
978-1-7281-0719-6/19/$31.00 ©2019 IEEE 

Software defect detection based on selected 
complexity metrics using fuzzy association rule 

mining and defective module oversampling  
 
 

Mohammad Farid Naufal 
Department of Informatics 

Universitas Surabaya 
Surabaya, Indonesia 

faridnaufal@staff.ubaya.ac.id 

Selvia Ferdiana Kusuma  
Department of Informatic 

Institut Teknologi Sepuluh Nopember 
Surabaya, Indonesia 

selvia1805@mhs.its.ac.id  
 
 
Abstract—Software defect is a major problem in software 
development. The cost of software development will be 
minimized when the software defects are detected earlier. 
Complexity metric is a mathematic calculation to calculate code 
complexity. It could be used to consider software defect 
detection. But, not all of complexity metrics influent on the 
occurrence of software defect, therefore it needs feature 
selection to select the most influent complexity metrics. 
Correlation-based Feature Selection (CFS) is used for selecting 
the most influent complexity metrics. This study conducted 
experiments on NASA Metric Data Program (MDP) datasets. 
NASA MDP contains software defect history logs based on 
several complexity metrics. But, there is an imbalanced 
distribution of defective and not defective modules in NASA 
MDP. The distribution of defective modules is less than not 
defective modules. It can reduce software defect detection 
performance. The distribution of defective module need to be 
reproduced. In this study, Synthetic Minority Oversampling 
Technique (SMOTE) is used to balance the distribution between 
defective and not defective modules. Software defect detection 
using Fuzzy Association Rule Mining (FARM) which is 
combined with the selection of complexity metrics using CFS 
and dataset balancing using SMOTE has sensitivity 85.51% and 
accuracy 91.63% in detecting software defective modules on 
NASA MDP dataset. 
 

Index Terms— Software Defects, Fuzzy Association Rule 
Mining, CFS, SMOTE, Complexity Metric 

I. INTRODUCTION 
eveloping good quality software is an expensive task. 
Minimizing the occurrence of software defect can also 

minimize the software development cost. Software defect 
detection is useful for software engineer to pay attention to 
defective modules (e.g. function, method, or classes) [1]. 

NASA MDP [2] are open source datasets which shows the 
occurrence of software defect module with its following 
software complexity metrics. NASA has publicly accessible 
datasets which is easy to compare this study with the previous 
researches which use the same dataset.  

Complexity metric selection as attributes or features in 
software defect detection still be an issue today. Not all of 
complexity metric influent the occurrence of software defect  
[3]. It needs a method to select the most influential 
complexity metrics. CFS is used to analyze the attributes 
relation in classification [4]. It can be applied to select the 
most influential complexity metric in software defect 
detection. 

 The software defect distribution in training dataset is also 
important for detecting software defect. NASA MDP consist 
of two type distributions which are defective and not 
defective modules. If one of the distributions is more than the 
other, it causes the class imbalance. This situation can affect 
on software defect detection performance [5]. The majority 
class is the class which has higher distribution and the 
minority class is a class which has fewer distribution. 
Undersampling or oversampling technique can be used to 
solve this problem [6]. Undersampling is used for reducing 
the majority class and oversampling is used for increasing the 
minority class.  

Defective modules distribution is less than not defective 
modules in NASA MDP dataset. It requires oversampling 
technique to increase defective modules distribution. 
SMOTE [7] is a technique to oversample the minority class. 
In this study SMOTE performs data oversampling on 
defective modules. 

FARM is association rule mining extension with excess 
faster and more efficient in large quantitative dataset [8]. 
FARM generate the pattern of defective modules which is 
useful for detecting defective modules with complexity 
metric as attributes. FARM can be expected as a good 
approach to detect defective modules. This study proposes 
detection of software defect by applying FARM combined 
with attributes selection in complexity metric by applying 
CFS and defective modules oversampling using SMOTE.  

