Expertise-based ranking of experts: An assessment level approach

Evy Herowati a,b,*, Udisubakti Ciptomulyono b, Joniarto Parung a, Suparno b

a Industrial Engineering Department, University of Surabaya, Surabaya, Indonesia
b Industrial Engineering Department, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia

Received 23 January 2015; received in revised form 7 May 2016; accepted 23 September 2016
Available online 12 October 2016

Abstract

The quality of a formal decision is influenced by the level of expertise of the decision makers (DMs). The composition of a team of DMs can change when new members join or old members leave, based on their ranking. In order to improve the quality of decisions, this ranking should be based on their demonstrated expertise. This paper proposes using the experts’ expertise levels, in terms of ‘the ability to differentiate consistently’, to determine their ranking, according to the level at which they assess alternatives. The expertise level is expressed using the CWS-Index (Cochran–Weiss–Shanteau), a ratio between Discrimination and Inconsistency. The experts give their evaluations using pairwise comparisons of Fuzzy Preference Relations with an Additive Consistency property. This property can be used to generate estimators, and replaces the repetition needed to obtain the CWS-Index. Finally, a numerical example is discussed to illustrate the model for producing expertise-based ranking of experts.

© 2016 Elsevier B.V. All rights reserved.

Keywords: Ranking; Expertise; Fuzzy Preference Relations; Additive Consistency; Assessment level

1. Introduction

The quality of a formal decision is heavily influenced by the level of expertise of the decision maker (DM) [1]. It is presumed that a decision made by an expert is better than a decision made by a non-expert, because an expert has the ability to think differently [1–3] and the inherent ability to understand the problem in more detail and depth, so that an expert can distinguish various aspects of the situation that are usually overlooked by a non-expert [4].

When a decision is made by several decision makers (DMs), this group of experts may be responsible for making an assessment of alternatives. The group decision or group opinion is a result of the integration of the individual opinions by a mathematical aggregation [5]. One important factor that should be considered in the aggregation process is which DMs’ opinions should be included in the aggregation process. This means that the composition of the DM teams can be changed, i.e. new members can join a DM team while others leave depend on their ranking [6]. To improve the decision quality, this ranking should be determined on the basis of the DM’s level of expertise.

* Corresponding author at: Industrial Engineering Department, University of Surabaya, Surabaya, Indonesia.
E-mail addresses: evy@staff.ubaya.ac.id (E. Herowati), udisubakti@ie.its.ac.id (U. Ciptomulyono), jparung@staff.ubaya.ac.id (J. Parung), suparno@ie.its.ac.id (Suparno).

http://dx.doi.org/10.1016/j.fss.2016.09.016
0165-0114/© 2016 Elsevier B.V. All rights reserved.
The DM’s level of expertise needs to be defined. Weiss and Shanteau [7] proposed the concept of ‘the ability to differentiate consistently’ to assess the expertise level, and they based this solely on the expert’s level of assessing alternatives. They defined experts as those who are capable of distinguishing between cases that are similar but not exactly the same and of repeating their judgments consistently. They proposed the CWS-Index (the Cochran–Weiss–Shanteau Index), which is the ratio between discrimination and inconsistency, to assess someone’s level of expertise [7,8]. The CWS-Indexes for the experts yields their ranking; the higher the CWS-Index, the higher is the DM’s ranking. However, measuring inconsistency requires repetition, and accordingly the experts need to make judgments more than once. This repeated evaluation is difficult to do independently in a way that ensures that there is no influence from the previous evaluation [9]. Moreover, those whose second evaluation is similar to their first will be considered consistent, even though the first evaluation is not necessarily true [1].

In Group Decision Making research, the pairwise comparisons approach of Fuzzy Preference Relations (FPR) has the Additive Consistency (AC) property. Pairwise comparisons have the advantage of focusing the assessment on two objects at a time [10]. The AC property of FPR can be used to measure the expert’s consistency level [11–16] and produces a consistency-based experts’ ranking without considering the ability of the expert to differentiate between similar, but not identical, cases. In relation to the concept of expertise, defined as the ability to differentiate consistently, as proposed by Weiss and Shanteau [7], the methodology of determining ranking in these prior studies is not based on expertise as a whole, because the studies only consider consistency and ignore the ability to differentiate.

There have been studies to determine the ranking of experts based on their level of assessment. Among the methods used are the use of factor scores to rank the assessment result of DMs in the group decision [17], the measurement of the total deviation between the estimated value and the real value for each element of the decision matrix [18], and the measurement of the total variance of the estimated value for each element of the decision matrix [19]. In these previous researches, the experts’ ranking are determined only by the consistency of their assessments, without considering their ability to differentiate, so these studies have not used the comprehensive concept of expertise.

In this paper, we focus on a Group Decision with one criterion where the DMs are ranked based on their level of expertise, irrespective of their position in the organization. The concepts used are the combination of expertise as ‘the ability to differentiate consistently’ and the AC property of FPR. The experts will give their judgments in FPR, so that the repetition required in Weiss and Shanteau’s methodology is replaced by an estimation using the AC property. The focus of this research is to determine the ranking of the DMs. This ranking can be used to determine which DMs’ opinions should be included in the aggregation process. This ranking can also be used to determine the importance weight of the DMs and research obtaining the DMs’ importance weight from their ranking has been discussed in another paper [20].

The next section of this paper discusses the concept of expertise and the AC property of FPR. Then a methodology to obtain an expertise-based ranking of experts is discussed, followed by the implementation of the proposed methodology using numerical examples. Finally, the conclusions are presented and further research associated with the development of a model of the expertise-based ranking of experts is proposed.

2. Expert’s expertise level and FPR’s additive consistency

This part discusses the previous methods used to identify the expertise level of experts, and FPR’s AC property. These two methods will be combined to develop the proposed method called expertise-based ranking of experts.

2.1. Expert’s expertise level

An expert is an individual who has a background in a certain area and receives recognition from his/her peers in a particular technical field [21]. If a distinction is made according to the tasks to be accomplished, there are four types of experts [7], namely: expert predictors, expert instructors, expert performers and expert judges. An expert predictor conducts an evaluation to create a scenario for the future. An expert instructor must have the ability to judge and communicate clearly to others, in the way that a football coach does to his players. An expert performer should be able to perform the task well: for instance, an expert football player can score a goal. An expert judge makes both a qualitative and a quantitative evaluation. Weiss and Shanteau [22] stated that all type of expertise are influenced by the expert’s judgment, then all type of expertise can’t be separated from their judgment quality and in this study, an expert means someone with expert judgment.
Previous studies to determine the *expertise* level of an *expert* have identified certain important factors to be considered:

- **Consistency**
 The expert’s judgment should be consistent over time. Those who are inconsistent can definitely not be called experts [23,24]. Consistency is a necessary, but not a sufficient, condition for expertise [7,8].

