi Kumar Y*, Srivivas Rao, A
DOI: 10.7897/2230-8407.999206

MORPHO-ANATOMICAL STUDY OF CALICARCA MACRORHIZA VAHL: AN IMPORTANT MEDICINAL SHRUB
Prakash Chandra Gupta*, Ashish Khan, Rajshree Sharma, Nalini Sethi, Naba Kumar Goswami
DOI: 10.7897/2230-8407.999207
DETECTION OF MERCURY AND CADMIUM RESISTANCE AMONG MULTIPLE ANTIBIOTIC RESISTANT ENTERIC BACTERIA FROM MUNICIPAL SEWAGE WATER IN HALDA, INDIA
Saumendra Nath Das, Ranisha Mandal, Shyamapada Mandal
DOI: 10.7897/2230-8407.099288

INFLUENCE OF SOLID MEDIA ON GROWTH OF MYCELIA AND ANTIBACTERIAL ACTIVITY OF WILD MACROFUNGI, MACROCYBE GIGANTEA
D Reena Roy and M Krishnapa
DOI: 10.7897/2230-8407.099289

EFFECTIVENESS OF MIROR THERAPY CONTAINING FUNCTIONAL TASKS ON UPPER EXTREMITY MOTOR FUNCTIONS AMONG PATIENTS WITH STROKE
Penina Langth, P Mangala Goni, P Thanmuth
DOI: 10.7897/2230-8407.099290

PRESCRIPTION PATTERNING OF SEDATIVE DRUGS, EFFICACY AND DAYTIME SEDATION IN VARIOUS PSYCHIATRIC PATIENTS IN A TEACHING HOSPITAL
Srinath Bhatapu, S. Ravinaravetha Krishna *, Narahari K Rapesi, Hanitha Thimageswar, Deepika Pundit, Vankas Vardhan Raj Borely
DOI: 10.7897/2230-8407.099211

PREVALENCE, SEVERITY AND COPING BEHAVIOUR OF PREMENSTRUAL SYMPTOME AND PREMENSTRUAL DYSPHORIC DISORDER AMONG FEMALE STUDENTS IN A PRIVATE INSTITUTION IN INDIA
Shenoul S., Vijayakolakini R, Sambath Kumar R *
DOI: 10.7897/2230-8407.099212

DEVELOPMENT OF ANDROID BASED HEALTHCARE APPLICATION FOR DIABETES PATIENTS
Wima Mary Thomson, Aswathi T. N. Venkateswaranorthy, R. Sambath Kumar *
DOI: 10.7897/2230-8407.099213

PROFILING OF SELECTED MICRONUTRIENTS AND HEAVY METAL ELEMENTS IN OCMUM SANCTUM BY ATOMIC ABSORPTION SPECTROSCOPY
Himakar Reddy K *, Jhanosi U, Subramanya G
DOI: 10.7897/2230-8407.099214

AYURVEDIC MANAGEMENT OF CARPAL TUNNEL SYNDROME: A CASE STUDY
Ekta Sharma, Ankaji Katara *, Arun Gupta
DOI: 10.7897/2230-8407.099215
Research Article

THE THIRD-GENERATION CEPHALOSPORIN USE IN A REGIONAL GENERAL HOSPITAL IN INDONESIA

Rika Yulia 1, Beatrix Eyleen Giovanny 1, Azalia Ayla Khansa 1, Sylvia Putri Utami 1, Fawandi Fuad Alkindi 1, Fauna Herawati 2, Abdul Kadir Jaelani 2
1Department of Clinical and Community Pharmacy, Faculty of Pharmacy, University of Surabaya (UBAYA), Jalan Raya Kalirungkut, Surabaya, Indonesia 60293
2Bangil Regional General Hospital, Jalan Raya Raci, Bangil-Pasuruan, East Java, Indonesia 67153
*Corresponding Author Email: fauna@staff.ubaya.ac.id

Article Received on: 23/08/18 Approved for publication: 12/09/18

DOI: 10.7897/2230-8407.099185

ABSTRACT

Antibiotic is used abundantly over time. This study aimed to determine the profile of the use of antibiotics in units of DDD/100 bed-days, types of bacteria as well as the sensitivity of bacteria in the Surgery, Obstetrics and Gynecology, and Medical Ward of Bangil Regional General Hospital, Pasuruan in 2016. The study was conducted using a descriptive, cross-sectional study design and data collection was done retrospectively. The results showed that the most-used antibiotics in surgery and medical wards are the third-generation cephalosporins, whereas in Obstetrics and Gynecology is the first-generation cephalosporins. The total DDD per bed-days of the medical ward (53.76 DDD per bed-day) is higher than surgery ward (45.83 DDD per bed-days) and Obstetrics and Gynecology ward (28.78 DDD per 100 bed-days). Only limited microbial culture perform during the study period. The most bacteria came from the isolates were Staphylococcus aureus and Escherichia coli. Antibiotic stewardship programme is urgently needed due to high antibiotic use in the hospital.