II. BACKGROUND 

A. Related Work 
Burak [8] uses Branch Count, McCabe, and Halstead 

metric as features for software defect detection. CM1, JM1, 
KC1, KC2, and PC1 are NASA MDP dataset which are used 
in this study. This method is not considering the most influent 
complexity metrics to detect software defect but has fast 
computing time.  

Ruchika [9] uses Support Vector Machine (SVM) to detect 
software defect on one CMI dataset in NASA MDP. This 
method uses Chidamber & Kemerer (CK) Metrics  [10] as 
features. But this study only tried on one dataset. Gabriela 
using relational association rule to detect software defect 
[11]. It uses CK metrics (Fan-in, Fan-Out, DIT, and NOC). 
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The weakness of this method is representing complexity 
metric. It converts complexity metric into Boolean relational 
association rule. 

Omer Faruk [12] combine Artificial Bee Colony (ABC) 
and Artificial Neural Network (ANN) to detect software 
defect. Branch Count, McCabe, and Halstead metric are used 
as features. The NASA MDP datasets which are used in this 
study are CM1, JM1, KC1, KC2, and PC1. This method is 
easy to implement in quantitative complexity metrics values. 
But it’s performance is not significant while compared with 
other software defect detection method. 

B. Complexity Metrics 
NASA MDP provides the occurrence of software defect 

with related complexity metrics. These complexity metrics 
can be used as features for software defect detection. Branch 
Count, Halstead metric [13], and McCabe metrics [14] are 
widely used software metric which represent the code 
complexity. Table 1 shows list of some complexity metrics. 

C. Correlation-based Features Selection 
 A useful feature is a feature which is correlated with 
predicted class, otherwise it is irrelevant feature [4]. 
Correlation-based feature selection select the most influent 
features by considering the correlation between features-
features and features-predicted class. The calculation of CFS 
evaluation is shown in Eq. (1). 
 

MS = 
!"#$%%%%%

&!	(	!(!*+)"$$%%%%%
    (1) 

 MS is a Merit or heuristic value of S which containing k 
features. 𝑟./%%%% is value of average correlation between predicted 
classes and features (f ∈ S). 𝑟//%%%% is value of average correlation 
between features and other features. Rank of the most influent 
metric to predict class is shown in Eq. (1). Value of 𝑟./%%%% and 
𝑟//%%%% are calculated by using the Symmetrical Uncertainty (SU). 
The equation of SU is shown in Eq. (2). 

𝑆𝑈 = 2.0	𝑥	 89(:)*9(;|:)
9(;)(9(:)

=    (2) 

 The entropy H(X) and H(Y) are the possible emergence of 
an attribute (x ∈ X) or (y ∈ Y) in a transaction. The calculation 
of H(X), H(Y), and H(X|Y) are shown in Eq. (3), (4), and (5). 

𝐻(𝑌) = 	−∑ 𝑝(𝑦) logG(𝑝(𝑦))(H	∈	;)    (3) 

𝐻(𝑋) = 	−∑ 𝑝(𝑥) logG(𝑝(𝑥))(J	∈	:)    (4) 

𝐻(𝑋|𝑌) = 	−	∑ 𝑝(𝑥)∑ 𝑝(𝑦|𝑥) logG(𝑝(𝑦|𝑥))(H	∈	;)(J	∈	:)   (5) 

D. Synthetic Minority Oversampling Technique 
SMOTE solve the class imbalanced problem by 

reproducing or oversampling of the minority class 
distribution [7]. Oversampling is the way to create synthetic 
data by merging k nearest neighbors of minority class 
samples. K-nearest neighbors is randomly selected depend on 
the amount of desired synthetic data. Synthetic data in 
software defective modules is formed in the following way: 

a. Select one of defective module randomly. 
b. Take the k-nearest neighbors of that defective 

module based on its complexity metric value. 
c. Randomly select n of selected defective modules. 
d. Calculate the differences value between selected 

defective module’s complexity metric with its N 
nearest neighbors.  

e. Multiply a random value from [0,1] with previous 
differences value. 

