Shoot multiplication of *Pogostemon cablin* var. Sidikalang and patchouli oil profile

POPY HARTATIE HARDJO[•], DANNY PUTRA SENTOSA SUSANTO, WINA DIAN SAVITRI, MARIA GORETTI MARIANTI PURWANTO

Faculty of Biotechnology, Universitas Surabaya. Jl. Raya Kalirungkut, Surabaya 60292, East Java, Indonesia. Tel.: +62-31-2981399, Fax.: +62-31-2981278. ♥email: poppy_hardjo@staff.ubaya.ac.id_

Manuscript received: 11 February 2019. Revision accepted: 13 June 2019.

Abstract. *Hardjo PH, Susanto DPS, Savitri WD, Purwanto MGM. 2019. Shoot multiplication of* Pogostemon cablin *var. Sidikalang and patchouli oil profile. Nusantara Bioscience 11: 123-127. Pogostemon cablin* Benth. is a plant producing patchouli oil, which mostly consists of patchouli alcohol compound. Patchouli oil has great potentials in the world market because of its stability and high price. In this study, in vitro multiplication of Sidikalang variety of Acehnese patchouli shoots was done on solid and liquid Murashige & Skoog (MS) medium. This study aimed to determine the effect of cytokinins in various combinations of shoot multiplication and to compare the patchouli oil yield of in vitro and ex vitro culture. In vitro multiplication of Acehnese patchouli shoots by using solid MS medium with addition of 0.2 ppm benzyl aminopurine (BAP) and 0.2 ppm Kinetin resulted in shoot explants with an average growth index of 82.198 \pm 0.690. Patchouli oil extraction was done on 7 weeks old in vitro shoot explants cultured on solid MS medium + 0.2 ppm BAP + 0.2 ppm Kinetin using water distillation method. In vitro shoots yielded 2.5% patchouli alcohol compound. The qualitative analysis by using thin layer chromatography (TLC) showed that there were similarities in the number of spot and Rf value for each spot of ex vitro and in vitro patchouli oil.

Keywords: Patchouli oil, Pogostemon cablin, shoot multiplication, var. Sidikalang

INTRODUCTION

Patchouli is an essential oil producing plant. The oil extracted from the leaf part of Acehnese patchouli (*Pogostemon cablin* Benth.) var Sidikalang (is called patchouli oil) is the best in Indonesia and has the high value in the international trade (Wu et al, 2013). Patchouli oil is utilized in perfume industry as a fixative agent. Beside of that, in the recent years, patchouli oil is also known to have some benefits as aromatherapy (Ito et al, 2015), e. g. to calm nerves and to relieve stress. It is also potential to combat pathogenic microorganism as it has biological activity such as antibacterial (Yan et al. 2013), anti-inflammatory (Han et al. 2017), and antioxidant (Dechayont et al. 2017).

The issue in patchouli oil industry in Indonesia is the diversity of patchouli oil's quality. This problem may be caused by the breeding system that is affected by the fluctuating environmental condition (Blank et al, 2011). Thus, as the alternative, plant tissue culture technique was developed to achieve homogeneity of raw material to produce patchouli oil.

The utilization of tissue culture technique to produce patchouli oil from the leaf part of patchouli as the raw material intended to obtain patchouli oil with high rendement and quality, where the leaf growth was controlled by nutrient and mineral factor, and also light intensity in in vitro environmental condition. In addition, the supply of raw material (in vitro leaves) was continuing and not depending on the season. The patchouli oil was obtained from the leaf part, particularly the glandular trichomes on the leaf surface. Maes and Goossens (2010) stated that benzyl aminopurine (BAP) and jasmonic acid could increase the number of trichomes in *Arabidopsis*' leaf.

Multiplication of in vitro shoots of P. cablin on solid MS medium has been widely researched (Swamy et al. 2016) used 0.5 mg.L⁻¹ BAP + 0.5 mg.L⁻¹ Kin; Jin et al. (2014) used 0.2 mg.L⁻¹ BAP, yet it has never been done before in liquid medium. The use of liquid medium in this research is an early step to figure out shoots response when they are cultured in liquid medium, also to prepare shoot culture in a bioreactor system. Sahertian (2015) reported that the highest multiplication rate of in vitro shoot of P. cablin var. Sidikalang was on solid MS medium with 0.5 mg.L⁻¹ BAP, the shoots were subsequently elongated and afterwards, the leaf size became wider after subcultured on hormone-free MS medium. In line with that, in this experiment we would be examined the effect of lower concentration of BAP and Kinetin on solid and liquid MS medium to increase the shoot multiplication as well as the leaf size, also to compare the patchouli oil profile from in vitro and ex vitro leaf.

MATERIALS AND METHODS

Procedures

Shoot multiplication

Nodal part from patchouli plant aged 1 year, planted at greenhouse, was used as explant source. The explants were soaked in a 70% ethanol solution for 1 min, then subsequently washed several times with sterile distilled water. Afterwards, they were dipped in a bleaching solution (20% Clorox) for 15 min, and then washed many times with sterile distilled water. The nodal cuttings were cultured on MS basal medium (3% sucrose (w/v) and 0.7% agar (w/v) with the addition of (0.2 and 0.5 mg.L⁻¹) BAP, (0.2 and 0.5 mg.L⁻¹) Kinetin, and combination of BAP and Kinetin. The explants were cultured on liquid medium with additional support such as filter paper (Vyas et al, 2008 in modification). The initial weight of shoots was weighed. The cultures were incubated at ±25 °C with 16h light per day for 7 weeks. The observation was performed every week, including the shoot's fresh weight and the shoot's growth index. The shoot's growth index was calculated by dividing shoot's fresh weight when observing with initial fresh weight. In the last day of week-7, where there was no more growth based on shoot's growth curve, the cultures were harvested and latterly air dried until they reached constant weight. Finally, the dried cultures were mashed into powder. The cultures which have the highest growth index were continued to analyze essential oil profiles from in vitro and ex vitro plants.

Essential oil extraction by water distillation

As much as 10 g dry powder was extracted by steam and water distillation at 100 ± 2 °C for 4h. The extract was transferred to separating funnel, then 5 ml n-hexane solution and a sufficient amount of NaCl solution (1 N) were added in to it. The water layer at the bottom of separating funnel was removed, and then anhydrous sodium sulfate was sufficiently added. Afterwards it was filtered by filter paper. The yield or rendement of patchouli oil was calculated by the formulation below (Triesty dan Mahfud, 2017):

$$Yield = \frac{oilvolume\ (ml)}{shoot\ dry\ weight\ (g)} x\ 100\%$$

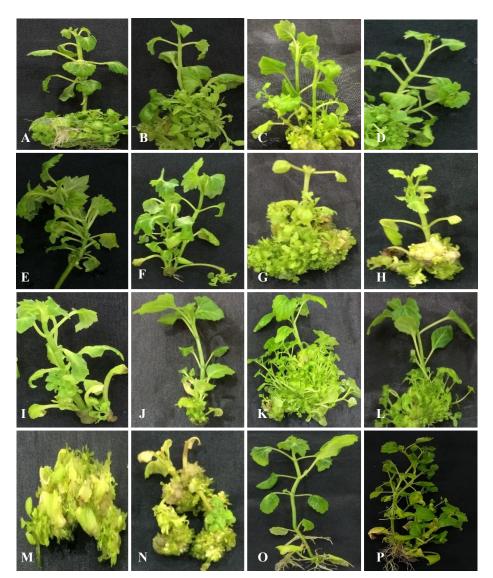
Qualitative analysis by thin layer chromatography (TLC)

Chromatography chamber was filled with n-hexane: ethyl acetate as a mobile phase (eluent) with a ratio of 9: 1 (Hernani 1988), the chamber was closed tightly until the atmosphere became saturated. TLC plate (*TLC Silica Gel* 60 F₂₅₄) sized 10 x 10 cm as stationary phase was marked 0,5 cm long, each from the bottom and from the top end. As much as 0,2 μ L patchouli oil from each standard, ex vitro shoot, and in vitro shoot was applied on the bottom mark of the plate. The plate was then put into chamber in the upright position, the chamber lid was closed tightly. The mobile phase would spread through TLC plate. After the mobile phase reached the top end mark, the plate was then taken out from the chamber. Afterwards, the resulting spots were observed under UV light at λ =254 nm. Retention factor (Rf) value could be calculated by the formula below (Nichols, 2018):

$$Rf = \frac{analyte\ mileage\ (cm)}{eluent\ mileage\ (cm)}$$

Qualitative analysis by gas chromatography (GC)

About 100 μ L patchouli oil from distillation result was injected to a gas chromatography tool which has been arranged in such a way. The mobile phase is helium and HP-INNOWAX (PEG) column was used as stationary phase. The solvent used was n-hexane. Analysis result by GC would appear at the computer screen in the form of peak/ spectra with particular number and pattern. Resulted peaks could be compared with the literature based on their retention time. From the chromatography results, it could be known the type and the constituents content which contained in the patchouli oil (*patchouli alcohol content*).


Data analysis

Every treatment was repeated 20 times with factorial treatment design. (medium consistency factors were liquid and solid, plant growth regulator factors were the combination of BAP and kinetin) performed by completely randomized design. The shoot growth index analysis was executed by two-way ANOVA which then continued with *Duncan's Multiple Range Test* (DMRT) at α =0.05 to identify the differences between treatments. At the same time, patchouli alcohol content was analyzed by one-way ANOVA and also continued with DMRT at α =0.05.

RESULTS AND DISCUSSION

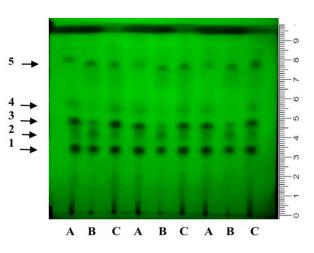
Patchouli shoots grew in MS + BAP medium 0.2 mg.L⁻¹ + Kin 0.2 mg.L⁻¹ had big size and large numbers of leaves, and thick stems (Figure 1 C, D). Addition of BAP with concentration of 0.2 mg.L⁻¹ in the form of rosette (small leaves in groups) was not too much, while the addition of BAP with a concentration of 0.5 mg.L⁻¹ caused large amounts of rosette buds and the tendency of explants to form callus (abnormal growth). This phenomenon occurs both in solid MS medium and liquid MS.

Patchouli shoots grew on solid MS medium + BAP 0.2 mg.L⁻¹ + Kin 0.2 mg.L⁻¹ had the highest growth index and significantly different from other patchouli explant shoot growth index at 7th week (Table 1). Bharati (2010) stated that the addition of a combination of growth regulators BAP and Kinetin has a better impact in multiplication of Acehnese patchouli plants when compared with the addition of one. Overall, the growth of patchouli shoots is better in solid medium than liquid medium. This is likely because the culture in the liquid medium was not placed in a shaker, so that medium aeration was lacking and had a negative impact on shoot growth. In contrary, Vyas (2008) reported the stimulatory effect of liquid media supported by glass beads on the in vitro growth of four medicinally important plants. Patchouli shoots with the largest growth index value harvested after the 7th week when the growth curve was in the stationary phase and continued with an analysis of the essential oil content.