Keywords: Antibiotic, ATC/DDD, DU 90%, bacteria sensitivity test

INTRODUCTION

The healthcare-associated infection (HAI) is one of the causes of high morbidity and mortality in the hospital. A prevalence survey in 10 geographically diverse states the USA, 183 hospitals, determine that the prevalence of HAI in acute care hospitals was 4.0% (452 of 11,282 patients, had 1 or more healthcare-associated infection).1 The HAI prevalence in Southeast Asia was 5-10%.2 A survey at two hospitals in Indonesia in 2001-2002 showed that the overall prevalence of HAI in hospital A was 5.9% and in hospital B 8.3%.3 The preventable aetiological factors for HAIs were controlled the infection transmission between patients by health workers and practice a rational antibiotic use.4

Antibiotic indicated for bacterial infection. However, the growing population of bacteria being resistant to antibiotics threatens the success of antibiotics against infections. Inappropriate use of antibiotics will result in bacteria or microbes becoming resistant to the antibiotic, thus it causes the antibiotics losing their activity.5,6 A study about antibiotic use qualitatively with Gyssen method showed that in Dr. Soetomo General Hospital (Surabaya city) and Dr. Kariadi General Hospital Medical Center (Semarang city), among 84% patients in those hospitals who received an antibiotic, 32% of the antibiotics used were unclear indications.7

Controlling the use of antibiotics is considered necessary in order to reduce the incidence of antibiotic resistance. One way of doing so is through the implementation of an Antibiotic Stewardship Program, which is an institutional or healthcare system approach to promote and monitor the use of antibiotics appropriately in order to maintain its effectiveness. The Ministry of Health in Indonesia has established an Antimicrobial Resistance Control Program (ARCP) team to support and oversee the running of Antibiotic Stewardship Program, which is recommended by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The Regulation of the Minister of Health No. 8 Year 2015 states that every hospital in Indonesia must implement an Antimicrobial Resistance Control Program optimally.8,9

MATERIALS AND METHODS

This research is conducted at Bangil Regional General Hospital. This hospital is a secondary care hospital with 272 bed. This retrospective, descriptive, observational cross-sectional study research material was data on antibiotic usage in the Surgery, Obstetrics and Gynecology, and Medical Ward of Bangil Regional General Hospital in 2016 obtained from the Pharmacy Installation and microbiology laboratory of Bangil Regional General Hospital; does not contain any studies with human participants. The study has an ethical clearance from the Health Research Ethics Committee of Politeknik Kesehatan Kemenkes Surabaya, Kementerian Kesehatan. Antibiotic usage was calculated and expressed in DDD units (defined daily dose) per 100 bed-days, as well as calculated using Drug Utilization 90% (DU 90%) method to discover the most widely used antibiotics and percentage positive isolate. In addition, data on bacterial culture obtained from the microbiology laboratory of Bangil Regional General Hospital were also used in order to find out the types of bacteria and the percentage of bacterial sensitivity in the Surgery ward during the period of January – June 2016;
Obstetrics and Gynecology, and Medical ward during the period of July – December 2016.

The equation to calculate DDD per 100 bed-days is modified from DDD/1000 population/day as follow:11-13

\[
\text{DDD/1000 population/day} = \frac{\text{Amount used in 1 year (mg) \times 1000}}{\text{DDD (mg)} \times \text{population} \times 365 \text{ (days)}}
\]

\[\text{... Equation 1}\]

Several adjustments to the equation are i. the specific period of a month, ii. bed-days derived from the total length of stays of the patient. The DDD is the assumed average maintenance dose per day for a drug used for its main indication in adults.

The calculation results of antibiotic use and percentage of bacterial sensitivity to antibiotics presented in tables.

