## QUT ielab at CLEF 2017 e-Health IR Task: Knowledge Base Retrieval for Consumer Health Search

Jimmy<sup>1,3</sup>, Guido Zuccon<sup>1</sup>, Bevan Koopman<sup>2</sup>

<sup>1</sup> Queensland University of Technology, Brisbane, Australia
<sup>2</sup> Australian E-Health Research Centre, CSIRO, Brisbane, Australia
<sup>3</sup> University of Surabaya (UBAYA), Surabaya, Indonesia
jimmy@hdr.qut.edu.au, g.zuccon@qut.edu.au
bevan.koopman@csiro.au

Abstract. In this paper we describe our participation to the CLEF 2017 e-Health IR Task [6]. This track aims to evaluate and advance search technologies aimed at supporting consumers to find health advice online. Our solution addressed this challenge by developing a knowledge base (KB) query expansion method. We found that the two best KB query expansion methods are mapping entity mentions to KB entities by performing exact matching entity mentions to the KB aliases (EM-Aliases) and multi-matching entity mentions to all KB features (Title, Categories, Links, Aliases, and Body) (EM-All). After mapping between entity mentions to KB entities established, we found the Title of the mapped KB entities as the best source of expansion terms compared to the aliases or combination of both features. Finally, we also found that Relevance Feedback and Pseudo Relevance Feedback are effective to further improve the query effectiveness.

## 1 Introduction

A major challenge for users in consumer health search (CHS) is how to effectively represent complex and ambiguous information needs as a query [11, 9, 10, 13]. In this work we seek to overcome this problem by reformulating the consumer's health query with more effective terms (e.g., less ambiguous, synonyms, etc.). Previous work has shown that manually replacing query terms with those from medical terminologies (e.g., UMLS) proved to be effective [7] – but can it be done automatically?

This work addressed the adhoc search task defined in the CLEF eHealth 2017 [4], Task 3: Patient-Centred Information Retrieval, sub task IRTask1 [6]. In 2017, this task will use the same set of queries as in CLEF eHealth Task in 2016. However, only results that were un-judged in 2016 will be considered.

## 2 Knowledge Base Query Expansion

In the general search domain, there have been a number of automated query reformulation approaches that link queries to entities in a knowledge base (KB)

such as Wikipedia and Freebase and then used related entities for query expansion. Bendersky et al. [1] approach involved linking the query to concepts in Wikipedia. Concepts from the query, denoted as  $\kappa_Q$ , were weighted; the same was done for concepts in each of the documents in the corpus, denoted as  $\kappa_D$ . The relevance score sc(Q, D) between query Q and document D was calculated as relatedness measure between  $\kappa_Q$  and  $\kappa_D$  [1].

Later, the Entity Query Feature Expansion model [2] extended this previous work by automatically expanding queries by linking them to Wikipedia. Instead of just using entities from the Wikipedia (as done by Bendersky et al. [1]), the Entity Query Feature Expansion model labelled words in the user query and in each document with a set of entity mentions  $M_Q$  and  $M_d$  [2]. Each entity mention was related to KB entities  $e \epsilon E$ , with different relationship types. The queries were expanded by including entity aliases, categories, words, and types from Wikipedia articles. The expanded query was then matched against documents in the corpus using the query likelihood model with Dirichlet smoothing.

We posit that this Entity Query Feature Expansion model would have merit in CHS. It provides a means of mapping health queries to health entities in a health related subset of a general KB (Wikipedia). The initial query can then be expanded based on related entities. Our decision to use a general KB differs from other approaches in health search which typically expand the query using specialised medical KB (e.g., MeSH, UMLS) [3,8]. Our rationale for this was the observation that consumers tend to submit queries using general terms and that these are covered by Wikipedia entities. However, Wikipedia also covers many of the medical entities found in specialised medical KBs. More importantly, there are links between the general and specialised entities in Wikipedia — links that can be exploited for query expansion. Nevertheless, we adopt the Entity Query Feature Expansion model for our empirical evaluation, determining if such a KB retrieval approach is effective for CHS. Note however that while Wikipedia content is manually curated by an active, large community, editors may not include medical experts or clinical terminologists. Thus, there may be errors in some of the information included for medical entities in Wikipedia, also, information in Wikipedia may be incomplete.

## 3 Our KB Query Expansion Model for CLEF 2017

We use the Entity Query Feature Expansion model for retrieval and the Wikipedia as the KB. A single Wikipedia page represents a single entity (the page title identifies the entity). Beyond titles, Wikipedia also contains many page features useful in a retrieval scenario. Figure 1 shows those we used to map the queries to entities in the KB and as the source of expansion terms: entity title (E), categories (C), links (L), aliases (A), and body (B).

We formally define the query expansion model as:

$$\hat{\vartheta}_q = \sum_M \sum_f \lambda_f \vartheta_{f(EM,SE)} \tag{1}$$

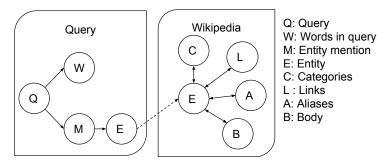



Fig. 1. Summary of expansion sources.

where M are the entity mentions and contain uni-, bi-, and tri-gram generated from the query; f is a function used to extract the expansion terms.  $\lambda_f \epsilon(0, 1)$ is a weighting factor.  $\vartheta_{f(EM,SE)}$  is a function to map entity mention M to the Wikipedia features EM (i.e., "Title", "Aliases", "Links", "Body", "Categories", "All") and extract expansion terms from source of expansion SE (i.e., "Title", "Aliases", "Title and Aliases").