- **Discrimination**
 An expert should have discriminatory ability, the ability to differentiate between cases that are similar but not exactly the same [25], therefore ‘the ability to differentiate’ becomes a necessary, but not a sufficient, condition [7,8].

Weiss and Shanteau [7] proposed to combine the concepts of ‘consistency’ and ‘discrimination’ to determine the expertise level of a person becomes ‘the ability to differentiate consistently’, and is expressed by the CWS-Index as shown in equations (1), (2) and (3) as follows:

\[
\text{CWS-Index} = \frac{\text{Discrimination}}{\text{Inconsistency}} = \frac{\text{Variance of different alternatives’ values}}{\text{Variance of the same alternative’s values}}
\]

\[
\text{Discrimination} = \frac{\sum_{j=1}^{n} r(M_j - \text{GM})^2}{n - 1}
\]

\[
\text{Inconsistency} = \frac{\sum_{j=1}^{n} \sum_{i=1}^{r} (M_{ij} - M_j)^2}{n(r - 1)}
\]

where

- \(r \) : The number of replications
- \(M_j \) : The average of individual values for case-\(j \)
- \(\text{GM} \) : The grand mean of all individual values
- \(n \) : The number of different cases
- \(M_{ij} \) : The individual value for replication-\(i \) of case-\(j \)

Equation (2) shows that discrimination consists of the between group variance, and equation (3) shows that inconsistency is the within group variance. This can be seen from the formula in statistics \(\frac{\sum_{j=1}^{n} r(M_j - \text{GM})^2}{n - 1} \), which is the variance of the average group \((M_j) \) to the grand mean \((\text{GM}) \) and is better known as the between group mean of squares [26].

According to Weiss and Shanteau [7], to get the CWS-Index, the evaluated experts are asked to give their assessment twice or more. Repeating the measurements are difficult and time-consuming [9] then the method for determining the level of expertise needs to be adjusted [27]. By way of illustration, an example of the calculation of the CWS-Index in a medical field study to estimate the probability that a patient had a chronic heart failure ((28) in [7]) was reanalyzed. Several physicians were asked to rate 45 patients, and rated five of the cases twice (this repetition without their knowledge). The evaluation results for one of these experts who judged five cases twice, and the CWS-Index calculations, are shown in Table 1.

2.2. FPR’s Additive Consistency

Fuzzy Preference Relations (FPR) is one of the most widely used evaluation methods for expert assessment in Group Decision Making [29,30], because FPR is a very useful tool in modeling the decision process, primarily for aggregating individual opinions into a group opinion [13].

The next model for Group Decision Making is a model proposed by Herrera-Viedma et al. [12,30]. Suppose that a group of experts \(E = \{e_1, e_2, \ldots, e_m\}, m \geq 2 \) give their preferences on a finite set of alternatives \(X = \{x_1, x_2, \ldots, x_n\}, n \geq 2 \) by using FPR. FPR \(P \) on a set of alternatives \(X, P \subset X \times X \) and represented by means of the \(n \times n \) matrix \(P = (p_{ij}) \) [31,32]. \(p_{ij} \) is the preference degree of alternative \(x_i \) over alternative \(x_j \). \(p_{ij} = 1/2 \) means there is indifference between \(x_i \) and \(x_j \), \(p_{ij} \in (1/2, 1] \) means \(x_i \) is preferred to \(x_j \) with the degree of \(p_{ij} \), and \(p_{ji} \in (1/2, 1] \) means \(x_j \) is preferred to \(x_i \) with the degree of \(p_{ji} \) [33].
The FPR is a reciprocal relation satisfying:

\[p_{ij} + p_{ji} = 1 \]

(4)

Thus the matrix \(P \) has the form

\[
P = \begin{bmatrix}
0.5 & p_{12} & p_{13} & p_{14} \\
1 - p_{12} & 0.5 & p_{23} & p_{24} \\
1 - p_{13} & 1 - p_{23} & 0.5 & p_{34} \\
1 - p_{14} & 1 - p_{24} & 1 - p_{34} & 0.5 \\
\end{bmatrix}
\]

(5)

The FPR as a reciprocal relation has several transitivity properties, such as FG-transitivity [34,35], \(h \) – iso stochastic transitivity [36] and cycle transitivity [35,36]. For more information about the transitivity property of FPR, we refer the reader to [35,37].

Tanino [31] in [38] proposed the Additive Consistency (AC) property and the multiplicative transitivity among three alternatives \(x_i, x_j \) and \(x_k \). The AC property can be expressed as follows:

\[
\left(p_{ij} - \frac{1}{2} \right) + \left(p_{jk} - \frac{1}{2} \right) = \left(p_{ik} - \frac{1}{2} \right) \quad \forall i, j, k = 1, 2, \ldots, n
\]

(6)

Suppose \(x_j \) is an intermediate alternative. Equation (6) states that the intensity of preference of alternative-\(x_i \) over alternative-\(x_k \) is the sum of the intensity of preference of alternative-\(x_i \) over the intermediate alternative-\(x_j \) and the intensity preference of intermediate alternative-\(x_j \) over the alternative-\(x_k \).

Equation (6) can be rewritten as equation (7) [31] in [38].

\[
p_{ij} + p_{jk} + p_{ki} = 3/2 \quad \forall i, j, k = 1, 2, \ldots, n
\]

(7)

If an expert expressed his/her preferences as \(x_i > x_j > x_k \) (he/she preferred \(x_i \) over the other alternatives \(x_j \) and \(x_k \), it would be illogical if the intensity of preference of alternative \(x_i \) over alternative \(x_j \) is greater than the intensity of preference of alternative \(x_j \) over alternative \(x_k \) [39], and consequently we have \(p_{ij} \leq p_{ik} \) for this expert.

