MULTIDISCIPLINARY DESIGN OPTIMIZATION PADA PERANCANGAN SISTEM PERPIAPAAN (PIPELINE DESIGN)

Yuwono B Pratiknyo

Program Studi Teknik Manufaktur
Universitas Surabaya
Gedung TG Lantai V, Kampus UBAYA, Jl.Raya Kalirungan, Surabaya
Phone: +62-031-2981397, FAX: +62-031-2981150, E-mail: yuwonobudi@ubaya.ac.id

Abstrack

Sistem perpipaan memiliki fungsi utama mengalirkan fluida dan gas dari suatu tempat ke suatu atau beberapa tempat lain. Dalam perancangan sistem perpipaan (Pipeline Design) ada beberapa aspek yang harus diperhatikan antara lain adalah parameter design, wall thickness, buckling, route selection, material selection, spanning, fatigue, dan thermal expansion. Aspek-aspek tersebut perlu diperhatikan untuk menjamin sistem perpipaan berfungsi baik dengan faktor keamanan yang harus tetap diperhatikan. Pada perancangan sistem perpipaan, seringkali nilai ekonomi juga perlu mendapat perhatian, sehingga perlu dilakukan proses optimasi dalam perancangannya.


Hasil akhir dari paper ini adalah suatu metode dan pendana dalam melakukan proses optimasi sistem perpipaan, sehingga detailnya akan lebih mudah dalam pemilihan schedule pipe dan proses perancangan dapat dilakukan dengan lebih cepat.

Keywords: MDO, piping, design, optimization, wall thickness

1. Introduction

Sistem perpipaan (piping system) sudah kira-kira sejak ribuan tahun yang lalu, sistem perpipaan pada awalnya digunakan untuk mengalirkan air minum dan kemudian dalam perkembangannya sistem perpipaan digunakan untuk mengalirkan gas alam. Dengan perkembangan teknologi bahan pipa, maka sistem perpipaan mengalami perkembangan yang pesat dan digunakan dalam hampir semua bidang industri.

Pada sistem perpipaan modern ada beberapa aspek utama yang harus dipenuhi antara lain adalah routing, design loads, fluid flow analysis, wall thickness calculation, stress analysis, flexibility analysis, support systems, and material selection. Semua aspek tersebut harus memenuhi reguasi yang tertuang dalam code dan standard baik Misalnya Code atau Stards B31.1 untuk power piping, B31.2 untuk process piping, B31.3 untuk process piping dan lain sebagainya. Beberapa code atau standard yang lain misalnya ANSI/ASME code, DNV code, BS code, API (American Petroleum Institute) dan NACE.

Aspek-aspek tersebut perlu diperhatikan untuk menjamin sistem perpipaan berfungsi dengan baik dengan faktor keamanan yang harus tetap diperhatikan dan dilakukan proses optimasi dalam perancangannya. Proses optimasi pada sistem perpipaan sangat kompleks, karena banyaknya parameter yang harus tetap dipenuhi. Parameter-parameter yang harus dipenuhi sendiri seringkali berkolaborasi dalam satu strategi, sehingga diperlukan suatu strategi dalam proses optimasi dengan menggunakan metod Multidisciplinary Design Optimization (MDO).

Multidisciplinary design optimization (MDO) adalah suatu metode yang dapat membantu engineering designer dalam proses optimasi. Dengan menggunakan MDO proses pengambilan keputusan dapat dilakukan dengan cepat, meskipun proses optimasi dilakukan dengan memperhatikan banyak skala parameter dan aspek desain. Multidisciplinary design optimization strategis memerlukan suatu formulasi atau fungsi dari suatu problem, yaitu, objective function, constraint equations (equality constraint, inequality constraint), dan batasan variable yang harus didefinisikan dalam bentuk persamaan matematis.