RESULTS

There are 9679 patients in six-month periods; their average length of stay was 2.9 days, 2.5 days, 3.3 days in surgical, obstetrics and gynecology, medical ward respectively (Table 1). From a total of 3016 patients in the surgical wards of Regional General Hospital Bangil, 572 patients received antibiotic therapy. In this research, more than 50% antibiotic use in the surgical and medical ward is third-generation cephalosporins and fluoroquinolones, whereas more than 70% antibiotic use in obstetrics and gynecology ward is first-generation cephalosporins and penicillins with extended spectrum (Table 2). The total number of DDD/100 bed-days was 45.83, 28.78, 53.76 in surgical, obstetrics and gynecology, medical ward respectively, the detailed data could be seen in Table 3. According to these data, the most commonly used antibiotics in the surgical wards were ciprofloxacin (11.78 DDD/100 bed-days); in obstetrics and gynecology was cefadroxil (11.64 DDD/100 bed-days); in the medical ward was ceftriaxone (12.99 DDD/100 bed-days). From the microbiology laboratory data, there are 124 isolates which were 48 Gram-negative bacteria and 76 Gram-positive bacteria, as shown in Table 4. These bacteria are Gram-negative bacteria, such as Escherichia coli (12), Acinetobacter sp. (8), Stenotrophomonas maltophilia (6); and Gram-positive bacteria, such as Staphylococcus aureus (16).

DISCUSSION

The number of DDD/100 bed-days was 45.83. This number is similar to the number of antibiotics used in the surgical wards of Dr. Kartjadi Hospital in Semarang in 2008, which was 51.8 DDD/100 patient-days and higher than the DDD/100 bed-days in other hospitals in Indonesia.11,12 The number of antibiotics used was a combined data from all patients in the surgical wards who used antibiotics, unnoticed the diagnosis, thus the value of DDD cannot describe its appropriateness to every indication. It is necessary to conduct further research that considers the patient diagnosis during antibiotic therapy and other factors influencing the use of antibiotics.

In the calculation result regarding the number of DDD/100 bed-days, the major parenteral antibiotics used during the months of January to June 2016 were also reported, i.e. ceftazidime (6.66 DDD/100 bed-days). The increase in the use of ceftazidime may be due to a shortage of ceftriaxone injection in the Pharmacy Department of Bangil Regional General Hospital in early 2016, which was most widely used in the surgical wards of Bangil Regional General Hospital. A research conducted at Dr. Kartjadi Hospital in Semarang and other hospitals in Indonesia also suggested that the most widely used antibiotics were ceftriaxone.14,17 Ceftazidime and ceftriaxone are a third-generation cephalosporin. Further research regarding the use of the third generation cephalosporin in surgical wards is needed.

From the data on DDD/100 bed-days of each antibiotic, the 90% DU segment was then calculated to identify the most commonly used antibiotics in the hospital. Antibiotics in the 90% DU segment in order from largest to smallest were cefadroxil (13.8%), ciprofloxacin (12.9%), ceftriaxone (12.2%), metronidazole (11.7%), amoxicillin (9.4%), ceftazidime (6.7%), cefixime (6.2%), ampicillin/sulbactam (5.4%), levofloxacin (5.4%), gentamicin (3.1%), cefuroxime (2.8%). Ceftriaxone, ceftazidime, and cefixime are the third-generation cephalosporins (25.1%). The third-generation cephalosporins active against Gram-positive and Gram-negative bacteria, therefore widely used in the hospital.

The use of antibiotics as therapy in patient care greatly affects the growth of bacteria, in which they could become resistant to antibiotics which shown at the local resistance patterns. In the surgical wards of Bangil Regional General Hospital, the culture test performed not for every SSI patient and patient who diagnosed open fracture. The types of bacteria isolated in the surgical wards of Bangil Regional General Hospital, Staphylococcus aureus, Acinetobacter sp., Stenotrophomonas maltophilia, and Klebsiella pneumoniae are similar to the results of a study carried out at a hospital in Yogyakarta during August 2013-August 2015.18,19

From microbiology data, we can’t obtain microbial patterns because the number of isolates of each bacterium was insufficient and not all specimens gave positive isolate in the culture test; therefore, it was not possible to calculate the sensitivity percentages of several antibiotics due to the small number of isolates. These sensitivity test bacteria to antibiotics are classified into 3 (three) categories, i.e.: usually effective clinically, if the antibiotic sensitivity test result is more than 60% of all examinations; intermediate effective clinically, if the antibiotic sensitivity test result is between 30-60% of all examinations; and not effective clinically, if the antibiotic sensitivity test result is less than 30% based on the Sanford Guide to Antimicrobial Therapy 46th ed.20 Further research needs a sufficient number of isolates and a standard protocol for antibiotic susceptibility tests.