f. Add the selected defective module’s complexity 
metric with the multiplied differences from step e. 
Eq. (6) is the calculation to form oversampled 
defective module. N,	a, and b are vector of defective 
module which consist of complexity metrics m. N is 
oversampled dataset vector N (mn1, mn2, mn3, … ), a	
is selected defective module vector a (ma1, ma2, ma3, 
… ), r is random value [0,1], and b is one of nearest 
neighbor vector of a,	b (mb1, mb2, mb3, … ).  
𝑁 = 𝑎 + 𝑟(𝑎 − 𝑏)   (6)  

III. FUZZY ASSOCIATION RULE MINING  
 FARM [15] is Association Rule Mining (ARM) 
expansion. ARM represent the appearance of item in 
transaction as a Boolean value. In FARM represent the data 
as a membership function between 0 and 1. FARM is a good 
method for detecting software defect which has quantitative 
complexity metric attributes. 
 
 

TABLE I. COMPLEXITY METRICS IN NASA MDP 

Symbol Metric 

loc line count of code 

v(g) cyclomatic complexity 

ev(g) essential complexity 

Iv(g) design complexity 

n total operators + operands 

v(g) Volume 

L 
… 

program length 
… 

 
 

TABLE II. THE DESCRIPTION OF NASA MDP DATASET 
[2] 

 
Dataset Language Description 

CM1 C Instrument of NASA 
spacecraft 

JM1 C 
Real-time predictor of ground 
system: Generate predictions 
using simulation. 

KC1 C++ 
Management of storage for 
processing and receiving 
ground data 

KC2 C++ Another part of KC1 project. 
Data processing of science. 

PC1 C Flight application for earth 
orbiting satellite 
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 There are several methods for finding association rules 
in fuzzy sets. F-APACS [16] describes quantitative attributes 
into fuzzy sets by using a linguistic term. Apriori [17] 
performs fuzzification of quantitative attributes then 
categorize them into membership functions. Finally, 
association rules are generated using fuzzy sets. But, Apriori 
efficiency is not good enough. Han [18] propose Frequent-
Pattern growth (FP-Growth) as a new mining method to 
improve Apriori efficiency. This method more efficient 
because it does not generate all item set candidates. FP-
Growth categorize every transaction into Frequent Pattern 
tree (FP-Tree). Then it calculates the support and confidence 
for every pattern. Eq. (7) and Eq. (8) show support and 
confidence calculation.  

IV. METHODOLOGY 
The detail of this study approaches will be described in this 
section.  

A. Collecting Dataset 
 NASA MDP dataset are used for evaluating our method. 
NASA MDP datasets contain several software defect history 
logs based on Branch Count, McCabe, and Halstead metric. 
This dataset publicly accessible and used in many previous 
researches.  
 This study uses 5 NASA MDP datasets which are CM1, 
JM1, KC1, KC2, and PC1. Table 2 shows the description of 
each dataset and Table 3 shows the software defect history 
logs in NASA MDP dataset. Every row is a module, it could 
be a method or a function and every column is a complexity 
metric calculation for each module. The rightmost column is 
a defective status for each module. For example, at the first 
row is a method with ID 1, it has 24 line of codes (loc), 5 
cyclomatic complexity (v(g)), 1 essential complexity (ev(g)), 
3 design complexity (iv(g)), 63 total operators and operands 
(n), and defective status of that module is false. Another 
example at the third row is a method with id 3, it has 31 line 
of codes (loc), 4 cyclomatic complexity (v(g)), 1 essential 
complexity (ev(g)), 2 design complexity (iv(g)), 141 total 
operators and operands (n), and defective status of that 
module is true. 