Figure 1. Morphology of In Vitro Patchouli Shoot on MS Medium with various BAP and Kinetin at 7 weeks. Note: A. MS (solid) + BAP 0.2; B. MS (liquid) + BAP 0.2; C. MS (solid) + BAP 0.2 + Kin 0.2; D. MS (liquid) + BAP 0.2 + Kin 0.2; E. MS (solid) + Kin 0.2; F. MS (liquid) + Kin 0,2; G. MS (solid) + BAP 0.5 + Kin 0.2; H. MS (liquid) + BAP 0.5 + Kin 0.2; I. MS (solid) + Kin 0.5; J. MS (liquid) + Kin 0.5; K. MS (solid) + BAP 0.2 + Kin 0.5; L. MS (liquid) + BAP 0.2 + Kin 0.5; M. MS (solid) + BAP 0.5 + Kin 0.5; N. MS (liquid) + BAP 0.5 + Kin 0.5; O. MS (solid) 0; P. MS (liquid) 0.

 Table 1. Growth rate index of in vitro patchouli shoots at 7th week

 on solid and liquid MS medium


Cytokinin (mg.L ⁻¹)	Growth rate index ± SD		
	Solid MS	Liquid MS	
MS0	$8.956 \pm 1.327^{\mathrm{a}}$	14.643 ± 3.478^{b}	
BAP 0.2	$51.308 \pm 0.985^{\rm g}$	27.366 ± 1.719^{de}	
Kin 0.2	$32.839 \pm 1.173^{\rm f}$	26.288 ± 1.931^{de}	
BAP 0.2 + Kin 0.2	82.198 ± 0.690^{j}	$28.633 \pm 0.519^{\text{e}}$	
Kin 0.5	$48.798 \pm 1.640^{\rm g}$	25.746 ± 0.431^{d}	
BAP 0.5 + Kin 0.2	$54.925 \pm 1.166^{\rm h}$	$20.843 \pm 0.396^{\rm c}$	
BAP 0.2 + Kin 0.5	$53.902 \pm 1.476^{\rm h}$	$22.844 \pm 0.967^{\rm c}$	
BAP 0.5 + Kin 0.5	$57.812 \pm 0.526^{\rm i}$	$23.219 \pm 1.870^{\circ}$	

Note: values followed by different letter notation means significantly different based on DMRT test at $\alpha = 0.05$

Based on the growth curve of patchouli shoot explants on solid MS + BAP 0.2 mg.L⁻¹ + Kin 0.2 mg. L⁻¹ (Figure 2), it can be seen that in the 1st to 2nd week there was an increase in growth of patchouli shoot explants which is not too significant, namely from 2,187 to 4,174. Patchouli shoot explants began to experience an exponential phase after the 2nd week, where the patchouli shoot growth index was obtained at 14.468 at the age of 3 weeks. The largest growth occurred between the 5^{th} and 6^{th} weeks, where the initial growth index was 37.846 to 79.444. The patchouli explant experienced a stationary phase after passing the 6th week. Patchouli shoot growth index was obtained at 82,198 at the age of 7 weeks. On the other hand, in the liquid MS medium the largest growth index growth occurred between the 4th and 5th week, where the initial growth index was 11.431 to 26.834. Patchouli shoot explants experienced a stationary phase after passing the 6th week with a growth index value of 28.633 in 7th week of culture.

Figure 2. Growth index curve of *Pogostemon cablin* Benth. on MS medium with addition BAP 0.2 mg.L⁻¹ + Kin 0.2 mg.L⁻¹

Figure 3. TLC Chromatogram of Patchouli Oil on UV λ =254 n (A) Standard; (B) Ex Vitro; (C) In Vitro Eluent n-Hexana: Etil Asetat = 9: 1

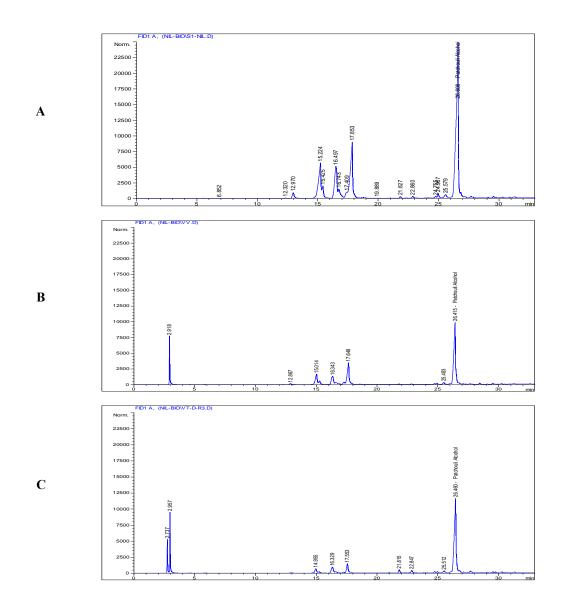


Figure 4. GC Chromatogram of patchouli oil. A. Standard; B. Ex vitro; C. In vitro HP-INNOWax column

 Table 2. Rf value of Thin Layer Chromatography (TLC) of patchouli oil

Dfwalwa		Patchouli oil	
Rf value	Standard	Ex vitro	In vitro
Spot-1	0.344	0.344	0.344
Spot -2	0.411	0.411	0.411
Spot -3	0.478	0.478	0.478
Spot -4	0.556	0.556	0.556
Spot -5	0.767	0.767	0.767

 Table 3. Patchouli alcohol (PA) level on ex vitro and in vitro patchouli oil

Sample	Rendement (%)	Average of patchouli alcohol level (%)
Standard patchouli oil	-	40.691ª
Ex vitro patchouli oil	4	24.643 ^b
In vitro patchouli oil	2.5	35.206°
NL (1 C 11)	1 1.00	1

Note: values followed by different letter notation means significantly different based on DMRT test at $\alpha = 0.05$

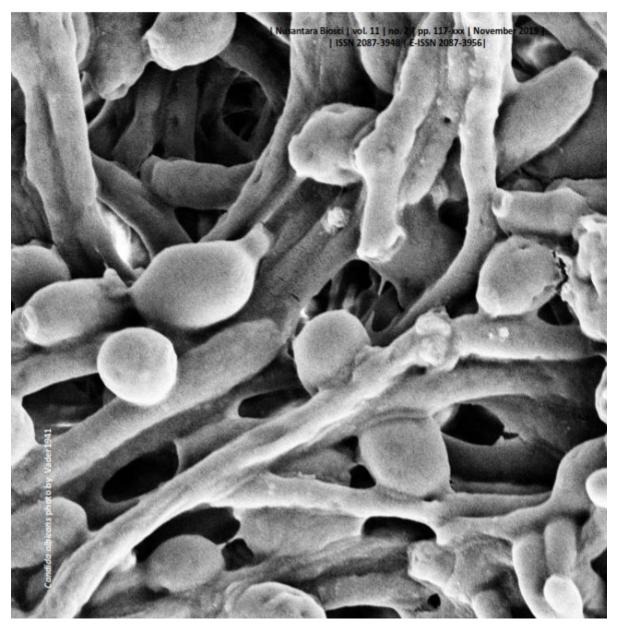
Figure 3 chromatogram showed no difference in patchouli oil profiles of in vitro and ex vitro leaves. Based on Table 2 the Rf values of patchouli oil in vitro and ex vitro and standard compounds were the same.

Based on the results of the gas chromatography test (Figure 4), it can be seen that standard patchouli oil, ex vitro patchouli oil, and in vitro patchouli oil have a similar retention time for patchouli alcohol which was about 26.4 minutes. Patchouli alcohol compounds in all three samples produced the highest peak when compared to other peaks formed.

Based on Table 3 it is known that the level of patchouli alcohol from patchouli oil in vitro is greater than ex vitro, but on the contrary, the rendement of patchouli oil is smaller. This indicates that the rendement of patchouli oil does not necessarily have a positive correlation with the level of patchouli alcohol in patchouli oil. Nuryani et al. (2005) stated that it is a negative correlation between the rendement of patchouli oil and the level of patchouli alcohol from Aceh patchouli (highland and lowland Acehnese patchouli). Furthermore, it is explained that Aceh patchouli grown in the lowland will produce high rendement patchouli oil but low level of patchouli alcohol. Conversely, patchouli plant grown in the highland will produce low rendement patchouli oil and high level of patchouli alcohol.

Based on our study we can conclude that: (i) The best shoot multiplication of *Pogostemon cablin* Benth. var. Sidikalang was on solid MS + 0.2 mg.L⁻¹ BAP and 0.2 mg.L⁻¹ Kinetin; (ii) There was no difference on patchouli oil's profile from in vitro and ex vitro leaf of *P. cablin* var.

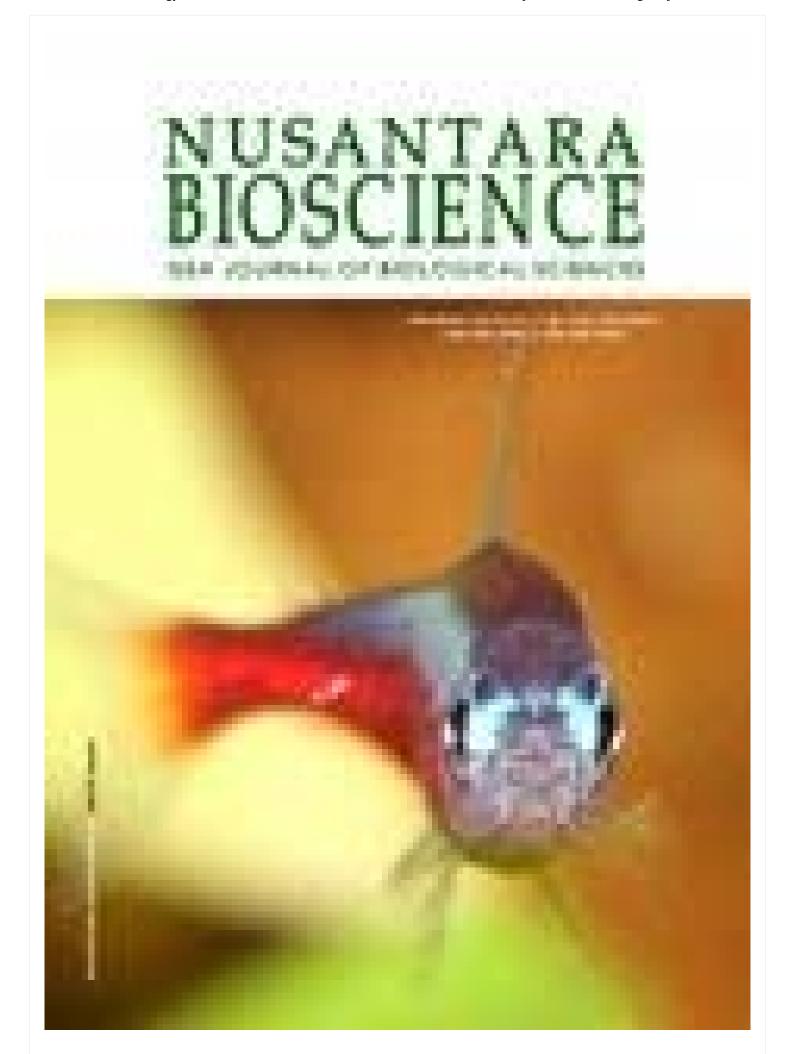
Sidikalang; (iii) The concentration of patchouli alcohol in in vitro leaf is higher than in ex vitro leaf of *P. cablin* var. Sidikalang.