The concept of AC for FPR is parallel to the concept of consistency for the Multiplicative Preference Relations of Saaty [11,30,31]. Equation (7) can be used to obtain the following three relationships between the preferences [12]:

\[
p_{ik} = p_{ij} + p_{jk} - \frac{1}{2} \quad \forall i, j, k = 1, 2, \ldots, n
\]

(8)

\[
p_{jk} = p_{ji} + p_{ik} - \frac{1}{2} \quad \forall i, j, k = 1, 2, \ldots, n
\]

(9)

\[
p_{ij} = p_{ik} + p_{kj} - \frac{1}{2} \quad \forall i, j, k = 1, 2, \ldots, n
\]

(10)

Each element of the decision matrix \(P \) is estimated in three different ways. From equations (8), (9) and (10) we can obtain estimated values, using the work of Herrera-Viedma et al. [12,40], as presented in equations (11), (12) and (13):
\[\varepsilon_{p_{jk}}^1 = p_{ij} + p_{ji} - \frac{1}{2}, \quad j \neq i, k \]
\[\varepsilon_{p_{jk}}^2 = p_{jk} - p_{ji} + \frac{1}{2}, \quad j \neq i, k \]
\[\varepsilon_{p_{jk}}^3 = p_{ij} - p_{kj} + \frac{1}{2}, \quad j \neq i, k \]

\[\varepsilon_{p_{jk}}^1 \]: Estimation of \(p_{ik} \) using the first formula, equation (8)

\[\varepsilon_{p_{jk}}^2 \]: Estimation of \(p_{ik} \) using the second formula, equation (9)

\[\varepsilon_{p_{jk}}^3 \]: Estimation of \(p_{ik} \) using the third formula, equation (10)

Due to FPR has reciprocity consistency \(p_{ij} + p_{ji} = 1 \), then we can prove that these formulations in equation (11), (12) and (13) yield the same result, and for every element of the FPR matrix \(p_{ij} \), the formulations produce as many as \((n - 2)\) estimators (since \(j \neq i, k \)). These estimators allow the AC property to be used to complete the incomplete FPR matrix [12,14–16,40–42]. Additionally, AC can be used to measure a person’s level of consistency in making an assessment [11–16], based on the deviation between the values of the estimations using the AC property and the real values given by the expert. The consistency level is then used to determine the ranking of the experts and generate consistency-based ranking of experts.

The multiplicative transitivity proposed by Tanino [31] is expressed by equation (14):

\[\frac{p_{ik}}{p_{ki}} = \frac{p_{ij}}{p_{ji}} \cdot \frac{p_{jk}}{p_{kj}} \]

(14)

This transitivity is equivalent to the cycle transitivity (the iso stochastic transitivity) [35,36,43]. The cycle transitivity is considered more appropriate because in the cycle transitivity there is unlikely division by zero [35].

The use of the AC property of FPR still has a contradiction with the range of each element of the FPR matrix, i.e. \(\mu_p : X \times X \to [0, 1] \) [13]. From equation (11), the maximum value of \(\varepsilon_{p_{jk}}^1 \) is 1.5, and this value could be obtained if the values of \(p_{ij} \) and \(p_{jk} \) are equal to 1; the minimum value of \(\varepsilon_{p_{jk}}^1 \) is -0.5 and this value is reached when \(p_{ij} \) and \(p_{jk} \) are 0. The same conditions occur for \(\varepsilon_{p_{jk}}^2 \) and \(\varepsilon_{p_{jk}}^3 \), equations (12) and (13), and the range of the estimated value of the FPR matrix elements are \([-0.5, 1.5] \) or \([-0.5 \leq \varepsilon_{p_{jk}}^1 \leq 1.5, -0.5 \leq \varepsilon_{p_{jk}}^2 \leq 1.5, -0.5 \leq \varepsilon_{p_{jk}}^3 \leq 1.5 \).

There are several ways to keep the range of each element of the FPR matrix within the interval [0, 1], as follows:

1. The range [0, 1] could be achieved directly by changing the values of the estimation that are outside the range. If \(\varepsilon_{p_{jk}}^r < 0 \), it is set to equal zero, and if \(\varepsilon_{p_{jk}}^r > 1 \), it is changed to 1 [14,27] as in equation (15).

\[p_{ik}^r = \begin{cases}
0 & \text{if } \varepsilon_{p_{ik}}^r < 0 \\
\varepsilon_{p_{ik}}^r & \text{if } 0 \leq \varepsilon_{p_{ik}}^r \leq 1, \quad j \neq i, k, \ r = 1, 2, 3 \\
1 & \text{if } \varepsilon_{p_{ik}}^r > 1
\end{cases} \]

(15)

Where \(p_{ik}^r \) is the estimation of \(p_{ik} \) with formula-\(r \).

With the adjustment in equation (15), the range of the matrix elements for FPR now becomes 0 \(\leq p_{ik}^r \leq 1 \). The problem is how to distinguish a zero arising from a negative value and a real zero. Furthermore, the estimation matrix elements with a value greater than one will be treated in the same way as the estimation matrix elements with a value equal to 1.

2. Modified Additive Consistency [43], as described in equation (16):

\[p_{ik}^r = \begin{cases}
\min\{p_{ij}, p_{jk}\} & \text{if } p_{ij}, p_{jk} \in [0, 0.5] \\
\max\{p_{ij}, p_{jk}\} & \text{if } p_{ij}, p_{jk} \in [0.5, 1] \\
\varepsilon_{p_{ik}}^r & \text{otherwise}
\end{cases} \]

(16)

The modified Additive Consistency satisfies ‘restricted max–max transitivity’ and ‘restricted min–min transitivity’ [43]. De Baets et al. in [35] expressed this type of transitivity as the \(T_M \) Transitivity where F and G is coincide. From equation (16), the estimated value of \(p_{ik} \) for small values of \(p_{ij} \) and \(p_{jk} \) is \(\min\{p_{ij}, p_{jk}\} \) (satisfies the
restricted min–min transitivity \([43]\), so it is not likely to be negative. Similarly, the value of \(p_{ik}\) for large values of \(p_{ij}\) and \(p_{jk}\) is replaced by the value of \(\max\{p_{ij}, p_{jk}\}\) (satisfies the restricted max–max transitivity \([43]\)), so there is no possibility that the estimated value of \(p_{ik}\) is more than one. The problem that arises is that modified Additive Consistency causes many different cases to be treated equally, for small values of \(p_{ij}\) and \(p_{jk}\) or for big values of \(p_{ij}\) and \(p_{jk}\).

3. All elements \(p_{ik}\) of the estimated matrix can be transformed using a transformation function such that the range changes from \([-a, 1 + a], a > 0\) to \([0, 1]\) \([13]\).

The transformation function is presented in equation (17).

\[
f(x) = \frac{x + a}{1 + 2a}
\]

This transformation keeps the FPR in the range \([0, 1]\) while maintaining some basic attributes of FPR as described below \([13]\):

1. The lowest value is 0: \(f(-a) = 0\)
2. The highest value is 1: \(f(1 + a) = 1\)
3. Additive Reciprocity: \(f(x) + f(1 - x) = 1 \forall x \in [-a, 1 + a]\)
4. Additive Consistency: \(f(x) + f(y) + f(z) = \frac{3}{2} \forall x, y, z \in [-a, 1 + a]\) such that \(x + y + z = \frac{3}{2}\)
5. Value Indifference: \(f(0.5) = 0.5\)

3. The proposed method

Weiss and Shanteau \([7]\) showed that the CWS-Index is an excellent invention for comparing the expertise level of experts; however its weakness lies in the possibility that a non-expert obtains a high CWS-Index score by giving an incorrect assessment consistently \([1, 8]\). According to this research, we can see that the inconsistency measurements require the expert to repeat his/her evaluation. It is very difficult to conduct this repetition independently without being affected by the previous assessment \([9]\). For example, the medical study’s experts in the illustration had to assess 45 patients (and 5 repetitions) to obtain independent judgments (actually they required only ten judgments). Furthermore, an individual whose second assessment is close to his or her first assessment will be considered to be consistent, even though the first assessment itself is not necessarily correct \([1]\). Therefore, we need a refinement of the method of comparing experts’ expertise \([27]\).