B. Preprocessing  
In the preprocessing step, CFS and SMOTE are used to 

select the most influent complexity metric and oversample the 
training dataset. From 21 complexity metrics on NASA MDP 

dataset, CFS will select the most influent metric for detecting 
defective modules on each dataset. Good complexity metric 
combinations selection is based on merit value on Eq. 1. The best 
complexity metric combination has the highest merit value. CFS 
and SMOTE are executed using WEKA tools [19]. SMOTE will 
reproduce the defective modules on training dataset. This phase 
has been completed after selection of complexity metric using 
CFS. The example of oversampling process are as follows:  
a. Table 4 shows one of randomly selected defective module 

which will be oversampled. 
b. Select the k nearest neighbors of Table 4 randomly. Table 5 

shows the 5 randomly nearest neighbors of Table 4 and ID 
2 and 5 are selected nearest neighbors.  

c. Calculate oversampled defective module using Eq (6) as 
follows: 
𝑁2 = (32, 2, 0.43) + 0.2	𝑥	[(32,2,0.43)–	(23,5,0.08)] 
𝑁5 = (32, 2, 0.43) + 0.3	𝑥	[(32,2,0.43)	–	(38,5,0.35)] 
N2 and N5 are new defective modules from 
oversampling process of selected defective module on 
Table 4. Table 6 shows the new defective module of N1 
and N2. 

C. Training 
 In this step, software defect pattern will be obtained. FP 
Growth is used for conducting training step. Then FP-Tree is 
obtained based on complexity metrics. The detail of training 
steps are as follows:  

1) Determining Fuzzy Membership Function 
 Each complexity metric of defective modules will be 

categorized its fuzzy membership function value. The kind of 
fuzzy membership functions are trapezoidal, triangular, 
gaussian function. This study uses triangular fuzzy 
membership function because it can more precisely write the 
more and less value [20] in this case complexity metric. The 
membership functions are “low”, “medium”, and “high”. The 
x-axis is complexity metric value and y-axis is membership 
value of complexity metric to each category. 
 The limit value of a, b, and c for every complexity metric 
in training dataset defines as:  
y	=	complexity	metric	value		 	 (8)	

 
TABLE III. SOFTWARE DEFECT HISTORY LOGS IN NASA 

MDP DATASET 
 

ID loc v(g) ev(g) iv(g) n other 
metrics 

defect 
status 

1 24 5 1 3 63 … FALSE 

2 20 4 4 2 47 … FALSE 

3 31 4 1 2 141 … TRUE 

4 29 5 1 3 111 … TRUE 

 
 
 

TABLE IV RANDOMLY SELECTED DEFECTIVE MODULE 
 

ID ev(g) b  IOComment 

1 32 2  0.43 

 
TABLE V RANDOMLY 5 NEAREST NEIGHBORS 

 
ID ev(g) b IOComment 

1 41 6 0.33 

2 23 5 0.08 

3 38 5 0.35 

… … … … 

 
TABLE VI. NEW DEFECTIVE MODULE FROM 

OVERSAMPLING PROCESS 
 

ID ev(g) b IOComment 

N2 33.8 1.4 0.5 

N5 30.2 1.1 0.454 

 



 

a	=	the	minimum	value	of	y	 	 	 (9)	
b	=	y	mean	value	 	 	 	 	 	 	 (10)	
c	=	2	x	y	mean	value	 	 	 	 	 	 (11)	

2) Mapping Complexity Metric to Fuzzy Membership 
 In this step the membership function of complexity 
metric μ(x) will be calculated in each category (low, medium, 
and high). In Table 7, the complexity metric has been 
converted into three categories (low, medium, and high) 
fuzzy membership. For example, at the first row, a module 
with ID 1 has low of ev(g) and low medium of b and low 
medium of IOComment. b and IOComment are metric which 
have two fuzzy memberships. Low medium means that 
complexity metric has two fuzzy memberships which are low 
and medium. 

3) Identify Defective Patterns 
The defective pattern will be identified by using FP 

Growth. The next step is calculating each defective pattern 
confidence. Then this pattern will be used for detecting 
defective modules. Table 8 shows the defective pattern based 
on complexity metric which are generated from training step. 
For example at the first row the defective pattern with ID 1 is 
ev(g).Low, ev(g).Med, b.High, lOComment.High and has 
confidence value 1. It means the module which has low 
medium of ev(g) and high of b and high of IOComment has 
100% probability to be a defective module. Another example 
at the third row the defective pattern with ID 3 is ev(g).Low, 
ev(g).Med, b.Med, b.High, lOComment.Med, 
lOComment.High and has confidence value 0.875. It means 
the module which has low medium of ev(g) and medium high 
of b, and medium high of IOComment has 87.5% probability 
to be a defective module. 