ACKNOWLEDGEMENTS

The authors would like to thank the LPPM Ubaya for providing financial support through Competitive Research, contract No. 037/SP-Lit/LPPM-01/FTB/V/2018.

REFERENCES

- Bharati N. 2002. Biotechnology in commercial production of patchouli in North Eastern Region. NEDFC and NHB 3 (2): 46 -51.
- Blank AF, Sant'ana TCP, Santos PS, Blank NFA, Prata APN, Jesus HCR, Alves APB. 2011. Chemical characterization of the essential oil from patchouli accessions harvested over four seasons. Industr Crops Prod 34 (1): 831-837.
- Dechayont B, Ruamdee P, Poonnaimuang S, Mokmued K, Chunthorng-On J. 2017. Antioxidant and antimicrobial activities of *Pogostemon cablin* (Blanco) Benth. Hindawi J Bot 2017: 1-6.
- Han X, Beaumont C, Stevens N. 2017. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochimie Open 5: 1-7.
- Hernani. 1988. Analisis minyak nilam secara kromatografi lapis tipis. Buletin Littro 3 (2): 89-92. [Indonesian]
- Ito K, Akahoshi Y, Ito M, Kaneko S. 2015. Sedative effects of inhaled essential oil components of traditional fragrance *Pogostemon cablin* leaves and their structure-activity relationships. J Trad Compl Med 2015. DOI: 10.1016/j.jtcme.2015.01.004.
- Jin H, Deng ZC, He H. 2014. Effect of explant types and plant growth regulators on direct regeneration in medicinal plant *Pogostemon cablin*. Plant Omics J 7 (5): 322-327.
- Maes L, Goossens A. 2010. Hormone-mediated promotion of trichome initiation in plants is conserved but utilized species and trichomespecific regulatory mechanisms. Plant Signal Behav 5 (2): 205-207. Nichols L. 2018. The retention factor. Available online:
- chem.libretexts.org/Bookshelves/Organic_Chemistry/ [11 January 2018]
- Nuryani Y, Emmyzar, Wiratno. 2005. Budidaya Tanaman Nilam. Balai Penelitian Tanaman Obat dan Aromatik, Balitbang Pertanian, Bogor.
- Sahertian SM. 2015. Multiplikasi tunas in vitro Nilam Aceh (Pogostemon cablin Benth. var. Sidikalang) dan analisa kualitatif minyak nilam [Hon. Thesis]. Fakultas Teknobiologi, Universitas Surabaya, Surabaya [Indonesian].
- Swamy MK, Sinniah UR. 2016. Patchouli (*Pogostemon cablin* Benth.): botany, agrotechnology, and biotechnological aspects. Industr Crops Prod 87: 161-176.
- Triesty I, Mahfud. 2017. Ekstraksi minyak atsiri dari gaharu (Aquilaria malaccensis) dengan menggunakan metode microwave hydrodistillation dan soxhlet extraction. Jurnal Teknik ITS 6 (2): F392-F395. [Indonesian]
- Vyas S, Rao MS, Suthar RK, Purohit SD. 2008. Liquid culture system stimulates in vitro growth and shoot multiplication in four medicinally important plants. Med Aromatic Plant Sci Biotechnol 2 (2): 96-100.
- Wu YG, Li CG, Li XC, Yuan M, Hu XW. 2013. Comparison of essential oil composition between *Pogostemon cablin* and *Agastache rugosa* used as herb. J Essent Bearing Plants 16: 705-713.
 Yang X, Zhang X, Yang SP, Liu WQ. 2013. Evaluation of the
- Yang X, Zhang X, Yang SP, Liu WQ. 2013. Evaluation of the antibacterial activity of patchouli oil. Iranian J Pharmaceut Res 12 (3): 307-316.



Journal Profile

Nusantara Biosciences : Isea Journal of Biological Sciences eISSN : 20873956 | pISSN :

eISSN : 20873956 I pISSN : Universitas Sebelas Maret

esînta	
S2 Sinta Score	
20 H-Index	
18 H5-Index	
2136 Citations	
1781 5 Year Citations	

Penerbit:

2017	2018	2019
2017 Website I @ Editor URL	2010	2010
Address:		
Bioscience Program, School of Graduate	es, Universitas Sebelas Maret Jl. Ir. Sutami 36	A Surakarta 57126, Central Java,
Indonesia	sinta Accreditations	
Surakarta		
Email:		
Search editors@smujo.id		
Phone:		
+62-271-7994097	K «	1 2 3 4 5 » H
Page 1 of 40 Total Records : 396		
Publications		Citation
2021–06–16 Blood cholesterol levels of hyperchole	sterolemic rat (Rattus norvegicus) after VCO	treatment
M Harini, OP Astirin	<u> </u>	69
Nusantara Bioscience 1 (2), 2009		
Natural products from genus Selagine	l <u>a (Selaginellaceae</u>)	50
AD Setyawan		56
Nusantara Bioscience 3 (1), 2011		
Effect of seaweed extracts on growth a	and yield of rice plants	
S SUNARPI, A JUPRI, R KURNIANINGSIH,	NURI JULISANIAH,	52
Nusantara Bioscience 2 (2), 2010		
Antibacterial activity of Thymus vulgar	is essential oil alone and in combination wit	n other essential oils
K Kon, M Rai		51
Macro-fungal diversity and nutrient co	ntent of some edible mushrooms of Nagala	nd, India
R Kumar, A Tapwal, S Pandey, RK Borah,	D Borah, J Borgohain	48
Nusantara Bioscience 5 (1), 2013		

SINTA - Science and Technology Index

Publications		Citation
Induced mutations by gamma ray irradiation to Argomulyo soybea DS HANAFIAH, T TRIKOESOEMONINGTYAS, S YAHYA, D WIRNAS Nusantara Bioscience 2 (3), 2010	n (Glycine max) variety	47
Traditionally utilization of Selaginella; field research and literature r AD Setyawan Nusantara Bioscience 1 (3), 2009	review	44
<u>Diversity of secondary metabolites from Genus Artocarpus (Morac</u> A Hakim Nusantara Bioscience 2 (3), 2010	<u>eae</u>)	41
<u>Phytofabrication of silver nanoparticles by using aquatic plant Hyd</u> N SABLE, S GAIKWAD, S BONDE, A GADE, M RAI Nusantara Bioscience 4 (2), 2012	rilla verticillata	40
<u>Colchicine, current advances and future prospects</u> R Ade, MK Rai Nusantara Bioscience 2 (2), 2010		32
age 1 of 40 I Total Records : 396 itation Statistics	K « 1 2 3	4 5 ≫)

Home / Editorial Team

Editorial Team

EDITORIAL BOARD:

• Editor-in-Chief, Sugiyarto, Universitas Sebelas Maret Surakarta, Indonesia (sugiyarto_vs@yahoo.com)

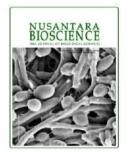
Editorial Advisory Boards:

- Agricultural Sciences, Muhammad Sarjan, Mataram University, Mataram, Indonesia (janjan62@gmail.com)
- Agricultural Sciences, Dragan Znidarcic, University of Ljubljana, Slovenia, EU (Dragan.Znidarcic@bf.uni-lj.si)
- Animal Sciences, Freddy Pattiselanno, State University of Papua, Manokwari, Indonesia (pattiselannofreddy@yahoo.com)
- Biochemistry and Pharmacology, Mahendra K. Rai, SGB Amravati University, Amravati, India (pmkrai@hotmail.com)
- Biochemistry, Vinod K. Sangwan, Eternal University, Baru Sahib (Sirmour), India (sangwan.vinod@yahoo.com)
- Bioinformatics and Computational Biology, Guojun Li, University of Georgia, Athens, USA (guojunsdu@gmail.com)
- Biomedical Sciences, Huiling Yang, Guangzhou Medical University, Guangzhou, China (yanghui030454@gmail.com)
- Biomedical Sciences, Afiono Agung Prasetyo, Universitas Sebelas Maret, Surakarta, Indonesia (afieagp@yahoo.com)
- · Bioremediation, Surajit Das, National Institute of Technology, Rourkela, India (surajit@nitrkl.ac.in)
- Ecology and Environmental Science, **Cecep Kusmana**, Bogor Agricultural University, Bogor, Indonesia (ckusmana@ymail.com)
- Ethnobiology, Luchman Hakim, University of Brawijaya, Malang, Indonesia (lufehakim@yahoo.com)
- · Forestry, Rajesh Kumar, Rain Forest Research Institute, Assam, India (rajeshicfre@gmail.com)
- Genetics and Evolutionary Biology, Sutarno, Universitas Sebelas Maret, Surakarta, Indonesia (nnsutarno@yahoo.com)
- Human Sciences, Yi Li, Texas A&M University-Kingsville, Kingsville, USA (yi.li@tamuk.edu)
- Hydrobiology, Gadis S. Handayani, Research Center for Limnology, Bogor, Indonesia (gadis@limnologi.lipi.go.id)
- Medicinal and Aromatic Plants, Khalid A.K. Ahmed, National Research Centre, Cairo, Egypt (ahmed490@gmail.com)
- Marine Science, Mohammed S.A. Ammar, National Institute of Oceanography, Suez, Egypt (shokry_1@yahoo.com)
- Microbiology, Kateryna Kon, Kharkiv National Medical University, Kharkiv, Ukraine (katerynakon@gmail.com)
- Molecular Communication and Nanonetworks, Baris Atakan, Izmir Institute of Technology, Ä^ezmir, Turkiye (barisatakan@iyte.edu.tr)
- Microbiology, Rajesh K. Gupta, Biologics Quality & Regulatory Consultants, LLC, North Potomac, USA (guptarus@yahoo.com)
- Microbiology, Roman Yesid Ramirez Rueda, Universidad Pedagogica y Tecnologica de Colombia, Tunja, Colombia (royer94@gmail.com)
- Parasitology (Immuno-parasitology), Hossein Nahrevanian, Pasteur Institute of Iran, Tehran, Iran (mobcghn@gmail.com)
- · Plant Breeding and Biotechnology, Danial Kahrizi, Razi University, Kermanshah, Iran (dkahrizi@yahoo.com)
- Plant Physiology, Qingmei Guan, University of Maryland, College Park, Maryland, USA (qguan@umd.edu)
- Plant Physiology, Xiuyun Zhao, Huazhong Agricultural University, Wuhan, China (xiuyunzh@yahoo.com.cn)
- Plant Science, Pudji Widodo, General Soedirman University, Purwokerto, Indonesia (pudjiwi@yahoo.com)
- Plant Science, Muhammad M. Aslam, Kohat University of Science & Technology, Kohat, Pakistan

 Toxicology, Shaukat Ali, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan (shaukatali134@yahoo.com)

Management Boards:

- Managing Editor, Ahmad D. Setyawan, Universitas Sebelas Maret Surakarta, Indonesia (unsjournals@gmail.com)
- Associated Editor (English Editor), Wiryono, State University of Bengkulu, Bengkulu City, Indonesia (wiryonogood@yahoo.com),
- Associated Editor (English Editor), Suranto, Universitas Sebelas Maret, Surakarta, Indonesia (surantouns@gmail.com)
- Technical Editor, Ari Pitoyo, Universitas Sebelas Maret Surakarta, Indonesia (aripitoyo@mipa.uns.ac.id)
- Business Manager, A. Widiastuti, Development Agency for Seed Quality Testing of Food and Horticulture Crops, Depok, Indonesia (nusbiosci@gmail.com)



Science Group Master Journal	List Beta Search Journals Match Nanuscript Downloads Scope Notes Help Center	Sign In Create Free Account
Iready have a nanuscript?	Search Results	Search Sort By: Title (A-Z)
Find a Match	Found 1 results (Page 1)	(Exact Match)
Iters 📴 Cleer All	NUSANTARA BIOSCIENCE Publisher: UNIV SEBELAS MARET, IR SUTAMI 36 A, SURAKARTA, INDONESIA, 57 126	(anto (based))
leb of Science Coverage	ISSN / eISSN: 2087-3948 / 2087-3955 Categories: BIOLOGY & BIOCHEMISTRY BIOLOGY	View profile page
ore Collection	Web of Science Core Collection: Emerging Sources Citation Index	" Requires free login.