In Group Decision Making research, the AC property of FPR is used in research where the expert can give scores in the incomplete decision matrix FPR. The AC property can be used to supplement an incomplete FPR with an estimation that uses the existing matrix elements. In this study, the AC of FPR will be used to replicate every element of the decision matrix FPR P, so that the difficulty in measuring independent repetition can be overcome. Experts are asked to provide an expert evaluation through the pairwise comparison approach of FPR. In order to keep the range of the estimated value of the FPR matrix elements within the limits \([0, 1]\), and because the use of both equation (15) and equation (16) leads to a large number of different cases being treated equally, this study uses the transformation of equation (17) so that the range changes from \([-a, 1 + a]\) to \([0, 1]\).

Previous studies have produced not only the expert rankings, but also the importance weight of each expert that can be used in the aggregation process of individual opinions into a group opinion. However, these studies have not covered the whole expertise assessment proposed by Weiss and Shanteau \([7]\), because they are based on consistency without considering discrimination. Discrimination or ‘the ability to differentiate’ should be considered in determining the ranking of the experts, because determining ranking based only on consistency could produce less appropriate results. As an extreme example, suppose an expert judges four alternatives and gives the same value for each of them. Consequently each element of the decision matrix has the value 0.5 \((p_{ij} = 0.5\) means indifference between alternative-\(X_i\) and alternative-\(X_j\)), as stated in matrix \(P_e\) in equation (18):

\[
P_e = \begin{bmatrix}
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
\end{bmatrix}
\]

All estimations using the formulae in equations (11), (12) or (13) give the same value 0.5. There is no deviation between the values replicated using AC and the actual values given by this expert. This zero deviation means that
this expert is a completely consistent expert and would have ranked first if we used the consistency-based ranking of experts as in previous studies. In our opinion, this result is not appropriate, because, if the decision matrix P_e is analyzed further, the equal value of all of the alternatives means that this expert cannot actually differentiate between the qualities of the alternatives.

This paper proposes combining the concept of expertise (the ability to differentiate consistently) with the AC property of FPR in the expertise-based ranking of experts. The determination of the level of expertise as ‘the ability to differentiate consistently’ is a very good concept, but it is difficult to use this to measure inconsistency because independent repetitions between the first and the following evaluations are needed. Additionally, a high CWS-Index can be obtained by giving an incorrect judgment consistently [1].

A framework for the expertise-based ranking of experts is depicted in Fig. 1. The expertise-based ranking of experts uses the concept of expertise proposed by Weiss and Shanteau [7] in form of the experts’ capability to differentiate a set of alternatives consistently. The repetitions needed for the inconsistency measurement are replaced with estimation by using the AC property of FPR. There are $(n - 1)$ values for each matrix element p_{ij} consist of one actual value from real data and $(n - 2)$ estimated values. If there are elements from the estimation that lie outside the range $[0, 1]$, then transform all of the values by using equation (17). The CWS-Index for the pairwise comparisons is adapted from the CWS-Index from equation (1) as follows:

$$CWS-Index = \frac{\text{Variance of different ‘pairwise comparisons between two alternatives’}}{\text{Variance of the same ‘pairwise comparisons between two alternative’s}}$$

The variance of different ‘pairwise comparisons between two alternatives’ is considered as the variance of different alternatives’ values and the variance of the same ‘pairwise comparisons between two alternatives’ is considered as the variance of the same alternative’s values. The expertise-based ranking of experts can be determined based on the CWS-Index values. The higher the CWS-Index of an expert is, the higher his/her ranking is.

The steps used to rank the experts using the method of Expertise-based Ranking of Experts are as follows:

1. Elicit each expert’s opinion using the pairwise comparisons approach of Fuzzy Preference Relations in decision matrices.
2. Replace the repetition needed for the measurement of inconsistency with the estimation arising from the Additive Consistency of Fuzzy Preference Relations by using one of the formulations in equations (11), (12) or (13).
3. Transform, using equation (17), if there are elements from the estimation in step 2 that lie outside the range $[0, 1]$.
4. Modify the CWS-Index for the expertise level in equation (1) for the pairwise comparisons approach of FPR as follows:

$$\text{CWS-Index} = \frac{\text{Variance of different ‘pairwise comparison between two alternatives’}}{\text{Variance of the same ‘pairwise comparison between two alternatives’}}$$ \hspace{1cm} (20)

5. Determine the Expertise-based Ranking of Experts according to the CWS-Index values: the higher the CWS-Index of an expert, the higher his or her ranking.

4. Illustrative example

In order to show whether the proposed method is workable or not, we provide a numerical example to illustrate it. Suppose there are five people who are expert at judging the beauty of a painting. These experts are expressed as $E = \{e_1, e_2, e_3, e_4, e_5\}$. They were asked to provide an assessment of four paintings in the form of pairwise comparisons approach of FPR. These paintings form a set of four alternatives $X = \{x_1, x_2, x_3, x_4\}$.

The experts were asked to fill the evaluation form in Table 2, with the FPRs $0 \leq p_{ij} \leq 1$.

In every judgment, the experts have to focus on the assessment on one pair of alternatives to answer how much does he/she prefer alternative-\(x_i\) to alternative-\(x_j\) and fill in the blank space of Table 2.

- If there are indifferent between alternative-\(x_i\) and alternative-\(x_j\), then $p_{ij} = 0.5$.
- If alternative-\(x_i\) is preferable than alternative-\(x_j\), then $0.5 < p_{ij} < 1.0$.
- If alternative-\(x_i\) is absolutely preferable than alternative-\(x_j\), then $p_{ij} = 1.0$.
- If alternative-\(x_i\) is not preferable than alternative-\(x_j\), then $0.0 < p_{ij} < 0.5$.
- If alternative-\(x_i\) is absolutely not preferable than alternative-\(x_j\), then $p_{ij} = 0$.