D. Defective Modules Detection 
 The generated defective modules patterns from training 
step will be used to detect defect on testing dataset. A module 
is detected as defective module if it is matched with one of 
defective modules pattern and vice versa. 

E. Performance Evaluation 
True Positive (TP) is the defective module number which 

successfully detected as defect, True Negative (TN) is the not 
defective module number which successfully detected as not 
defect, False Positive (FP) is the not defective module 
number which classified as defect, False Negative (FN) is the 
defective modules number which classified as defect. 
Accuracy, sensitivity, specificity, precision, nad probability 
of false alarm are used as performance evaluation.  

F. Results 
This study has been done on five NASA MDP datasets. 
Testing scenario has been done without oversampling 
(FARM-CFS) and with oversampling process (FARM-CFS-
SMOTE). This scenario is done to compare the effect of 
oversampling on defect detection performance. This 
proposed approach use weka to run CFS and SMOTE. 
  We are dividing the dataset randomly into two parts, 
50% for training and 50% for testing. The reason is we 
assume in real software project, the model of defect detection 
is formed in the middle of software construction.  We also 
compare the accuracy, sensitivity, precision, specificity and 
probability of false alarm (pof) of this detection approach 
with another detection method using Naïve Bayes (NB), 
Support Vector Machine (SVM), Relational Association Rule 

(RAR), Artificial Neural Network + Artificial Bee Colony 
(ANN+ABC).  
  Table 9 shows the selected metric of each dataset. From 
21 complexity metrics in Table 1, CFS select only 3 
complexity metrics on CM1, 7 on JM1, 8 on KC1, 8 on KC2, 
and 3 on PC1. It can be seen that IOComment is the most 
influent metric in all dataset, followed by 
locCodeAndComment and ev(g) which are influent metric in 
3 datasets, IOBlank, uniqOp, iv(g), loc, b, and I are influent 
metric at least in 2 datasets.  
 The result of this approach can be clearly seen on Table 
10. Table 10 shows the performance average of FARM-CFS 
and FARM-CFS-SMOTE at every confidence threshold 
value.  
 Accuracy comparison between FARM-CFS and FARM-
CFS-SMOTE is not significant but when the confidence 
threshold above 0.3 FARM-CFS-SMOTE is better than 
FARM-CFS. This indicate that when confidence threshold is 
above 0.3, the defective pattern of FARM-CFS-SMOTE can 
detect more defective pattern as a defect than detecting not 
defective pattern as defect. In other words FARM-CFS-
SMOTE has more true positive and true negative value than 
FARM-CFS.  
  Specificity comparison between FARM-CFS and 
FARM-CFS-SMOTE are significant when the confidence 
value under 0.3, it is caused by true negative value of FARM-
CFS is always better than FARM-CFS-SMOTE. Moreover 
defective pattern which formed by oversampling process is 
not always accurate to detect defective modules. In another 
word FARM-CFS-SMOTE has more false positive value 
than FARM-CFS. 
 Sensitivity comparison between FARM-CFS and 
FARM-CFS-SMOTE are significant. FARM-CFS-SMOTE 
sensitivity is better than FARM-CFS at every confidence 
threshold. It caused by oversampling process which 
reproduce more defective pattern can detect more defective 
module. In other word, FARM-CFS-SMOTE has more true 
positive value.  
 Precision comparison between FARM-CFS and FARM-
CFS-SMOTE are significant when confidence threshold 
above 0.6. It is caused by true positive value of FARM-CFS-
SMOTE more than FARM-CFS compared by the false 
positive value. 
 Probability of false alarm comparison between FARM-
CFS and FARM-CFS-SMOTE are not significant but 
FARM-CFS is better at every confidence threshold. It is 
caused by defective pattern which is formed by oversampling 
process sometimes detect not defective modules as defect. 
 The comparison of these two scenarios can be clearly 
seen on Table 10. It shows the comparison of the best value 
of each performance evaluation at each confidence threshold. 
FARM-CFS has better specificity, precision, and probability 
of false alarm than FARM-CFS-SMOTE by a margin of each 
are 9.35%, 1.14%, and 1.32%. However, the imbalance of 
defective and not defective modules in the dataset make 
detecting the defective modules is more important. FARM-
CFS-SMOTE which has a higher sensitivity value still better 
assessed because it more able to detect more defective 
modules. In other words FARM-CFS-SMOTE has more true 
positive value than FARM-CFS. 
 Table 11 shows the performance comparison between 
this approach with NB, SVM, RAR, and ANN+ABC. 
FARM-CFS-SMOTE has the highest sensitivity than the NB, 
SVM, RAR, ANN + ABC, and FARM-CFS. Although the 