Table 1: Patient’s area characteristic

<table>
<thead>
<tr>
<th></th>
<th>Surgical ward</th>
<th>Obstetrics and gynecology ward</th>
<th>Medical ward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bed\na</td>
<td>5802</td>
<td>4303</td>
<td>14218</td>
</tr>
<tr>
<td>Bed Occupancy Rate (BOR)</td>
<td>–</td>
<td>73.3%</td>
<td>74.3%</td>
</tr>
<tr>
<td>Number of patient\nb</td>
<td>3016</td>
<td>2360</td>
<td>4303</td>
</tr>
<tr>
<td>Length of stay\nc</td>
<td>8805</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bed-days\nd</td>
<td>8805</td>
<td>5802</td>
<td>14218</td>
</tr>
</tbody>
</table>

anumber of patients or patient’s length of stay in six months period, boperating theatre
Table 2: The DDD percentage antibiotic use in hospital

<table>
<thead>
<tr>
<th>Antibiotic class</th>
<th>Surgical ward</th>
<th>Obstetrics and gynecology ward</th>
<th>Medical ward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third-generation cephalosporins</td>
<td>29%</td>
<td>2%</td>
<td>38%</td>
</tr>
<tr>
<td>Other aminoglycosides</td>
<td>11%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Imidazole derivatives</td>
<td>9%</td>
<td>4%</td>
<td>11%</td>
</tr>
<tr>
<td>Penicillins with extended spectrum</td>
<td>7%</td>
<td>33%</td>
<td>1%</td>
</tr>
<tr>
<td>First-generation cephalosporins</td>
<td>7%</td>
<td>46%</td>
<td>6%</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>4%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>Nitroimidazole derivatives</td>
<td>4%</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>Second-generation cephalosporins</td>
<td>2%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Combinations of penicillins, incl. beta-lactamase inhibitors</td>
<td>1%</td>
<td>6%</td>
<td>11%</td>
</tr>
<tr>
<td>Macrolides</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Lincomacids</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Amphenicol</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Streptomycins</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Other quinolones</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Table 3: Types antibiotics use in the hospital