For instance, for Expert-1, the first painting, alternative-\(x_1\) is slightly not preferable than the second painting, alternative-\(x_2\), then Expert-1 should fill in $0.0 < p_{12} < 0.5$, for example $p_{12} = 0.40$ as in Table 3. The complete judgment for Expert-1 is presented in Table 3 and by using the additive reciprocity property, $p_{ij} + p_{ji} = 1$, the whole cells in Table 3 can be completed as in the decision matrix P_1.
Step 1
Elicit each expert’s opinion in FPR pairwise comparison of alternatives X. Expert-1 provides an evaluation in the decision matrix P_1, Expert-2 in the decision matrix P_2, and so on. The data for the experts’ assessments are as follows:

$$P_1 = \begin{bmatrix} 0.50 & 0.40 & 0.40 & 0.40 \\ 0.60 & 0.50 & 0.40 & 0.70 \\ 0.60 & 0.60 & 0.50 & 0.70 \\ 0.60 & 0.30 & 0.30 & 0.50 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0.50 & 0.30 & 0.40 & 0.45 \\ 0.70 & 0.50 & 0.65 & 0.60 \\ 0.60 & 0.35 & 0.50 & 0.45 \\ 0.55 & 0.40 & 0.55 & 0.50 \end{bmatrix},$$

$$P_3 = \begin{bmatrix} 0.50 & 0.90 & 0.60 & 0.70 \\ 0.10 & 0.50 & 0.30 & 0.40 \\ 0.40 & 0.70 & 0.50 & 0.60 \\ 0.30 & 0.60 & 0.40 & 0.50 \end{bmatrix}, \quad P_4 = \begin{bmatrix} 0.50 & 0.40 & 0.80 & 0.70 \\ 0.60 & 0.50 & 0.60 & 0.35 \\ 0.20 & 0.40 & 0.50 & 0.10 \\ 0.30 & 0.65 & 0.90 & 0.50 \end{bmatrix}$$

$$P_5 = \begin{bmatrix} 0.50 & 0.70 & 0.80 & 0.60 \\ 0.30 & 0.50 & 0.65 & 0.55 \\ 0.20 & 0.35 & 0.50 & 0.40 \\ 0.40 & 0.45 & 0.60 & 0.50 \end{bmatrix}$$

Step 2
Replace the repetition used to measure inconsistency by estimations using the AC properties of Fuzzy Preference Relations. The estimations are conducted using one of the formulae in equations (11), (12) or (13). For example, Expert-4 gives the opinions in the decision matrix-P_4.

$$P_4 = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

The estimation of each element in the matrix P_4 using formulae 1, 2 or 3 will generate two estimated values. The example below shows how to determine the estimated value of one matrix element P: p_{12} of Expert-4.

Formula 1:

$$\varepsilon p_{1k}^1 = p_{1j} + p_{jk} - \frac{1}{2}, \quad j \neq i, k$$

$$\varepsilon p_{12}^1 = p_{11} + p_{21} - \frac{1}{2}, \quad j \neq 1, 2$$

$$j = 3 \rightarrow \varepsilon p_{13}^1 = p_{13} + p_{32} - \frac{1}{2} = 0.80 + 0.40 - 0.5 = 0.70$$

$$j = 4 \rightarrow \varepsilon p_{14}^1 = p_{14} + p_{42} - \frac{1}{2} = 0.70 + 0.65 - 0.5 = 0.85$$

Formula 2:

$$\varepsilon p_{1k}^2 = p_{j1} - p_{ji} + \frac{1}{2}, \quad j \neq i, k$$

$$\varepsilon p_{12}^2 = p_{j2} - p_{1j} + \frac{1}{2}, \quad j \neq 1, 2$$

$$j = 3 \rightarrow \varepsilon p_{31}^2 = p_{31} - p_{13} + \frac{1}{2} = 0.40 - 0.20 + 0.5 = 0.70$$

$$j = 4 \rightarrow \varepsilon p_{41}^2 = p_{42} - p_{41} + \frac{1}{2} = 0.65 - 0.20 + 0.5 = 0.85$$

Formula 3:

$$\varepsilon p_{1k}^3 = p_{ij} - p_{kj} + \frac{1}{2}, \quad j \neq i, k$$

$$\varepsilon p_{12}^3 = p_{1j} - p_{2j} + \frac{1}{2}, \quad j \neq 1, 2$$

$$j = 3 \rightarrow \varepsilon p_{13}^3 = p_{13} - p_{23} + \frac{1}{2} = 0.80 - 0.60 + 0.5 = 0.70$$

$$j = 4 \rightarrow \varepsilon p_{14}^3 = p_{14} - p_{24} + \frac{1}{2} = 0.70 - 0.35 + 0.5 = 0.85$$

The estimated values of all elements of the matrix P_4 are presented in Table 4.
Table 4
Estimated values of matrix element P_4.

<table>
<thead>
<tr>
<th>Element matrix</th>
<th>Actual judgment</th>
<th>Estimated values before transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{12}</td>
<td>0.40</td>
<td>0.70</td>
</tr>
<tr>
<td>P_{13}</td>
<td>0.80</td>
<td>0.50</td>
</tr>
<tr>
<td>P_{14}</td>
<td>0.70</td>
<td>0.25</td>
</tr>
<tr>
<td>P_{21}</td>
<td>0.60</td>
<td>0.15</td>
</tr>
<tr>
<td>P_{22}</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>P_{23}</td>
<td>0.35</td>
<td>0.80</td>
</tr>
<tr>
<td>P_{31}</td>
<td>0.20</td>
<td>-0.10</td>
</tr>
<tr>
<td>P_{32}</td>
<td>0.40</td>
<td>0.10</td>
</tr>
<tr>
<td>P_{33}</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>P_{41}</td>
<td>0.30</td>
<td>0.60</td>
</tr>
<tr>
<td>P_{42}</td>
<td>0.65</td>
<td>0.80</td>
</tr>
<tr>
<td>P_{43}</td>
<td>0.90</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 5
Transformed value calculation of CWS-Index for Expert-4.