 

accuracy, specificity, precision, and probability of false 
alarms FARM-CFS-SMOTE is not the best, but sensitivity is 
the priority in defect detection. The higher value of 
sensitivity, it is better in detecting defective modules that 
have lower distribution in the dataset. The imbalance 
distribution of defective and not defective modules makes 
detection of defective modules which have lower distribution 
becomes more essential. 

G. Conclusion 
 From the results, it can be concluded that the addition of 
oversampling process on defective modules can significantly 
increase the sensitivity up to 15.96% compared with no 
oversampling process. Although the oversampling process 
does not improve accuracy significantly, it is only 1.18% 
compared without oversampling process.  

 FARM-CFS-SMOTE has the best sensitivity compared 
with SVM, NB, RAR, ANN+ABC, and FARM-CFS. It 
means that FARM-CFS-SMOTE can detect more defective 
modules than the other methods. The lower distribution of 
defective modules compared with not defective modules 
make detection of defective module is more essential. The 
defective pattern which generated from oversampling process 
can detect the defective modules correctly. Although several 
not defective modules are classified as defect (false positive) 
but the value is not significant if compared with defective 
modules which are classified as defect (true positive). 
Software defect detection performed in this study is based on 
complexity metrics McCabe, Halstead, and Branch Count at 
NASA MDP dataset.  

 
TABLE VII. THE COMPLEXITY METRIC HAS BEEN CONVERTED INTO THREE FUZZY MEMBERSHIP CATEGORIES 

ID ev(g) b IOComment Defect 
Status Low Medium High Low Medium High Low Medium High 

1 1 0 0 1 1 0 1 1 0 FALSE 

2 1 0 0 1 1 0 1 0 0 FALSE 

3 1 0 0 1 1 0 1 0 0 FALSE 

 
TABLE VIII. THE DEFECTIVE PATTERN BASED ON COMPLEXITY METRIC 

ID Defective Pattern Confidence 

1 ev(g).Low, ev(g).Med, b.High, lOComment.High 1 

2 ev(g).Low, ev(g).Med, b.High, lOComment.Med, lOComment.High 1 

3 ev(g).Low, ev(g).Med, b.Low, b.Med, lOComment.Low, lOComment.Med 0.844 

 
 

TABLE IX. SELECTED COMPLEXITY METRIC OF NASA MDP DATASET 
CM1 JM1 KC1 KC2 PC1 

 ev(g) loc ev(g) IOComment i 

 b v(g) iv(g) IOCodeAndComment IOComment 

 IOComment ev(g) v(g) IOBlank IocCodeAndComment 
 iv(g) IOCode uniq_Op loc 
 e IOComment loc ev(g) 
 IOComment IOBlank ev(g) i 
 locCodeAndComment uniq_Op i b 

    total_Opnd b   

 
TABLE X. PERFORMANCE COMPARISON BETWEEN FARM-CFS AND FARM-CFS-SMOTE 

Confidence 
FARM-CFS   FARM-CFS-SMOTE 

Accuracy Specificity Sensitivity Precision Pof Accuracy Specificity Sensitivity Precision Pof 