All Clarivate Analytics websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.

Ok to Continue
 Ccokie Policy

	Smujo Register
About - Policy - Submissions - Current Archives Announcements	
	Usage Statistics Information
Current Issue	We log anonymous usage statistics. Please read the privacy information for details.
Vol 11 No 2 (2019)	Information
NUSANTARA BIOSCIENCE	For Readers
	For Authors
	For Librarians
	Current Issue
View All Issues 🗆	
	Journals List
Online smujo.id/nb SSN: ISSN 2087-3948, E-ISSN: 2087-3956	Biodiversitas Journal of Biological Diversity
Publisher: Society for Indonesian Biodiversity	Nusantara Bioscience
Co-publisher: School of Graduates, Universitas Sebelas Maret, Surakarta	
First Publication: 2009	Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia
Period of Issuance: May, November	
Aims and Scope Nusantara Bioscience (Nusantara Biosci) encourages submission of manuscripts dealing with all aspects of biological sciences that emphasize issues germane to biological and nature conservation.	Asian Journal of Agriculture
Article types The journal seeks original full-length research papers, reviews, and short communication. Manuscript	Asian Journal of Ethnobiology
of original research should be written in no more than 8,000 words (including tables and picture), or proportional with articles in this publication number. Review articles will be accommodated, while, short communication should	Asian Journal of Forestry
be written at least 2,000 words (excl. references), except for pre-study.	Biofarmasi Journal of Natural Product Biochemistry
Indexing The journal has been indexed/registered in ESCI Web of Science, DOAJ, Google Scholar, Crossref, Microsoft Academic Search, SINTA Science and Technology Index (S2).	Bioteknologi Biotechnological Studies
	Bonorowo Wetlands

Articles

Vol. 11 No. 2 (2019)

Shoot multiplication of Pogostemon cablin var. Sidikalang and patchouli oil profile POPY HARTATIE HARDJO, DANNY PUTRA SENTOSA SUSANTO, WINA DIAN SAVITRI, MARIA GORETTI MARIANTI PURWANTO

Antimicrobial properties of Chlorocardium rodiei on Pseudomonas aeruginosa, Bacillus spp. and Candida albicans DENNIS DAVID, RUTH DANIEL, DIANA SEECHARRAN

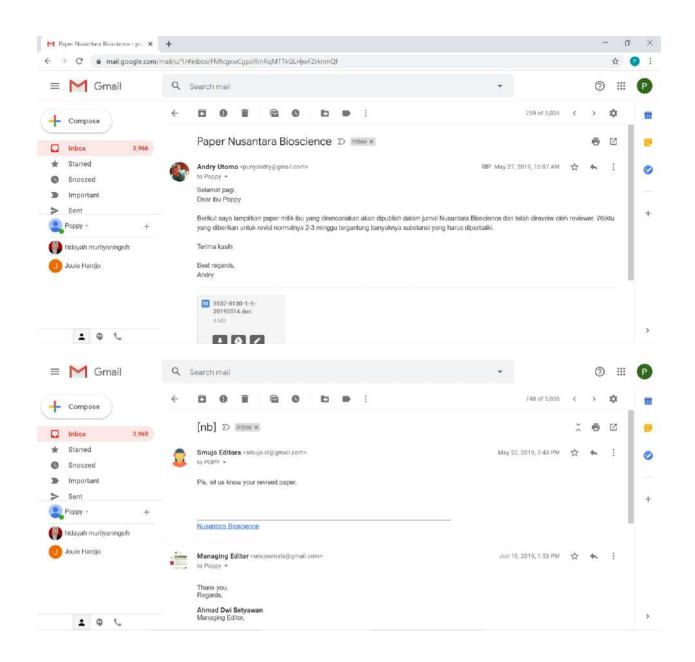
Ethnobotanical study of medicinal plants in karst environment in Gunung Kidul, Yogyakarta, Indonesia MAIZER SAID NAHDI , ARDYAN PRAMUDYA KURNIAWAN

Short Communication: Sensory evaluation and nutritional value of Acehnese bhoi cake with pumpkin flour substitution suryATI SUFIAT, SAFRIDA SAFRIDA, YULI HEIRINA HAMID, RAHMI KAMAL, RUHYAT PARTASASMITA.

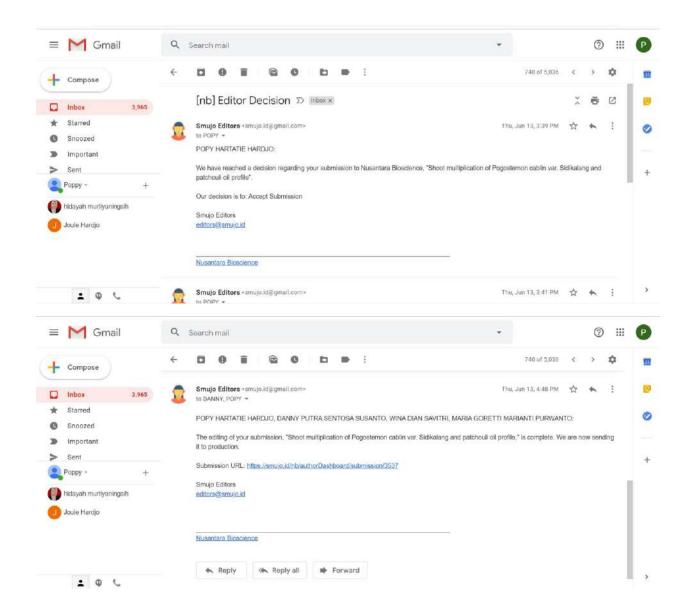
Comparison of seed dormancy breaking of Eusideroxylon zwageri from Bali and Kalimantan soaked with sodium nitrophenolate growth regulator JHON HARDY PURBA, NANANG SASMITA, LIRIS US KOMARA, NOH NESIMNASI

Antioxidant activity of extracted green algae silpau (Dyctyosphaeria versluysii) ENDANG S SRIMARIANA, DAN APITULEY

The effect of ethanol extract of fruit peel jengkol (Archidendron pauciflorum) to spleen histological structure of streptozotocin-induced diabetic rats (Rattus norvegicus)


DESAK MADE MALINI, SELMA ALAMANDA ABADI, MADIHAH, WAWAN HERMAWAN

Callus and shoot induction of leaf culture Lilium longiflorum with NAA and BAP NI KADEK DWIPAYANI LESTARI, NI WAYAN DESWINIYANTI, IDA AYU ASTARINI, NI LUH MADE ARPIWI


Effect of organic manure fertilizer on the growth of Macaranga gigantea DWI SUSANTO, AULIANA, RATNA KUSUMA, RUDIANTO AMIRTA

Corresponding Author:

→ C ■ mail.google.c	om/mail/u/1/#in	box/FMfcgxwCgpWgPTimFCqVgvzvSDcJgwJL					\$	-
= M Gmail	Q Se	earch mail	*			0		F
- Compose	÷			748 of 5,036	< н	>	٠	
Inbox 3,960 Starred Snoozed Important Sent Poppy Indayah murtiyaningsih Joule Hardjo	3	to Poppy + Thank you, Regards, Ahmad Dwi Setyawan Managing Editor, On Mon, Jun 10, 2019 at 12:23 PM Poppy Hartanti Harjo 1130 _ < <u>poppy_hardjo@staff.ubay</u> Dear Smujo Editors, Please find attached our revised paper: Thank you for revisewing, Regards, Popy On Thu, May 23, 2019 at 7:37 AM Poppy Hartanti Harjo 1130 _ < <u>poppy_hardjo@staff.ubay</u> I will send it soon						
uncorrected proof - poppyhard): → C @ mail.google.c	om/mail/u/1/#in	box/FMfcgxwChJZlizHqnPqpdMdrxPXRWpIW	÷			0	- ¤	2
uncorrected proof - popoyhard) → C ≜ mail.google.c ≡ M Gmail	om/mail/u/1/#in	box/FMfcgxwChJZUzHqnPqpdMdrxPXRWplW earch mail	•	746 of 5,036	¢	0	*	0
a uncorrected proof - popoyhard):	om/mail/u/1/#in Q Sc +	earch mail		746 of 5,036 un 11, 11:47 AM	< ☆		* (
uncorrected proof - popoyhardj: → C mail.google.c Gmail Gmail Compose Inbox 3,96t Starred Snoozed Important	om/mail/u/1/#in Q Se +	aarch mail				>	* 	

Shoot multiplication of Pogostemon cablin var. Sidikalang and patchouli oil profile

by Maria Goretti Marianti Purwanto

Submission date: 14-Nov-2021 09:52PM (UTC+0700) Submission ID: 1702208221 File name: 8_Nusantara_Bioscience_2019_P_cablin_Sidikalang.pdf (2.62M) Word count: 3430 Character count: 16386

Shoot multiplication of Pogostemon cablin var. Sidikalang and patchouli oil profile

ORIGINALITY REPORT			
14% SIMILARITY INDEX	7% INTERNET SOURCES	9% PUBLICATIONS	5% STUDENT PAPERS
PRIMARY SOURCES			
1 Student Pap	ted to Universita	s Mulawarmaı	n 2 _%
2 Student Pap	ted to KYUNG H	EE UNIVERSITY	1 %
3 WWW.a	gi.nu.ac.th		1 %
4 WWW.N Internet Sou	etjournals.org		1 %
da Silva culture	inarto, F. Rachma a. "New basal me of Anthurium ar cv. Tropical", Plar	dia for half-an dreanum Lind	۱۹ Ien ex
6 Biotech 1998. Publication	nology in Agricu	lture and Fore	stry, < 1 %
	naraswamy, M. A propagation of Po		<1 g

"Micropropagation of Pogostemon cablin

Benth. through Direct Regeneration for Production of True to Type Plants", Plant Tissue Culture and Biotechnology, 2010