<table>
<thead>
<tr>
<th>Element matrix</th>
<th>Actual judgment</th>
<th>Estimated values after transformation</th>
<th>M_j</th>
<th>$r(M_j - GM)^2$</th>
<th>$\sum_{j=1}^{r} (M_{ij} - M_j)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{12}</td>
<td>0.4167</td>
<td>0.6667</td>
<td>0.7917</td>
<td>0.6250</td>
<td>0.04688</td>
</tr>
<tr>
<td>P_{13}</td>
<td>0.7500</td>
<td>0.5000</td>
<td>1.0000</td>
<td>0.7500</td>
<td>0.18750</td>
</tr>
<tr>
<td>P_{14}</td>
<td>0.6667</td>
<td>0.2917</td>
<td>0.4167</td>
<td>0.4583</td>
<td>0.00521</td>
</tr>
<tr>
<td>P_{21}</td>
<td>0.5833</td>
<td>0.2083</td>
<td>0.3333</td>
<td>0.3750</td>
<td>0.04688</td>
</tr>
<tr>
<td>P_{22}</td>
<td>0.5833</td>
<td>0.7083</td>
<td>0.8333</td>
<td>0.7083</td>
<td>0.13021</td>
</tr>
<tr>
<td>P_{23}</td>
<td>0.3750</td>
<td>0.7500</td>
<td>0.2500</td>
<td>0.4583</td>
<td>0.00521</td>
</tr>
<tr>
<td>P_{31}</td>
<td>0.2500</td>
<td>0</td>
<td>0.5000</td>
<td>0.2500</td>
<td>0.18750</td>
</tr>
<tr>
<td>P_{32}</td>
<td>0.4167</td>
<td>0.2917</td>
<td>0.1667</td>
<td>0.2917</td>
<td>0.13021</td>
</tr>
<tr>
<td>P_{33}</td>
<td>0.1667</td>
<td>0.2917</td>
<td>0.4167</td>
<td>0.2917</td>
<td>0.13021</td>
</tr>
<tr>
<td>P_{34}</td>
<td>0.3333</td>
<td>0.5833</td>
<td>0.7083</td>
<td>0.5417</td>
<td>0.00521</td>
</tr>
<tr>
<td>P_{41}</td>
<td>0.6250</td>
<td>0.7500</td>
<td>9.2500</td>
<td>0.5417</td>
<td>0.00521</td>
</tr>
<tr>
<td>P_{42}</td>
<td>0.8333</td>
<td>0.7083</td>
<td>0.5833</td>
<td>0.7083</td>
<td>0.13021</td>
</tr>
<tr>
<td>P_{43}</td>
<td>1.01042</td>
<td>0.93750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 3
Transform all the estimated values using equation (17). Table 4 shows that some estimated values are outside the range $[0, 1]$. This indicates the need for transformation. The estimated values are in the range $[-0.1, 1.1]$. Based on equation (17), the transformation function used is:

$$f(x) = \frac{x + 0.1}{1 + 2 \times 0.1}$$

The transformations of the estimated values are presented in Table 5.

Step 4
Calculate the CWS-Index for the experts by using equation (19). The calculation of the CWS-Index for Expert-4 is shown in Table 5. For each element of the matrix P_4 there are three values ($r = 3$), i.e. two estimated values and one real value.

Discrimination = \[\frac{\sum_{j=1}^{r} r(M_j - GM)^2}{n - 1} = \frac{1.01042}{12 - 1} = 0.09186 \]

Inconsistency = \[\frac{\sum_{j=1}^{r} \sum_{i=1}^{r} (M_{ij} - M_j)^2}{n(r - 1)} = \frac{0.93750}{12 \times (3 - 1)} = 0.03906 \]

CWS-Index for Expert-4 = \[\frac{0.09186}{0.03906} = 2.351 \]
Step 5

Determine the Expertise-based Ranking of Experts according to the CWS-Index values.

The CWS-Index calculation and the results are presented in Table 6. The CWS-Indexes for Expert-1, Expert-2, Expert-3, Expert-4 and Expert-5 are, respectively, 3.840, 22.039, 52.127, 2.351 and 18.757. Based on these CWS-Indexes, the Expertise-based ranking of the experts obtained is Expert 3–Expert 2–Expert 5–Expert 1–Expert 4.

Table 6 ranks Expert-3 first because Expert-3 has the highest ‘ability to differentiate’ and a low ‘inconsistency value’ (which means that Expert-3 is very consistent) so that he/she has the highest CWS-Index and is ranked first. Relating this to the concept of expertise (the ability to differentiate consistently), Expert-3 has a very high ‘ability to differentiate consistently’, the highest of all the experts, so Expert-3 is put in first place.

In terms of the value of inconsistency, Expert-2 is the most consistent expert because he or she has the lowest inconsistency value. However, he or she has a low discrimination value. This low discrimination value means that Expert-2 cannot differentiate well between alternatives. An expert should have the ability to differentiate between cases that are similar but not exactly the same [7,8,25] and the ability to differentiate is a necessary condition for an expert [7,8]. The low discrimination value makes the CWS-Index of Expert-2 lower than that of Expert-3, so Expert-2 cannot be ranked first. If, instead, the ranking had been based solely on consistency values (as in consistency-based ranking of experts), Expert-2 would definitely have been ranked first.

Expert-5 has the second highest discrimination value, but because Expert-5 does not have a very good inconsistency value, he/she is not ranked second. Those who are not consistent are certainly not experts [23]. This is reflected in the CWS-Index which is lower for Expert-5 than for Expert-2. Based on the value of CWS-Index, Expert-2 is ranked second and Expert-5 third.

Expert-4 has high ability to differentiate, but he/she has the worst inconsistency score, so he/she is ranked last. Although the discrimination ability of Expert-4 is better than that of Expert-1, Expert-4 is the least consistent expert, having the lowest CWS-Index, so is placed in the lowest rank.

Based on the CWS-Indexes in Table 6, the expertise-based ranking of experts is Expert 3–Expert 2–Expert 5–Expert 1–Expert 4. The ranking of these same experts may be different in another case, or even in the same case using different criteria, because each expert has different expertise in different fields [44,45]. For example, if the experts assess four paintings using a different criterion, such as the economic value of the paintings, the ranking of the experts may be different because a person could be an expert in art and not an expert in the economic value of a painting.

This research proposed an alternative way to estimate inconsistency without the necessity to do repetitions. The price is that the experts should judge two alternatives at once using pairwise comparisons approach of FPR that seems to be more difficult judgment than merely evaluating an individual alternative. Fortunately, although judgment using pairwise comparison seems to be rather difficult, but pairwise comparison has the advantage of focusing the assessment on two objects at a time [10].

The proposed model requires nC2 pairwise comparisons (n is the number of alternatives). In this example, there are 4 alternatives and the proposed model requires n(n − 1)/2, 6 judgments for each expert. As the number of alternatives increase, this method calls for increasingly more judgments, for example 5 alternatives needs 10 judgments, 6 alternatives needs 15 judgments, 7 alternatives needs 21 judgments etc. This will be inconvenient for the experts to do so many judgments. Another reason to limit the number of alternatives is the limitation of human capacity, as the human can differentiate up to 7 ± 2 alternatives [46–48]. The proposed model should be used when there are only a small number of different alternatives and the replication is difficult to do independently. Based on the work of Ozdemir [48], the authors suggest a maximum of 7 ± 2 alternatives. If we only have a small number of alternatives, this method has the advantage of obtaining independent replications (it is difficult to do with the previous method by Weiss and Shanteau [7,8]).
5. **Conclusion**

This paper proposed an *expertise-based ranking of experts* method to rank experts; in this method every expert gives his/her judgment in the pairwise comparison approach of Fuzzy Preference Relations.

Expertise-based ranking of experts in this study identifies expertise using the methodology of Weiss and Shanteau [7]; here expertise is considered to be ‘the ability to differentiate consistently’ and is expressed as the CWS-Index, a ratio between the discrimination and the inconsistency values. The difficulties in measuring inconsistency using independent repetition are solved by using the Additive Consistency property of Fuzzy Preference Relations.