<table>
<thead>
<tr>
<th>No</th>
<th>Anatomical Therapeutic Chemical Classification</th>
<th>Generic Name</th>
<th>Surgical wards</th>
<th>Obstetrics and gynecology ward</th>
<th>Medical ward</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DDD/100 Patient-Days</td>
<td>Drug Utilization</td>
<td>DDD/100 Patient-Days</td>
<td>Drug Utilization</td>
</tr>
<tr>
<td>1</td>
<td>Tetracyclines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>J01AA02</td>
<td>Doxycycline (O)</td>
<td>–</td>
<td>–</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>J01BA02</td>
<td>Thiampenicil</td>
<td>–</td>
<td>–</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>J01CA01</td>
<td>Ampicilin (P)</td>
<td>1.09</td>
<td>2.38%</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>J01CA04</td>
<td>Amoxicilin (O/P)</td>
<td>2.08</td>
<td>4.53%</td>
<td>0.45</td>
</tr>
<tr>
<td>6</td>
<td>J01CR01</td>
<td>Ampicilin/Sulbactam (P)</td>
<td>0.40</td>
<td>0.87%</td>
<td>1.30</td>
</tr>
<tr>
<td>7</td>
<td>J01CR02</td>
<td>Amoxicilin/Clavulanic Acid (O)</td>
<td>0.12</td>
<td>0.26%</td>
<td>0.32</td>
</tr>
<tr>
<td>8</td>
<td>J01DB04</td>
<td>Cefazolin (P)</td>
<td>–</td>
<td>–</td>
<td>1.56</td>
</tr>
<tr>
<td>9</td>
<td>J01DB05</td>
<td>Cefadroxil (O)</td>
<td>3.00</td>
<td>6.55%</td>
<td>1.16</td>
</tr>
<tr>
<td>10</td>
<td>J01DC02</td>
<td>Cefuroxime (P)</td>
<td>0.92</td>
<td>2.00%</td>
<td>1.46</td>
</tr>
<tr>
<td>11</td>
<td>J01DD01</td>
<td>Cefotaxime (P)</td>
<td>0.25</td>
<td>0.54%</td>
<td>0.05</td>
</tr>
<tr>
<td>12</td>
<td>J01DD02</td>
<td>Cefazolin (P)</td>
<td>6.66</td>
<td>14.53%</td>
<td>0.08</td>
</tr>
<tr>
<td>13</td>
<td>J01DD04</td>
<td>Ceftriaxone (P)</td>
<td>2.19</td>
<td>4.79%</td>
<td>0.51</td>
</tr>
<tr>
<td>14</td>
<td>J01DB08</td>
<td>Cefoxime (O)</td>
<td>4.27</td>
<td>9.32%</td>
<td>0.02</td>
</tr>
<tr>
<td>15</td>
<td>Other beta-lactam antibacterials: cephalosporins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>J01DA02</td>
<td>Meropenem (P)</td>
<td>1.76</td>
<td>3.83%</td>
<td>0.10</td>
</tr>
<tr>
<td>17</td>
<td>J01DA03</td>
<td>Erythromycin (O)</td>
<td>0.01</td>
<td>0.02%</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>J01DA04</td>
<td>Azithromycin (O)</td>
<td>0.19</td>
<td>0.42%</td>
<td>0.01</td>
</tr>
<tr>
<td>19</td>
<td>Other beta-lactam antibacterials: carbapenems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>J01GA01</td>
<td>Streptomycin (P)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>21</td>
<td>J01GB03</td>
<td>Gentamicin (P)</td>
<td>3.32</td>
<td>7.25%</td>
<td>0.48</td>
</tr>
<tr>
<td>22</td>
<td>Other aminoglycoside antibacterials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>J01GA02</td>
<td>Ubiquitin (O/P)</td>
<td>11.78</td>
<td>25.70%</td>
<td>0.15</td>
</tr>
<tr>
<td>24</td>
<td>J01GA03</td>
<td>Levofloxacin (P)</td>
<td>0.30</td>
<td>0.66%</td>
<td>0.03</td>
</tr>
<tr>
<td>25</td>
<td>Quinolone antibacterials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>J01GB04</td>
<td>Pipimicid acid (O)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>27</td>
<td>Imidazole derivatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>J01GD01</td>
<td>Metronidazole (P)</td>
<td>3.93</td>
<td>8.57%</td>
<td>1.18</td>
</tr>
</tbody>
</table>

TOTAL 45.83 100.00% 28.78 100.00% 53.76 100.00%

O, oral; P, parenteral
Table 4: Total Isolates Bacterial in the hospital

<table>
<thead>
<tr>
<th>Gram of bacteria</th>
<th>Type of bacteria</th>
<th>Surgery ward</th>
<th>Obstetrics and gynecology ward</th>
<th>Medical ward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter Sp.</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter agglomerans</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella ozaenae</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Morganella morganii</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Serratia odorifer a</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Enterobacter sp.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Salmonella sp.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Total Gram Negative Bacteria</td>
<td>23</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Gram Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus hemolyticus</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus intermedius</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus simulans</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Streptococcus mitis</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Staphylococcus xylosus</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Staphylococcus schleiferi</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Streptococcus suis</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total Gram Positive Bacteria</td>
<td>12</td>
<td>13</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>35</td>
<td>23</td>
<td>18</td>
</tr>
</tbody>
</table>

CONCLUSION

The number of DDD/100 bed-days from three wards of Bangil Regional General Hospital was 128.4. The most antibiotics use was the third-generation cephalosporins. There were 124 bacteria growing during a cultural test carried out on 35 antibiotics, the number of Gram-positive bacteria higher than the number of Gram-negative bacteria.

Impact on practice: The research will urge the organization to obtain sufficient cultural isolates to determine the microbial patterns in the Surgery, Obstetrics and Gynecology, and Medical Ward of Bangil Regional General Hospital, i.e. to perform a bacterial culture on patients who take antibiotics after 3 days, who use prophylactic antibiotics and undergo a surgical site infection; to evaluate the use of antibiotics regarding patient diagnosis; to update the antibiotic therapeutic guideline considering to the microbial pattern in the hospital.

ACKNOWLEDGMENT

This study was conducted in the collaboration framework agreement between the Faculty of Pharmacy University of Surabaya, Surabaya, and the Bangil Regional General Hospital, Pasuruan. The authors would like to thank the hospital management and staffs for their cooperation to collect the data from the patient files and to use them for the evaluation.

REFERENCES

Cite this article as:

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.