Publication

8	kerrdental.com.mx	<1%
9	publications.waset.org	<1%
10	www.frontiersin.org	<1%
11	Submitted to Higher Education Commission Pakistan Student Paper	<1%
12	Manjeet S. Gill, Y. P. S. Bajaj. "Hybridization between diploid (Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton through ovule culture", Euphytica, 1987 Publication	<1 %
13	S. Roozbeh, M. Otroshy, R. Bozorgipoor, M. Ebrahimi, A. Moeini Najafabadi, P.C. Struik. "MICROPROPAGATION OF FERULA ASSA- FOETIDA L. (A MEDICINAL PLANT) VIA DIRECT SOMATIC EMBRYOGENESIS", Acta Horticulturae, 2012 Publication	<1 %
14	Waikit Leong, Guoxin Huang, Imran Khan, Wenrui Xia, Yucui Li, Yubong Liu, Xiaoang Li	<1%

Wenrui Xia, Yucui Li, Yuhong Liu, Xiaoang Li,

Ruixuan Han, Ziren Su, W. L. Wendy Hsiao. "Patchouli Essential Oil and Its Derived Compounds Revealed Prebiotic-Like Effects in C57BL/6J Mice", Frontiers in Pharmacology, 2019 Publication

15	hdl.handle.net Internet Source	<1%
16	mafiadoc.com Internet Source	<1%
17	www.environment.gov.au	<1%
18	ibiss-r.rcub.bg.ac.rs Internet Source	<1%
19	Biotechnology in Agriculture and Forestry, 1989. Publication	<1 %
20	Biotechnology in Agriculture and Forestry, 1996. Publication	<1%
21	Submitted to Yeungnam University Student Paper	<1%
22	coek.info Internet Source	<1%
23	ojs.uho.ac.id Internet Source	<1%

	Current Dlant Crianse and Distochaslery in	
32	Biotechnology in Agriculture and Forestry, 1993. Publication	<1 %

22	Current Plant Science and Biotechnology in	<1%
55	Agriculture, 1995.	\ \ %0
	Publication	

Exclude quotes	On	Exclude matches	Off
Exclude bibliography	On		

Shoot multiplication of *Pogostemon cablin* var. Sidikalang and patchouli oil profile

POPY HARTATIE HARDJO[•], DANNY PUTRA SENTOSA SUSANTO, WINA DIAN SAVITRI, MARIA GORETTI MARIANTI PURWANTO

Faculty of Biotechnology, Universitas Surabaya. Jl. Raya Kalirungkut, Surabaya 60292, East Java, Indonesia. Tel.: +62-31-2981399, Fax.: +62-31-2981278. *email: poppy_hardjo@staff.ubaya.ac.id,

Manuscript received: 11 February 2019. Revision accepted: 13 June 2019.

Abstract. Hardjo PH, Susanto DPS, Savitri WD, Purwanta 14 GM. 2019. Shoot multiplication of Pogostemon cablin var. Sidikalang and patchoul 14 profile. Nusantara Bioscience 11: 123-127. Pogostemon cablin Benth. is a plant producing patchouli oil, which mostly consists of patchouli alcohol compound. Patchouli oil has great potentials in the world market because of its stability and high price. In this study, in vi18 multiplication of Sidikalang variety of Acehnese patchouli shoots was done on solid and liquid Murashige & Skoog (MS) medium. This study aimed to determine the effect of cytokinins in various combinations of sl 6 trultiplication and to compare the patchouli oil yield of in vitro and ex vitro culture. In vitro multiplication of Acehnese patchouli shoots by using solid MS medium with addition of 0.2 ppm benzyl aminopurine (BAP) and 0.2 ppm Kinetin resulted in shoot explants with an average growth index of 82.198 \pm 0.690. Patchouli oil extraction was done on 7 weeks old in vitro shoot explants cultured on solid MS medium + 0.2 ppm BAP + 0.2 ppm Kinetin using water distillation method. In vitro shoots yielded 2.5% patchouli alcohol compound. The qualitative analysis by using thin layer chromatography (TLC) showed that there were similarities in the number of spot and Rf value for each spot of ex vitro and in vitro and reserved that there were similarities in the number of spot and Rf value for each spot of ex vitro and in vitro and in vitro patchouli oil.

Keywords: Patchouli oil, Pogostemon cablin, shoot multiplication, var. Sidikalang

INTRODUCTION

Patchouli is an essential oil producing plant. The oil extracted from the leaf part of Acehnese patchouli (*Pogostemon cablin* Benth.) var Sidikalang (is called patchouli oil) is the best in Indonesia and has the high value in the international trade (Wu et al, 2013). Patchouli oil is utilized in perfume industry as a fixative agent. Beside of that, in the recent years, patchouli oil is also known to have some benefits as aromatherapy (Ito et al, 2015), e. g. to calm nerves and to relieve stress. It is also potential to combat pathogenic microor 22 ism as it has biological activity such as antibacterial (Yan et al. 2013), anti-inflammatory (Han et al. 2017), and antioxidant (Dechayont et al. 2017).

The issue in patchouli oil industry in Indonesia is the diversity of patchouli oil's quality. This problem may be caused by the breeding system that is affected by the fluctuating environmental condition (Blank et al, 2011). Thus, as the alternative, plant tissue culture technique was developed to achieve homogeneity of raw material to produce patchouli oil.

The utilization of tissue culture technique to produce patchouli oil from the leaf part of patchouli as the raw material intended to obtain patchouli oil with high rendement and quality, where the leaf growth was controlled by nutrient and mineral factor, and also light intensity in in vitro environmental condition. In addition, the supply of raw material (in vitro leaves) was continuing and not depending on the season. The patchouli oil was obtained from the leaf part, particularly the glandular trichomes on the leaf surface. Maes and Goossens (2010) stated that benzyl aminopurine (BAP) and jasmonic acid could increase the number of trichomes in *Arabidopsis*' leaf.

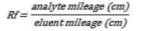
Multiplication of in vitro shoots of P. cablin on solid MS medium 10as been widely researched (Swamy et al. 2016) used $0.5 \text{ mg.L}^{-1} \text{ BAP} + 0.5 \text{ mg.L}^{-1} \text{ Kin; Jin et al.}$ (2014) used 0.2 mg.L-1 BAP, yet it has never been done before in liquid medium. The use of liquid medium in this research is an early step to figure out shoots response when they are cultured in liquid medium, also to prepare shoot culture in a bioreactor system. Sahertian (2015) reported that the highest multiplication rate $\frac{1}{4}$ in vitro shoot of P. cablin var. Sidikalang was on solid MS medium with 0.5 mg.L⁻¹ BAP, the shoots were subsequently elongated a 30 afterwards, the leaf size became wider after subcultured on hormone-free MS medium. In line with that, in this experiment we would be examined the effect of lower concentration of BAP and Kinetin on solid and liquid MS medium to increase the shoot multiplication as well as the leaf size, also to compare the patchouli oil profile from in vitro and ex vitro leaf.

MATERIALS AND METHODS

Procedures

Shoot multiplication

Nodal part from patchouli plant aged 1 year, planted at greenhouse, 25's used as explant source. The explants were soaked in a 310% ethanol solution for 1 min, then subsequently washed several times with sterile distilled v20er. Afterwards, they were dipped in a bleaching solution (20% 32 prox) for 15 min, and then washed many times with sterile distilled water. The nodal cuttings were cultured on MS 1171 medium (3% sucrose (w/v) and 0.7% agar (w/v) (4) h the addition of (0.2 and 0.5 mg.L⁻¹) BAP, (0.2 and 0.5 mg.L-1) Kinetin, and combination of BAP and Kinetin. The explants were cultured on liquid medium with additional support such as filter paper (Vyas et al, 2008 in modification). The initial weight of shoots was weighed. The cultures were incubated at ±25 °C with 16h light per day for 7 weeks. The observation was performed every week, including the shoot's fresh weight and the shoot's growth index. The shoot's growth index was calculated by dividing shoot's fresh weight when observing with initial fresh weight. In the last day of week-7, where there was no more growth based on shoot's growth curve, the cultures were harvested and latterly air dried until they reached constant weight. Finally, the dried cultures were mashed into powder. The cultures which have the highest growth index were continued to analyze essential oil profiles from in vitro and ex vitro plants.


Essential oil extraction by water distillation

As much as 10 g dry powder was extracted by steam and water distillation at $100 \pm 2^{\circ}$ C for 4h. The extract was transferred to separating funnel, then 5 ml n-hexane solution and a sufficient amount of NaCl solution (1 N) were added in to it. The water layer at the bottom of separating funnel was removed, and then anhydrous sodium sulfate was sufficiently added. Afterwards it was filtered by filter paper. The yield or rendement of patchouli oil was calculated by the formulation below (Triesty dan Mahfud, 2017):

$$Yield = \frac{oilvolums (ml)}{shoot dry weight (g)} x 100\%$$

Qualitative analysis by thin layer chromatography (TLC)

Chromatography chamber was filled with n-hexane: ethyl acetate as a mobile phase (eluent) with a ratio of 9: 1 (Hernani 1988), the chamber was closed tightly until the atmosphere became saturated. TLC plate (*TLC Silica Gel* 60 F₂₅₄) sized 10 x 10 cm as stationary phase was marked 0,5 cm long, each from the bottom and from the top end. As much as 0,2 μ L patchouli oil from each standard, ex vitro shoot, and in vitro shoot was applied on the bottom mark of the plate. The plate was then put into chamber in the upright position, the chamber lid was closed tightly. The mobile phase would spread through TLC plate. After the mobile phase reached the top end mark, the plate was then taken out from the chamber. Afterwards, the resulting spots were observed under UV light at λ =254 nm. Retention factor (Rf) value could be calculated by the formula below (Nichols, 2018):

Qualitative analysis by gas chromatography (GC)

About 100 μ L patchouli oil from distillation result was injected to a gas chromatography tool which has been arranged in such a way. The mobile phase is helium and HP-INNOWAX (PEG) column was used as stationary phase. The solvent used was n-hexane. Analysis result by GC would appear at the computer screen in the form of peak/ spectra with particular number and pattern. Resulted peaks could be compared with the literature based on their retention time. From the chromatography results, it could be known the type and the constituents content which contained in the patchouli oil (*patchouli alcohol content*).

Data analysis

Every treatment was repeated 20 times with factorial treatment design. (medium consistency factors were liquid and solid, plant growth regulator factors were the combination of BAP and kinetin) performed by completely randomized design. The shoot growth index analysis was 23 cuted by two-way ANOVA which then continued with *Duncan's Multiple Range Test* (DMRT) at α =0.05 to identify the differences between treatments. At the same time, patchouli alcohol content was analyzed by one-way ANOVA and also continued with DMRT at α =0.05.

RESULTS AND DISCUSSION

Patchouli shoots grew in MS + BAP medium 0.2 mg.L⁻¹ + Kin 0.2 mg.L⁻¹ had big size and large numbers of leaves, and thick stems (Figure 1 C, D). Addition of BAP with concentration of 0.2 mg.L⁻¹ in the form of rosette (small leaves in groups) was not too much, while the addition of BAP with a concentration of 0.5 mg.L⁻¹ caused large amounts of rosette buds and the tendency of explants to form c²⁹s (abnormal growth). This phenomenon occurs both in solid MS medium and liquid MS.