The proposed model enables us to obtain the expertise-based ranking of experts based on their assessment level, and the result should be that the higher the expertise level of an expert, the higher his/her CWS-Index and rank.

This method has two advantages:

1. It uses the whole expertise concept.
 In previous research, the ranking of experts is only determined by the consistency of the experts’ assessment. In this study, the ranking of the experts is determined based on the consistency and the ability to distinguish, so the determination of the ranking in this study uses the whole concept of expertise.

2. It solves the difficulty of measuring independent repetition.
 In previous research related to expertise, the consistency measurement required repeated measurements, but an assessment will be influenced by the previous evaluation. In this study, repetition is not necessary because it has been replaced with the estimations obtained from the additive consistency property.

6. **Future work**

There is room for further research based on the developments in this study, namely:

- The study of *Expertise-based ranking of experts* when the experts give their evaluations using *incomplete* FPR.
- The analysis of *Expertise-based ranking of experts* when the experts give their evaluation in a *format* that is *different* from pairwise comparisons FPR.
- *Expertise-based ranking of experts* can be developed into *Expertise-based experts’ importance weights* that specify the importance weights of the experts in Group Decision Making, and can be continued with the use of these importance weights in the process of aggregating the individual opinions into a group opinion.

Acknowledgements

This work has been developed using finance from Research Grants for Private University Lecturer in Kopertis Region 7 Fiscal Year 2014, No. 004/SP2H/P/K7/KM/2014, April 3, 2014 issued by Ministry of Research, Technology and Higher Education of the Republic of Indonesia, Directorate General of Higher Education and the Research Funding issued by University of Surabaya.

References

[47] G.A. Miller, The magical number seven, plus or minus two: some limits on our capacity for processing information, Psychol. Rev. 63 (2) (1956) 81–97.

L.A. Zadeh†
University of California Berkeley Division of Computer Science, CA 94720-1776, Berkeley, California, United States of America

Advisory Editors

J.C. Bezdek
The University of Melbourne Department of Computing and Information Systems, 111 Barry Street – Building 168, Melbourne, 3010, Australia

B. Bouchon-Meunier
Sorbonne University, 75005, Paris, France

U. Höhle
University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany

J. Kacprzyk
Polish Academy of Sciences, 00-901, Warszawa, Poland

E.P. Klement
Johannes Kepler University Linz, Altenbergerstr. 69, 4040, Linz, Austria

R. Kruse
Otto-von-Guericke University Magdeburg Faculty of Computer Science, Postfach 4120, Magdeburg, Germany

Y.-M. Liu
Sichuan University, Chengdu, 610065, Chengdu, Sichuan, China

H.T. Nguyen
New Mexico State University, 88003-8006, Las Cruces, New Mexico, United States of America

D. Ralescu
University of Cincinnati, 45221, Cincinnati, Ohio, United States of America

E.H. Ruspini

M. Sugeno
Doshisha University Faculty of Culture and Information Science, 1-3 Miyakodani Tatara, Kyonotabe, 610-0394, Kyoto, Japan

E. Trillas
University of Oviedo, Oviedo, Spain

J.L. Verdegay
Int. Artificial, Depto. de Ciencias de la Computacion, Universidad de Granada, Código Correspondencia Para Organismos Oficiales, 18071, Granada, Spain

R.R. Yager
Iona College Machine Intelligence Institute, New Rochelle, 10801, New Rochelle, New York, United States of America

Area Editors

P. Angelov
Lancaster, United Kingdom
Hybrid Systems
G. Beliakov
Burwood, Victoria, Australia
Aggregation Operations

R. Belohlavek
Olomouc, Czechia
Algebra

M. Bernal
Ciudad Obregón, Mexico
Control Engineering

I. Bloch
Paris, France
Image Processing

J.P. Carvalho
Lisbon, Portugal
Fuzzy systems

L. Coroioanu
Oradea, Romania
Fuzzy intervals

I. Couso
Oviedo, Spain
Fuzzy sets and Possibility theory
Email this editor

L.C. De Barros
Campinas, São Paulo, Brazil
Differential equations

S. Díaz Vázquez
Oviedo, Spain
Preference modeling

T Flaminio
Bellaterra, Spain
Uncertainty and game theory in many-valued structures

J.L. García-Lapresta
Valladolid, Spain
Preference Modeling & Decision Analysis

T-M. Guerra
Valenciennes, France
Control Engineering

J. Gutierrez García
Bilbao, Spain
Topology & Category Theory

M. Inuiuchi
Toyonaka, Japan
Optimisation & Mathematical Programming
B. Jayaram
Kandi, India
Aggregation operations

R. Mesiar
Bratislava, Slovakia
Aggregation Functions

C. Noguera, PhD
Praha, Czechia

A.M. Ojeda-Aciego
Malaga, Spain
Fuzzy Formal concept analysis and fuzzy logic programming

E. Pap
Novi Sad, Serbia
Measure Theory

M. Reformat
Edmonton, Alberta, Canada
Research Interests, develop methods and techniques for modeling data and knowledge, as well as design systems which possess abilities to imitate different aspects of human behavior