0.1 87.96% 90.15% 69.56% 55.61% 9.82% 84.08% 83.61% 85.51% 48.57% 16.36% 

0.2 88.15% 95.31% 54.18% 71.83% 4.66% 85.74% 86.27% 82.31% 51.91% 13.70% 

0.3 87.57% 95.64% 47.29% 72.65% 4.34% 90.18% 92.98% 70.74% 63.36% 6.99% 

0.4 89.00% 96.17% 38.20% 75.86% 3.81% 89.94% 94.07% 62.87% 65.56% 5.90% 

0.5 88.24% 96.55% 30.96% 73.03% 3.42% 90.41% 96.03% 54.62% 72.54% 3.95% 

0.6 89.11% 99.09% 21.77% 46.66% 0.90% 89.95% 96.57% 45.54% 74.06% 3.41% 

0.7 89.13% 99.73% 19.08% 54.94% 0.26% 89.73% 96.57% 42.40% 74.72% 3.21% 

0.8 88.41% 99.76% 15.46% 55.25% 0.24% 89.78% 97.37% 39.47% 75.93% 2.60% 

0.9 88.40% 99.76% 15.39% 55.23% 0.24% 88.90% 98.41% 26.24% 72.35% 1.56% 

 
 



 

H. Future Work 
In the future software defect detection can be developed and 
applied to another software development project. 
Furthermore, determining the confidence threshold value can 
be detailed in smaller units to get the better performance.  
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TABLE XI. PERFORMANCE COMPARISON WITH ANOTHER CLASSIFICATION METHOD 

Defect 
Detection 
Method 

Accuracy Specificity Sensitivity Precision Pof 

NB 87.95% 95.17% 50.10% 71.86% 4.84% 

SVM 92.48% 99.95% 54.36% 99.24% 0.04% 

RAR 87.69% 89.33% 82.80% 69.83% 10.70% 

ANN+ABC 69.60% 56.41% 76.60% 22.55% 29.80% 
FARM-
CFS 91.09% 99.76% 69.56% 93.54% 0.24% 

FARM-
CFS-
SMOTE 

91.63% 98.41% 85.51% 80.35% 1.56% 

 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
IEEE Catalog Number: 
ISBN: 

CFP1932P-POD 
978-1-7281-0720-2 

2019 16th International Joint 
Conference on Computer Science 
and Software Engineering  
(JCSSE 2019) 
 

Chonburi, Thailand 
10 – 12 July 2019 



 
 
 
 
 
 
 
Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. 
All Rights Reserved 
 
Copyright and Reprint Permissions:  Abstracting is permitted with credit to the source.  
Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private 
use of patrons those articles in this volume that carry a code at the bottom of the first 
page, provided the per-copy fee indicated in the code is paid through Copyright 
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.   
 
For other copying, reprint or republication permission, write to IEEE Copyrights 
Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ  08854.  All rights 
reserved.   
 
*** This is a print representation of what appears in the IEEE Digital 
Library.  Some format issues inherent in the e-media version may also 
appear in this print version.  
 
 
IEEE Catalog Number:   CFP1932P-POD 
ISBN (Print-On-Demand):  978-1-7281-0720-2 
ISBN (Online):   978-1-7281-0719-6 
ISSN:                            2372-1642 
           
 
 
Additional Copies of This Publication Are Available From: 
 
Curran Associates, Inc 
57 Morehouse Lane 
Red Hook, NY  12571 USA 
Phone:  (845) 758-0400 
Fax:  (845) 758-2633 
E-mail: curran@proceedings.com 
Web:               www.proceedings.com 
 

 
 



6

11

17

21

26

32



38

43

49

55

61

67

73

79

85



91

97

103

109

115

120

125

131

137



142

146

152

158

164

170

175

181

187



193

198

203

207

212

218

224

230

236



242

248

254

N/A

265

271

277

283

287



292

297

303

308

313

318

324

330

336

karyono
Highlight



342

346

352

357

362

368

374

378


	[1] Artikel International Conference
	50842webtoc