Patchouli shoots grew on solid MS medium + BAP 0.2 mg.L-1 + Kin 0.2 mg.L-1 had the highest growth index and significantly different from other patchouli explant shoot growth index at 7th week (Table 1). Bharati (2010) stated that the addition of a combination of growth regulators BAP and Kinetin has a better impact in multiplication of Acehnese patchouli plants when compared with the addition of one. Overall, the growth of patchouli shoots is better in solid medium than liquid medium. This is likely because the culture in the liquid medium was not placed in a shaker, so that medium aeration was lacking and had a negative impact on shoot growth. In contrary, Vyas (2008) reported the stimulatory effect of liquid media supported by glass beads on the in vitro growth of four medicinally important plants. Patchouli shoots with the largest growth index value harvested after the 7th week when the growth curve was in the stationary phase and continued with an analysis of the essential oil content.

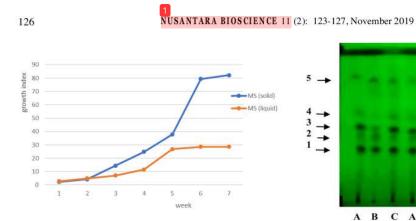

Figure 1. Morphology of 19 itro Patchouli Shoot on MS Medium with various BAP and Kinetin at 7 weeks. Note: A. MS (solid) + BAP 0.2; B. MS (liquid) + BAP 0.2; C. MS (solid) + BAP 0.2 + Kin 0.2; D. MS (liquid) 12 AP 0.2 + Kin 0.2; E. MS (solid) + Kin 0.2; F. MS (liquid) + Kin 0.2; G. MS (13d) + BAP 0.5 + Kin 0.2; H. MS (liquid) + BAP 0.5 + Kin 0.2; I. M 21 olid) + Kin 0.5; J. MS (liquid) + Kin 0.5; K. MS (solid) + BAP 0.2 + Kin 0.5; L. MS (liquid) + BAP 0.2 + Kin 0.5; M. MS (solid) + BAP 0.5 + Kin 0.5; N. MS (liquid) + BAP 0.5 +

Table 1. Growth rate index of in vitro patchouli shoots at 7th week on solid and liquid MS medium

Catabinin (ma Lil)	Growth rate index ± SD		
Cytokinin (mg.L ⁻¹)	Solid MS	Liquid MS	
MS0	8.956 ± 1.327 ^a	14.643 ± 3.478 ^b	
BAP 0.2	51.308 ± 0.985^{g}	27.366 ± 1.719^{dc}	
Kin 0.2	32.839 ± 1.173^{f}	26.288 ± 1.931^{dc}	
BAP 0.2 + Kin 0.2	82.198 ± 0.690^{j}	28.633 ± 0.519°	
Kin 0.5	48.798 ± 1.640^{g}	25.746 ± 0.431^{d}	
BAP 0.5 + Kin 0.2	54.925 ± 1.166^{h}	20.843 ± 0.396°	
BAP 0.2 + Kin 0.5	53.902 ± 1.476^{h}	$22.844 \pm 0.967^{\circ}$	
BAP 0.5 + Kin 0.5	57.812 ± 0.526^{i}	23.219 ± 1.870°	

Spte: values followed by different letter notation means significantly different based on DMRT test at $\alpha = 0.05$

Based on the growth curve of patchouli shoot explants on solid MS + BAP 0.2 mg.L⁻¹ + Kin 0.2 mg. L⁻¹ (Figure 2), it can be seen that in the 1st to 2nd week there was an increase in growth of patchouli shoot explants which is not too significant, namely from 2,187 to 4,174. Patchouli shoot explants began to experience an exponential phase after the 2nd week, where the patchouli shoot growth index was obtained at 14.468 at the age of 3 weeks. The largest growth occurred between the 5^{th} and 6^{th} weeks, where the initial growth index was 37.846 to 79.444. The patchouli explant experienced a stationary phase after passing the 6th week. Patchouli shoot 27 wth index was obtained at 82,198 at the age of 7 weeks. On the other hand, in the liquid MS medium the largest growth index growth occurred between the 4th and 5th week, where the initial growth index was 11.431 to 26.834. Patchouli shoot explants experienced a stationary phase after passing the 6th week with a growth index value of 28.633 in 7th week of culture.

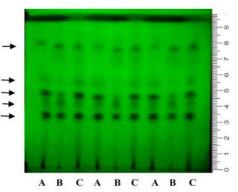


Figure 2. Growth index curve 15 Pogostemon cablin Benth. on MS medium with addition BAP $0.2 \text{ mg.L}^{-1} + \text{Kin } 0.2 \text{ mg.L}^{-1}$

Figure 3. TLC Chromatogram of Patchouli Oil on UV λ =254 n (A) Standard; (B) Ex Vitro; (C) In Vitro Eluent n-Hexana: Etil Asetat = 9: 1

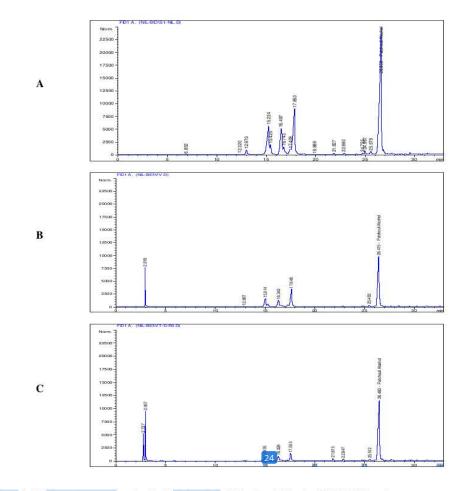


Figure 4. GC Chromatogram of patchouli oil. A. Standard; B. Ex vitro; C. In vitro HP-INNOWax column

 Table 2. Rf value of Thin Layer Chromatography (TLC) of patchouli oil

Demilie	Patchouli oil		
Rf value	Standard	Ex vitro	In vitro
Spot-1	0.344	0.344	0.344
Spot -2	0.411	0.411	0.411
Spot -3	0.478	0.478	0.478
Spot -4	0.556	0.556	0.556
Spot -5	0.767	0.767	0.767

Table 3. Patchouli alcohol (PA) level on ex vitro and in vitro patchouli oil

Sample	Rendement (%)	Average of patchouli alcohol level (%)
Standard patchouli oil	-	40.691 ^a
Ex vitro patchouli oil	4	24.643 ^b
In vitro patchouli oil	2.5	35.206 ^c

Ste: values followed by different letter notation means significantly different based on DMRT test at $\alpha = 0.05$

Figure 3 chromatogram showed no difference in patchouli oil profiles of in vitro and ex vitro leaves. Based on Table 2 the Rf values of patchouli oil in vitro and ex vitro and standard compounds were the same.

Based on the results of the gas chromatography test (Figure 4), it can be seen that standard patchouli oil, ex vitro patchouli oil, and in vitro patchouli oil have a similar retention time for patchouli alcohol which was about 26.4 minutes. Patchouli alcohol compounds in all three samples produced the highest peak when compared to other peaks formed.

Based on Table 3 it is known that the level of patchouli alcohol from patchouli oil in vitro is greater than ex vitro, but on the contrary, the rendement of patchouli oil is smaller. This indicates that the rendement of patchouli oil does not necessarily have a positive correlation with the level of patchouli alcohol in patchouli oil. Nuryani et al. (2005) stated that it is a negative correlation between the rendement of patchouli oil and the level of patchouli alcohol from Aceh patchouli (highland and lowland Acehnese patchouli). Furthermore, it is explained that Aceh patchouli grown in the lowland will produce high rendement patchouli oil but low level of patchouli alcohol. Conversely, patchouli plant grown in the highland will produce low rendement patchouli oil and high level of patchouli alcohol.

Based on our study we can conclude that: (i) The best shoot multiplication of *Pogostell1 n cablin* Benth. var. Sidikalang was on solid MS + 0.2 mg.L^{-1} BAP and 0.2 mg.L^{-1} Kinetin; (isoThere was no difference on patchouli oil's profile from in vitro and ex vitro leaf of *P. cablin* var. Sidikalang; (iii) The concentration of patchouli alcohol in in vitro leaf is higher than in ex vitro leaf of *P. cablin* var. Sidikalang.

ACKNOWLEDGEMENTS

The authors would like to thank the LPPM Ubaya for voiding financial support through Competitive Research, contract No. 037/SP-Lit/LPPM-01/FTB/V/2018.

Bharati N. 2002. Biotechnology in commercial production of patchouli in North Eastern Region. NEDFC and NHB 3 (2): 46 -51.

- Blank AF, Sant'ana TCP, Santos PS, Blank NFA, Prata APN, Jesus HCR, Alves APB. 2011. Chemical characterization of the essential oil from patchouli accessions harvested over four seasons. Industr Crops Prod 34 (1): 831-837.
- Dechayont B, Ruamdee P, Poonnaimuang S, Mokmued K, Chunthorng-On J. 2017. Antioxidant and antimicrobial activities of *Pogostemon cablin* (Blanco) Benth. Hindawi J Bot 2017: 1-6.
- Han X, Beaumont C, Stevens N. 2017. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochimie Open 5: 1-7.
- Hernani. 1988. Analisis minyak nilam secara kromatografi lapis tipis. Buletin Littro 3 (2): 89-92. [Indonesian]
- Ito K, Akahoshi Y, Ito M, Kaneko S. 2015. Sedative effects of inhaled essential oil components of traditional fragrance *Pogostemon cablin* leaves and their structure-activity relationships. J Trad Compl Med 2015. DOI: 10.1016/j.jtcme.2015.01.004.
- Jin H, Deng ZC, He H. 2014. Effect of explant types and plant growth regulators on direct regeneration in medicinal plant *Pogostemon cablin*. Plant Omics J 7 (5): 322-327.
- Maes L, Goossens A. 2010. Hormone-mediated promotion of trichome initiation in plants is conserved but utilized species and trichomespecific regulatory mechanisms. Plant Signal Behav 5 (2): 205-207.
- Nichols L. 2018. The retention factor. Available online: chem.libretexts.org/Bookshelves/Organic_Chemistry/ [11 January 2018]
- Nuryani Y, Emmyzar, Wiratno. 2005. Budidaya Tanaman Nilam. Balai Penelitian Tanaman Obat dan Aromatik, Balitbang Pertanian, Bogor.
- Sahertian SM. 2015. Multiplikasi tunas in vitro Nilam Aceh (Pogostemon cablin Benth. var. Sidikalang) dan analisa kualitatif minyak nilam [Hon. Thesis]. Fakultas Teknobiologi, Universitas Surabaya, Surabaya [Indonesian].
- Swamy MK, Sinniah UR. 2016. Patchouli (*Pogostemon cablin* Benth.): botany, agrotechnology, and biotechnological aspects. Industr Crops Prod 87: 161-176.
- Triesty I, Mahfud. 2017. Ekstraksi minyak atsiri dari gaharu (Aquilaria malaccensis) dengan menggunakan metode microwave hydrodistillation dan soxhlet extraction. Jurnal Teknik ITS 6 (2): F392-F395. [Indonesian]
- Vyas S, Rao MS, Suthar RK, Purohit SD. 2008. Liquid culture system stimulates in vitro growth and shoot multiplication in four medicinally important plants. Med Aromatic Plant Sci Biotechnol 2 (2): 96-100.
- Wu YG, Li CG, Li XC, Yuan M, Hu XW. 2013. Comparison of essential oil composition between *Pogostemon cablin* and *Agastache rugosa* used as herb. J Essent Bearing Plants 16: 705-713.
- Yang X, Zhang X, Yang SP, Liu WQ. 2013. Evaluation of the antibacterial activity of patchouli oil. Iranian J Pharmaceut Res 12 (3): 307-316.