A. Rico
Lyon, France
Aggregation operations

D. Sánchez
Granada, Spain
Data Mining and Learning

M. Sato-Ilic
Tsukuba, Japan
Clustering

S. Schockaert, PhD
Cardiff, United Kingdom
Logics and Artificial Intelligence

L. Stefanini
Urbino, Italy
Fuzzy Intervals

M. Stepnicka
Ostrava, Czechia
Fuzzy Rule-Based Systems

T. Sudkamp
Dayton, Ohio, United States of America
Engineering Applications

B. Vantaggi
Roma, Italy
Probability and statistics
T. Vetterlein
Linz, Austria
Algebraic Aspects of Fuzzy Sets

S. Zadrozny
Warszawa, Poland
Information Systems

D. Zhang
Chengdu, Sichuan, China
Topology

Book Review Editor

A. Gegov
Portsmouth, United Kingdom
Email this editor

Editorial Board

S. Aguzzoli
Milan, Italy

T. Allahviranloo
İstanbul, Turkey

M. Baczynski
Katowice, Poland

A. I. Ban
Oradea, Romania

M. Banerjee
Kanpur, India

T. Bilgic
İstanbul, Turkey

P. Bonissone
Schenectady, New York, United States of America

B. Bouchon-Meunier
Paris, France

A. Bronevich
Moscow, Russian Federation

H. Bustince
Pamplona, Spain

Y.-K. Cai
Beijing, China

C. Carlsson
Åbo, Finland

G. Chen
Beijing, China

P. Cintula
Praha, Czechia

M. Ćirić
Nis, Serbia

D. Ciucci
Milano, Italy

C. Cornelis
Gent, Belgium

J.M. Costa Sousa
Lisbon, Portugal

P. D’Urso, PhD
Roma, Italy

G. De Tré
Gent, Belgium

M. Demirci
Antalya, Turkey

T. Denoeux, PhD
Compiègne, France

A. Di Nola
Fisciano, Italy

F. Durante
Lecce, Italy

E. Esmi
Campinas, São Paulo, Brazil

M Ferraro
Roma, Italy

H. Frigui
Louisville, Kentucky, United States of America

S. Galichet
Annecy, France

B. Gerla
Varese, Italy

M.A. Gil
Oviedo, Spain
Z. Gong
Lanzhou, Gansu, China

M. Grabisch
Paris, France

S. Greco
Catania, Italy

M. Hanss
Stuttgart, Germany

F. H. Herrera
Granada, Spain

E. Herrera-Viedma
Granada, Spain

U. Höhle
Wuppertal, Germany

M. Holcapek
Ostrava, Czechia

J. Kacprzyk
Warszawa, Poland

M. Kalina
Bratislava, Slovakia

A. Kasperski
Wroclaw, Poland

U. Kaymak
Eindhoven University of Technology, Eindhoven, Netherlands

J.M. Keller
Columbia, Missouri, United States of America

A. Khastan
Zanjan, Iran

F. Klawonn
Wolfenbüttel, Germany

E.P. Klement
Linz, Austria

T. Kóczy, Ph.D., D.Sc.
Budapest, Hungary

T. Kubiak
Poznan, Poland

H. Lai
Qingyang, Sichuan, China
H.L. Larsen
Esbjerg, Denmark

J. Lawry
Bristol, United Kingdom

Z. Lendek
Cluj-Napoca, Romania

C.-J. Liau
Taipei, Taiwan

W.A. Lodwick
Denver, Colorado, United States of America

V. Lupulescu
Târgu Jiu, Romania

T. Marchant
Gent, Belgium

J.-L. Marichal
Esch-Sur-Alzette, Luxembourg

R. A. Marques Pereira
Trento, Italy

C. Marsala
Paris, France

T. Martin
Bristol, United Kingdom

S. Massanet
Palma de Mallorca, Spain

S. Miyamoto
Ibaraki, Japan

J. Montero
Madrid, Spain

S. Montes Rodríguez
Oviedo, Spain

J.N. Mordeson
Omaha, Nebraska, United States of America

T. Murofushi
Yokohama, Japan

S. Muzzioli
Modena, Italy

M. Navara
Praha, Czechia
H.T. Nguyen
Las Cruces, New Mexico, United States of America

J.J. Nieto
Santiago de Compostela, Spain

V. Novák
Ostrava, Czechia

N.R. Pal
Kolkata, India

S.K. Pal
Kolkata, India

G. Pasi
Milan, Italy

W. Pedrycz
Edmonton, Alberta, Canada

K. Peeva
Sofia, Bulgaria

I. Perfilieva
Ostrava, Czechia

F.E. Petry
Stennis Space Center, Mississippi, United States of America

O. Pivert
Lannion Cedex, France

H. Prade
Toulouse, France

D. Ralescu
Cincinnati, Ohio, United States of America

J. Ramík
Karvina, Czechia

A. B. Ramos-Guajardo
Oviedo, Spain

R. Rodríguez-Lopez
Santiago de Compostela, Spain

R. O. Rodríguez
Buenos Aires, Argentina

E.H. Ruspini

S. Sessa
Naples, Italy
Q. Shen
Aberystwyth, United Kingdom

R. Słowiński, PhD, Full Professor
Poznan, Poland

A. Sostaks
Riga, Latvia

U. Straccia
Pisa, Italy

O. Strauss
Montpellier, France

A. Stupňanová
Bratislava, Slovakia

P. Sussner
Campinas, São Paulo, Brazil

A. Tepavcevic
Novi Sad, Serbia

V. Torra
Bellaterra, Spain

W. Trutschnig
Mieres, Spain

R.R. Yager
New Rochelle, New York, United States of America

H. Ying
Detroit, Michigan, United States of America

J. Yoneyama
Shibuya-Ku, Japan

All members of the Editorial Board have identified their affiliated institutions or organizations, along with the corresponding country or geographic region. Elsevier remains neutral with regard to any jurisdictional claims.
Expertise-based ranking of experts: An assessment level approach
Evry Herawati, Udishubakti Ciptomulyono, Joniaro Parung, Suparno
Pages 44-56

Social choice

The problem of collective identity in a fuzzy environment
José Carlos R. Alcantud, Rocío de Andrés Calle
Pages 57-75

Choice functions

Rational fuzzy and sequential fuzzy choice
José Carlos R. Alcantud, Susana Díaz
Pages 76-98

Interaction indices

A note on the Sobol' indices and interactive criteria
Michel Grabisch, Christophe Labreuche
Pages 99-108

Correspondence

Ranking methods for fuzzy numbers: The solution to Brunelli and Mezei's conjecture
Jae Duck Kim, Eunho L. Moon, Eunjin Jeong, Dug Hun Hong
Pages 109-113
Fuzzy Sets and Systems

COUNTRY
Netherlands

SUBJECT AREA AND CATEGORY
Computer Science
Artificial Intelligence
Mathematics
Logic

PUBLISHER
Elsevier

H-INDEX
169

SCOPE
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well-organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics, fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.

Join the conversation about this journal
Metrics based on Scopus® data as of April 2021

Lladan 2 years ago
How long does it take to accept each article?

reply

Melanie Ortiz 2 years ago

Dear Lladan,
thank you for contacting us.
Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage or contact the journal's editorial staff, so they could inform you more deeply.
Best Regards, Scimago Team

Leave a comment
Name
Email
(Will not be published)

Submit

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.
Source details

Fuzzy Sets and Systems
Scopus coverage years: from 1978 to Present
Publisher: Elsevier
ISSN: 0165-0114
Jurisdiction: Computer Science: Artificial Intelligence
Source type: Journal

CiteScore 2020
7.0
SJR 2020
0.902
SNIP 2020
2.072

CiteScore rank & trend
Scopus content coverage

Improved CiteScore methodology
CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more

CiteScore 2020
7.0 = 5,360 Citations 2017 - 2020
771 Documents 2017 - 2020
Calculated on 05 May, 2021

CiteScore rank 2020

<table>
<thead>
<tr>
<th>Category</th>
<th>Rank</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics: Logic</td>
<td>#2/33</td>
<td>95th</td>
</tr>
<tr>
<td>Computer Science: Artificial Intelligence</td>
<td>#50/227</td>
<td>78th</td>
</tr>
</tbody>
</table>

View CiteScore methodology ▶ CiteScore FAQ ▶ Add CiteScore to your site ▶