European Journal of Pharmaceutical Sciences Editorial Board

Guide for Authors
Submit Your Paper
Track Your Paper
Order Journal
View Articles

Journal Metrics
Source Normalized Impact per Paper (SNIP): 1.272
SCImago Journal Rank (SJR): 0.932
Impact Factor: 3.350
5-Year Impact Factor: 3.465

European Journal of Pharmaceutical Sciences Editorial
Affimer® Engineered antibody alternative reagents and biotherapeutics

European Journal of Pharmaceutical Sciences
Volume 48, Issues 4-5, Pages 585-630 (12 March 2013)

Research Papers

Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: In vitro and in vivo evaluation
Original Research Article
Pages 585-589
Xue Zhang, Gang Chen, Lu Wen, Fan Yang, Ai-Shao Xiao Li, Wei Long, Lei Mu
Abstract
Graphical abstract
Purchase PDF

Nitric oxide generated by the compound RubPY promotes the vascular smooth muscle cell membrane hyperpolarization
Original Research Article
Pages 590-597
Alexander C. Pedrosa, Claudio N. Lemos, Micheline Paulo, Roberto S. de Silveira, Vanessa M. R. Brandao
Abstract
Graphical abstract
Purchase PDF

Improvement of therapeutic efficacy of PLGA nanof ormulation of siRNA targeting anti-apoptotic Bcl-2 through chitosan coating
Original Research Article
Pages 598-610
Hitesh Vithalbhai Jaganti, Venkatrao Ram Joseyala, Vasanth Raj Patankar, Raghav Chandrashankar Hartharapoora, Sagar Shantiram Gandhi
Abstract
Graphical abstract
Purchase PDF

Substituted phenyl groups improve the pharmacokinetic profile and anti-inflammatory effect of urea-based soluble epoxide hydrolase inhibitors in murine models
Original Research Article
Pages 611-622
Jin Yan Liu, Yan-Ping Lin, Hong Liu, Christophe Morisseau, Tristan E. Rose, Sung Hee Hwang, Nguyen Chinh-Nghiem, Bruce D. Hamrock
Abstract
Graphical abstract
Purchase PDF

Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis
Original Research Article
Pages 623-630
Salome Tuncay Tanverdi, Ozen Guzer
Abstract
Graphical abstract
Purchase PDF

Development of a dry, stable and inhalable acyl-homoserine-lactone-acylase powder formulation for the treatment of pulmonary Pseudomonas aeruginosa infections
Original Research Article
Pages 637-643
Mark G. Maina, Gunthi Muluguapa, Ronald van der Mark, Aricko C. Eleaume, Marvin R. Vesser, Wouter J. H. Hendricks, Wen J. Guo
Abstract
Graphical abstract
Purchase PDF

PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors
Original Research Article
Pages 664-670
Abstract
Graphical abstract
Purchase PDF

European Federation for Pharmaceutical Sciences (EUFEPS)

< Previous papers Next papers >
Development of a dry, stable and inhalable acyl-homoserine-lactone-acylase powder formulation for the treatment of pulmonary *Pseudomonas aeruginosa* infections

Mariana Wahjudi a,b, Senthil Murugappan c, Ronald van Merkerk a, Anko C. Eijsens c, Marinella R. Visser c, Wouter L.J. Hinrichs c, Wim J. Quax a,c,*

A R T I C L E I N F O

Article history:
Received 27 June 2012
Received in revised form 1 November 2012
Accepted 20 December 2012
Available online 28 December 2012

Keywords:
AcyI-homoserine-lactone acylase
Spray-freeze-dried PdQ
Mannitol
Trehalose
Inulin

MENGESAHKAN
Saltanan/temuan sejati dengar
Surabaya...

UNIVERSITAS SURABAYA
Fakultas Ilmu Keolahy...
Dekan.

Dr. rer. nat. Maria Garetti M. Purwanto

1. Introduction

Pseudomonas aeruginosa is an opportunistic pathogen to humans, that becomes virulent in many hospital-acquired contaminations, such as in urinary tract, surgical wound, pneumonia and bloodstream infections. Patients with immunosuppression, cystic fibrosis (CF), chemotherapy and trauma have an increased risk for the infection (Jones et al., 2010; Lai et al., 2003).

Cell-to-cell signaling is an essential prerequisite for the establishment of *P. aeruginosa* infections (Donahedian, 2003; Van Delden and Iglewski, 1998). During invasion and infection, this bacterium switches on a subset of genes important for virulence to its host cells. Many of these virulence factors, such as rhamnolipid (Jeessen et al., 2007), are produced under the control of quorum sensing (QS) signaling molecules (Bjarnsholt et al., 2010; Defoirdt et al., 2010; Nadal Jimenez et al., 2012; Van Delden and Iglewski, 1998). *P. aeruginosa* possesses a complex QS system with at least three signal molecules, N-3-oxododecanoyl-homoserine lactone (3-oxo-C12-HSL), N-butyryl-homoserine lactone (C4-HSL) and 2-heptyl-3-hydroxy-4-quinolone (PQS) (Williams and Camara, 2009). Several studies reported that these signal molecules (Ericsson et al., 2002; Favre-Bonte et al., 2002; Singh et al., 2000) and also mRNA of the auto-inducer synthase gene luxS (Ericsson et al., 2002) can be detected at elevated levels in sputum samples of CF patients’ lungs. The signal molecules not only induce virulence, but they can also cause themselves inflammatory responses (Mayer et al., 2011; Zhu et al., 2008). These facts suggest that a suppression of the *P. aeruginosa* QS system might reduce expression of the virulence factors in the lung tissue of CF patients.

© 2013 Elsevier B.V. All rights reserved.

0928-0977/ - see front matter © 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejps.2012.12.015