Shoot multiplication of Pogostemon cablin

by Wina Savitri

Submission date: 30-Jul-2019 03:31PM (UTC+0700) Submission ID: 1156187105 File name: 3537-Article_Text-8732-1-10-20190613.pdf (580.14K) Word count: 3401 Character count: 16178 NUSANTARA BIOSCIENCE Vol. 11, No. 2, pp. 123-127 November 2019

ISSN: 2087-3948 E-ISSN: 2087-3956 DOI: 10.13057/nusbiosci/n110202

Shoot multiplication of *Pogostemon cablin* var. Sidikalang and patchouli oil profile

POPY HARTATIE HARDJO*, DANNY PUTRA SENTOSA SUSANTO, WINA DIAN SAVITRI, MARIA GORETTI MARIANTI PURWANTO

Faculty of Biotechnology, Universitas Surabaya. Jl. Raya Kalirungkut, Surabaya 60292, East Java, Indonesia. Tel.: +62-31-2981399, Fax: +62-31-2981278. *email: poppy_hardjo@staff.ubaya.ac.id_

Manuscript received: 11 February 2019. Revision accepted: 13 June 2019.

Abstract. Hardjo PH, Susanto DPS, Savitri WD, Purvanto MGM. 2019. Shoot multiplication of Pogostemon cablin var. Stdikalang and patchouli oil profile. Nusantara Bioscience 11: 123-127. Pogostemon cablin Benth. is a plant producing patchouli oil, which mostly consists of patchouli alcohol compound. Patchouli oil has great potentials in the world market because of its stability and high price. In this study, in vitro multiplication of Sidikalang variety of Acchnese patchouli shoots was done on solid and liquid Murashige & Skoog (MS) medium. This study aimed to determine the effect of cytokinins in various combinations of shoot multiplication and to compare the patchouli oil yield of in vitro and ex vitro culture. In vitro multiplication of Acchnese patchouli shoots by using solid MS medium with addition of 0.2 ppm benzyl aminopurine (BAP) and 0.2 ppm Kinetin resulted in shoot explants with an average growth index of 82.198 \pm 0.690. Patchouli oil extraction was done on 7 weeks old in vitro shoots explants with an average growth index of explants using water distillation method. In vitro shoots yielded 2.5% patchouli oil and contained \pm 35% patchouli alcohol compound, whereas ex vitro shoots produced 4% patchouli oil and contained \pm 25% patchouli alcohol compound. The qualitative analysis by using thin layer chromatography (TLC) showed that there were similarities in the number of spot and Rf value for each spot of ex vitro and in vitro patchouli oil.

Keywords: Patchouli oil, Pogostemon cablin, shoot multiplication, var. Sidikalang

INTRODUCTION

Patchouli is an essential oil producing plant. The oil extracted from the leaf part of Acehnese patchouli (*Pogostemon cablin* Benth.) var Sidikalang (is called patchouli oil) is the best in Indonesia and has the high value in the international trade (Wu et al, 2013). Patchouli oil is utilized in perfume industry as a fixative agent. Beside of that, in the recent years, patchouli oil is also known to have some benefits as aromatherapy (Ito et al, 2015), e.g. to calm nerves and to relieve stress. It is also potential to combat pathogenic microorganism as it has biological activity such as antibacterial (Yan et al. 2013), anti-inflammatory (Han et al. 2017), and antioxidant (Dechayont et al. 2017).

The issue in patchouli oil industry in Indonesia is the diversity of patchouli oil's quality. This problem may be caused by the breeding system that is affected by the fluctuating environmental condition (Blank et al, 2011). Thus, as the alternative, plant tissue culture technique was developed to achieve homogeneity of raw material to produce patchouli oil.

The utilization of tissue culture technique to produce patchouli oil from the leaf part of patchouli as the raw material intended to obtain patchouli oil with high rendement and quality, where the leaf growth was controlled by nutrient and mineral factor, and also light intensity in in vitro environmental condition. In addition, the supply of raw material (in vitro leaves) was continuing and not depending on the season. The patchouli oil was obtained from the leaf part, particularly the glandular trichomes on the leaf surface. Maes and Goossens (2010) stated that benzyl aminopurine (BAP) and jasmonic acid could increase the number of trichomes in *Arabidopsis*' leaf.

Multiplication of in vitro shoots of P. cablin on solid MS medium has been widely researched (Swamy et al. 2016) used 0.5 mg.L⁻¹ BAP + 0.5 mg.L⁻¹ Kin; Jin et al. (2014) used 0.2 mg.L⁻¹ BAP, yet it has never been done before in liquid medium. The use of liquid medium in this research is an early step to figure out shoots response when they are cultured in liquid medium, also to prepare shoot culture in a bioreactor system. Sahertian (2015) reported that the highest multiplication rate of in vitro shoot of P. cablin var. Sidikalang was on solid MS medium with 0.5 mg.L⁻¹ BAP, the shoots were subsequently elongated and afterwards, the leaf size became wider after subcultured on hormone-free MS medium. In line with that, in this experiment we would be examined the effect of lower concentration of BAP and Kinetin on solid and liquid MS medium to increase the shoot multiplication as well as the leaf size, also to compare the patchouli oil profile from in vitro and ex vitro leaf.

NUSANTARA BIOSCIENCE 11 (2): 123-127, November 2019

MATERIALS AND METHODS

Procedures

Shoot multiplication

Nodal part from patchouli plant aged 1 year, planted at greenhouse, was used as explant source. The explants were soaked in a 70% ethanol solution for 1 min, then subsequently washed several times with sterile distilled water. Afterwards, they were dipped in a bleaching solution (20% Clorox) for 15 min, and then washed many times with sterile distilled water. The nodal cuttings were cultured on MS basal medium (3% sucrose (w/v) and 0.7% agar (w/v)) with the addition of (0.2 and 0.5 mg.L⁻¹) BAP, (0.2 and 0.5 mg.L-1) Kinetin, and combination of BAP and Kinetin. The explants were cultured on liquid medium with additional support such as filter paper (Vyas et al, 2008 in modification). The initial weight of shoots was weighed. The cultures were incubated at ±25 °C with 16h light per day for 7 weeks. The observation was performed every week, including the shoot's fresh weight and the shoot's growth index. The shoot's growth index was calculated by dividing shoot's fresh weight when observing with initial fresh weight. In the last day of week-7, where there was no more growth based on shoot's growth curve, the cultures were harvested and latterly air dried until they reached constant weight. Finally, the dried cultures were mashed into powder. The cultures which have the highest growth index were continued to analyze essential oil profiles from in vitro and ex vitro plants.

Essential oil extraction by water distillation

As much as 10 g dry powder was extracted by steam and water distillation at $100 \pm 2^{\circ}$ C for 4h. The extract was transferred to separating funnel, then 5 ml n-hexane solution and a sufficient amount of NaCl solution (1 N) were added in to it. The water layer at the bottom of separating funnel was removed, and then anhydrous sodium sulfate was sufficiently added. Afterwards it was filtered by filter paper. The yield or rendement of patchouli oil was calculated by the formulation below (Triesty dan Mahfud, 2017):

 $Yield = \frac{oilvolums (ml)}{shoot \, dry \, weight (g)} x \, 100\%$

Qualitative analysis by thin layer chromatography (TLC)

Chromatography chamber was filled with n-hexane: ethyl acetate as a mobile phase (eluent) with a ratio of 9: 1 (Hernani 1988), the chamber was closed tightly until the atmosphere became saturated. TLC plate (*TLC Silica Gel* 60 F₂₅₄) sized 10 x 10 cm as stationary phase was marked 0,5 cm long, each from the bottom and from the top end. As much as 0,2 µL patchouli oil from each standard, ex vitro shoot, and in vitro shoot was applied on the bottom mark of the plate. The plate was then put into chamber in the upright position, the chamber lid was closed tightly. The mobile phase reached the top end mark, the plate was then taken out from the chamber. Afterwards, the resulting spots were observed under UV light at λ =254 nm. Retention factor (Rf) value could be calculated by the formula below (Nichols, 2018):

$Rf = \frac{analyte \, mileage \, (cm)}{eluent \, mileage \, (cm)}$

Qualitative analysis by gas chromatography (GC)

About 100 μ L patchouli oil from distillation result was injected to a gas chromatography tool which has been arranged in such a way. The mobile phase is helium and HP-INNOWAX (PEG) column was used as stationary phase. The solvent used was n-hexane. Analysis result by GC would appear at the computer screen in the form of peak/ spectra with particular number and pattern. Resulted peaks could be compared with the literature based on their retention time. From the chromatography results, it could be known the type and the constituents content which contained in the patchouli oil (*patchouli alcohol content*).

Data analysis

Every treatment was repeated 20 times with factorial treatment design. (medium consistency factors were liquid and solid, plant growth regulator factors were the combination of BAP and kinetin) performed by completely randomized design. The shoot growth index analysis was executed by two-way ANOVA which then continued with *Duncan's Multiple Range Test* (DMRT) at a=0.05 to identify the differences between treatments. At the same time, patchouli alcohol content was analyzed by one-way ANOVA and also continued with DMRT at a=0.05.

RESULTS AND DISCUSSION

Patchouli shoots grew in MS + BAP medium 0.2 mg.L⁻¹ + Kin 0.2 mg.L⁻¹ had big size and large numbers of leaves, and thick stems (Figure 1 C, D). Addition of BAP with concentration of 0.2 mg.L⁻¹ in the form of rosette (small leaves in groups) was not too much, while the addition of BAP with a concentration of 0.5 mg.L⁻¹ caused large amounts of rosette buds and the tendency of explants to form callus (abnormal growth). This phenomenon occurs both in solid MS medium and liquid MS.

Patchouli shoots grew on solid MS medium + BAP 0.2 mg.L⁻¹ + Kin 0.2 mg.L⁻¹ had the highest growth index and significantly different from other patchouli explant shoot growth index at 7th week (Table 1). Bharati (2010) stated that the addition of a combination of growth regulators BAP and Kinetin has a better impact in multiplication of Acehnese patchouli plants when compared with the addition of one. Overall, the growth of patchouli shoots is better in solid medium than liquid medium. This is likely because the culture in the liquid medium was not placed in a shaker, so that medium aeration was lacking and had a negative impact on shoot growth. In contrary, Vyas (2008) reported the stimulatory effect of liquid media supported by glass beads on the in vitro growth of four medicinally important plants. Patchouli shoots with the largest growth index value harvested after the 7th week when the growth curve was in the stationary phase and continued with an analysis of the essential oil content.

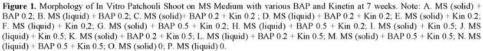
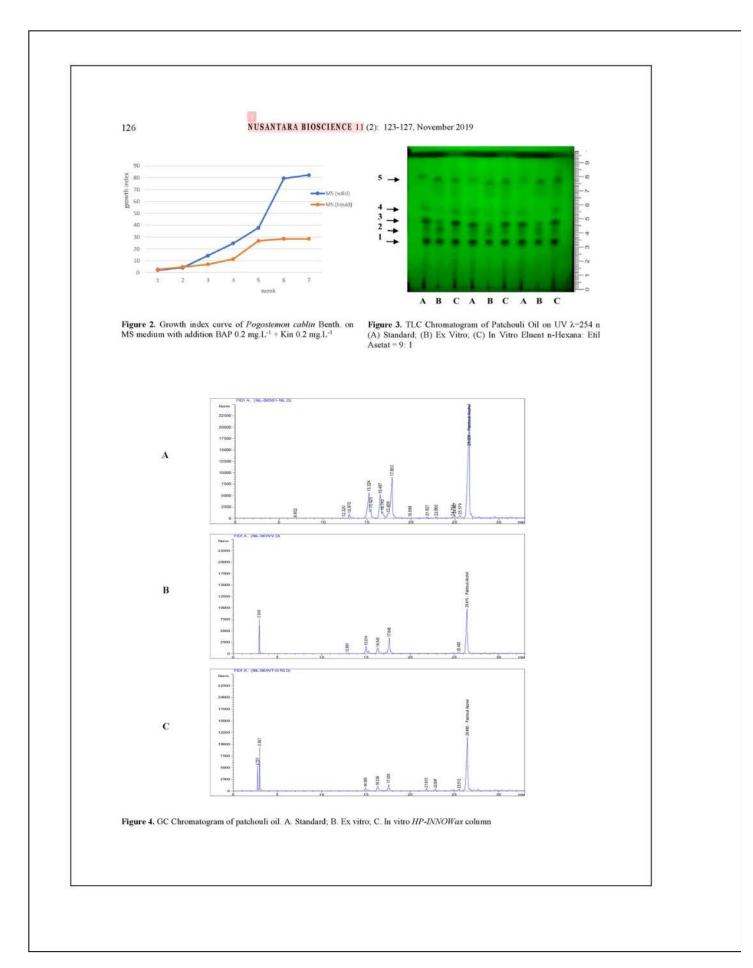



Table 1. Growth rate index of in vitro patchouli shoots at 7th week on solid and liquid MS medium

Catablain (martab	Growth rate index ± SD		
Cytokinin (mg.L ⁻¹)	Solid MS	Liquid MS	
MS0	$8.956 \pm 1.327^{\rm a}$	14.643 ± 3.478^{b}	
BAP 0.2	$51.308 \pm 0.985^{\rm g}$	27.366 ± 1.719^{de}	
Kin 0.2	$32.839 \pm 1.173^{\rm f}$	26.288 ± 1.931^{de}	
BAP 0.2 + Kin 0.2	${\bf 82.198 \pm 0.690^{j}}$	$28.633 \pm 0.519^{\circ}$	
Kin 0.5	$48.798 \pm 1.640^{\rm g}$	25.746 ± 0.431^d	
BAP 0.5 + Kin 0.2	$54.925 \pm 1.166^{\rm h}$	$20.843 \pm 0.396^{\rm c}$	
BAP 0.2 + Kin 0.5	53.902 ± 1.476^{h}	$22.844 \pm 0.967^{\circ}$	
BAP 0.5 + Kin 0.5	$57.812 \pm 0.526^{\rm i}$	$23.219 \pm 1.870^{\circ}$	

Note: values followed by different letter notation means significantly different based on DMRT test at $\alpha = 0.05$

Based on the growth curve of patchouli shoot explants on solid MS + BAP 0.2 mg.L⁻¹ + Kin 0.2 mg. L⁻¹ (Figure 2), it can be seen that in the 1st to 2nd week there was an increase in growth of patchouli shoot explants which is not too significant, namely from 2,187 to 4,174. Patchouli shoot explants began to experience an exponential phase after the 2nd week, where the patchouli shoot growth index was obtained at 14.468 at the age of 3 weeks. The largest growth occurred between the 5th and 6th weeks, where the initial growth index was 37.846 to 79.444. The patchouli explant experienced a stationary phase after passing the 6th week. Patchouli shoot growth index growth occurred between the 4th and 5th weeks. On the other hand, in the liquid MS medium the largest growth index growth occurred between the 4th and 5th week, where the initial growth index was 11.431 to 26.834. Patchouli shoot explants experienced a stationary phase after passing the 6th week with a growth index value of 28.633 in 7th week of culture.

HARDJO et al. - Multification and oil profile of Pogostemon cablin

Table 2. Rf value of Thin Layer Chromatography (TLC) of patchouli oil

Patchouli oil Rf value Standard Ex vitro In vitro Spot-1 0.344 0.344 0.344 0.411 0.411 0.411 Spot -2 0.478 0.478 0.478 Spot -3 0.556 Spot -4 0.556 0.556 0.767 0.767 0.767 Spot -5

Table 3. Patchouli alcohol (PA) level on ex vitro and in vitro patchouli oil

Sample	Rendement (%)	Average of patchouli alcohol level (%)
Standard patchouli oil	-	40.691 ^a
Ex vitro patchouli oil	4	24.643 ^b
In vitro patchouli oil	2.5	35.206°
Materia and the fail and the	1:00	Internet and the second

Note: values followed by different letter notation means significantly different based on DMRT test at $\alpha = 0.05$

Figure 3 chromatogram showed no difference in patchouli oil profiles of in vitro and ex vitro leaves. Based on Table 2 the Rf values of patchouli oil in vitro and ex vitro and standard compounds were the same.

Based on the results of the gas chromatography test (Figure 4), it can be seen that standard patchouli oil, ex vitro patchouli oil, and in vitro patchouli oil have a similar retention time for patchouli alcohol which was about 26.4 minutes. Patchouli alcohol compounds in all three samples produced the highest peak when compared to other peaks formed.

Based on Table 3 it is known that the level of patchouli alcohol from patchouli oil in vitro is greater than ex vitro, but on the contrary, the rendement of patchouli oil is smaller. This indicates that the rendement of patchouli oil does not necessarily have a positive correlation with the level of patchouli alcohol in patchouli oil. Nuryani et al. (2005) stated that it is a negative correlation between the rendement of patchouli oil and the level of patchouli alcohol from Aceh patchouli (highland and lowland Acehnese patchouli). Furthermore, it is explained that Aceh patchouli grown in the lowland will produce high rendement patchouli oil but low level of patchouli alcohol. Conversely, patchouli plant grown in the highland will produce low rendement patchouli oil and high level of patchouli alcohol.

Based on our study we can conclude that: (i) The best shoot multiplication of *Pogostemon cablin* Benth. var. Sidikalang was on solid MS + 0.2 mg.L^{-1} BAP and 0.2 mg.L^{-1} Kinetin; (ii) There was no difference on patchouli oil's profile from in vitro and ex vitro leaf of *P. cablin* var.

Sidikalang; (iii) The concentration of patchouli alcohol in in vitro leaf is higher than in ex vitro leaf of *P. cablin* var. Sidikalang.

ACKNOWLEDGEMENTS

The authors would like to thank the LPPM Ubaya for providing financial support through Competitive Research, contract No. 037/SP-Lit/LPPM-01/FTB/V/2018.

REFERENCES

- Bharati N. 2002. Biotechnology in commercial production of patchouli in North Eastern Region. NEDFC and NHB 3 (2): 46 -51. Blank AF, Sant'ana TCP, Santos PS, Blank NFA, Prata APN, Jesus HCR.
- Bank AF, Sant'ana TCP, Santos PS, Blank NFA, Prata APN, Jesus HCR, Alves APB. 2011. Chemical characterization of the essential oil from patchouli accessions harvested over four seasons. Industr Crops Prod 34 (1): 831-837.
- Dechayont B, Ruamdee P, Poonnaimuang S, Mokmued K, Chunthorng-On J. 2017. Antioxidant and antimicrobial activities of *Pogostemon cablin* (Blanco) Benth. Hindawi J Bot 2017: 1-6.
- Han X, Beaumont C, Stevens N. 2017. Chemical composition analysis and in vitro biological activities of ten essential oils in human skin cells. Biochimie Open 5: 1-7.
- Hernani. 1988. Analisis minyak nilam secara kromatografi lapis tipis. Buletin Littro 3 (2): 89-92. [Indonesian] Ito K, Akahoshi Y, Ito M, Kaneko S. 2015. Sedative effects of inhaled
- Ho K, Akahoshi Y, Ho M, Kaneko S. 2015. Sedative effects of inhaled essential oil components of traditional fragrance *Pogostemon cablin* leaves and their structure-activity relationships. J Trad Compl Med 2015. DOI: 10.1016/j.jtcme.2015.01.004.
- Jin H, Deng ZC, He H. 2014. Effect of explant types and plant growth regulators on direct regeneration in medicinal plant *Pogostemon cablin*. Plant Omics J 7 (5): 322-327.
 Maes L, Goossens A. 2010. Hormone-mediated promotion of trichome
- Maes L, Goossens A. 2010. Hormone-mediated promotion of trichome initiation in plants is conserved but utilized species and trichomespecific regulatory mechanisms. Plant Signal Behav 5 (2): 205-207.
- Nichols L. 2018. The retention factor. Available online: chem.libretexts.org/Bookshelves/Organic_Chemistry/ [11 January
- 2018] Nuryani Y, Emmyzar, Wiratno. 2005. Budidaya Tanaman Nilam. Balai Penelitian Tanaman Obat dan Aromatik, Balitbang Pertanian, Bogor.
- Sahertian SM. 2015. Multiplikasi tunas in vitro Nilam Acch (Pogostemon cablin Benth. var. Sidikalang) dan analisa kualitatif minyak nilam [Hon. Thesis]. Fakultas Teknobiologi, Universitas Surabaya, Surabaya [Indonesian].
- Swamy MK, Sinniah UR. 2016. Patchouli (*Pogostemon cablin* Benth.): botany, agrotechnology, and biotechnological aspects. Industr Crops Prod 87: 161-176.
- Triesty I, Mahfud. 2017. Ekstraksi minyak atsiri dari gaharu (Aquilaria malaccensis) dengan menggunakan metode microwave hydrodistillation dan soxhlet extraction. Jurnal Teknik ITS 6 (2): F392-F395. [Indonesian]
- Vyas S, Rao MS, Suthar RK, Purohit SD. 2008. Liquid culture system stimulates in vitro growth and shoot multiplication in four medicinally important plants. Med Aromatic Plant Sci Biotechnol 2 (2): 96-100.
- Wu YG, Li CG, Li XC, Yuan M, Hu XW. 2013. Comparison of essential oil composition between *Pogostemon cablin* and *Agastache rugosa* used as head. LEscent Barging Plants 16: 705-713.
- used as herb. J Essent Bearing Plants 16: 705-713.
 Yang X, Zhang X, Yang SP, Liu WQ. 2013. Evaluation of the antibacterial activity of patchouli oil. Iranian J Pharmaceut Res 12 (3): 307-316.