#### 3.1 Relevance Feedback and Pseudo Relevance Feedback

On top of the KB query expansion, we also perform relevance feedback (RF) and Pseudo Relevance Feedback (PRF). We performed RF by extracting the ten most important health related words (based on tf.idf) from the top three relevant documents (i.e. relevance score greater than 0 in the CLEF 2016 qrel). A word is considered as health related if it exactly matches a title or an alias of a Wikipedia health page. We consider a Wikipedia page as being health related if it contains an infobox of health type or links to medical vocabulary resources, e.g MeSH.

#### 3.2 Runs

We submitted 7 runs as described in Table 1. Runs included a baseline which consists in submitting the original, not expanded queries to a system implementing BM25F. To produce this submission, we indexed the Clueweb12b-13 collection using Elasticsearch 5.1.1, with stopping and stemming. For BM25F, we set b = 0.75 and k1 = 1.2. BM25F allows to specify boosting factors for matches occurring in different fields of the indexed web page. We consider only the title field and the body field, with boost factors 1 and 3, respectively. These were found to be the optimal weights for BM25F for this test collection in previous work [5]. This is a strong baseline as it outperforms all runs submitted to CLEF 2016 (excluding the organisers' relevance feedback baselines) [12].

For constructing the KB, we considered candidate pages from the English subset of Wikipedia (dump 1/12/2016), limited to current revisions only and

| 1 Baseline with Relevance Fee | dback |
|-------------------------------|-------|
|-------------------------------|-------|

- 2 EM-Aliases
- 3 EM-Aliases with Relevance Feedback
- 4 EM-Aliases with Pseudo Relevance Feedback
- 5 EM-All

7

- 6 EM-All with Relevance Feedback
  - EM-All with Pseudo Relevance Feedback **Table 1.** Runs description

| Run              | nDCG@10           | 1               |                   | RBP res. |
|------------------|-------------------|-----------------|-------------------|----------|
| 1. baselineRf    | $0.2117^{24567}$  |                 | $0.3477^{24567}$  |          |
| 2. EM-Aliases    | $0.2357^{134567}$ | $0.1835^{1346}$ | $0.3175^{134567}$ | 0.1060   |
| 3. EM-AliasesRf  |                   | $0.2021^{25}$   | $0.3397^{4567}$   | 0.1816   |
| 4. EM-AliasesPrf | $0.1799^{1237}$   | $0.2015^{257}$  | $0.2680^{12357}$  | 0.3172   |
|                  | $0.1720^{123}$    |                 | $0.2269^{12346}$  | 0.4014   |
|                  | $0.1822^{1237}$   | $0.1954^{25}$   | $0.2771^{12357}$  | 0.3878   |
| 7. EM-AllPrf     | $0.1597^{12346}$  | $0.1887^{4}$    | $0.2264^{12346}$  | 0.4668   |

**Table 2.** Performance of the runs submitted to CLEF 2017 - evaluated using CLEF 2016 relevance assessments. Superscripts refer to statistical significance between the result and the method associated with the superscript.

without talk or user pages. Of the 17 million entries, we filtered out pages that were redirects; this resulted in a Wikipedia corpus of 9,195,439 pages.

These candidate pages were then filtered by retaining only pages that contain health infobox type and links to medical terminologies as Mesh, UMLS, SNOMED CT, ICD. This choice is proven to be more effective that retaining all Wikipedia pages. The retained pages were then indexed using Elasticsearch 5.1.1 with field based indexing (fields: title, links, categories, types, aliases, and body), to support the use of different fields as the source of query expansion terms.

Once the Knowledge Base was constructed, we extended the initial query by firstly extract mentions all uni-, bi-, and tri-grams of the queries). Next, we mapped the extracted mentions to KB's entities by exact matching the query mentions to terms in KB's aliases field (EM-Aliases) and to all KB's fields (EM-All). Finally, we extended the initial query with the title of the mapped entities.

We further extended the queries from EM-Aliases and EM-All by performing Relevance Feedback (RF) and Pseudo Relevance Feedback (PRF). Our RF used the top ten health related words from the top three relevant results. Health related words are words that match title of a Wikipedia health pages (i.e., title of a page in KB). Relevant results are documents that are judged relevant following CLEF2016 qrels. In this work, PRF used the top ten health words from the top three results (regardless of whether it was judged or not).

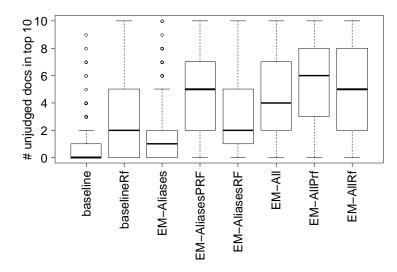



Fig. 2. Distribution of unjudged documents in top ten search results.

#### 4 Results

Runs produced with the methods outlined above were stripped of any documents assessed in CLEF 2016, as per instructions for the CLEF 2017 submissions [6]. Before the removal of these documents, we did evaluate the results with respect to NDCG@10, BPref and RBP@10. Note that BPref results are based on the top 1,500 results for each query (this is because of the need to retrieved more documents than the 1,000 documents threshold so that when removing documents assessed in CLEF 2016, we still could retain 1,000 documents). Results according to the CLEF 2016 relevance assessments are reported in Table 2.

We further analysed the runs with respect to the number of un-judged documents retrieved (using the CLEF 2016 relevance assessments). Figure 2 shows that our expansion retrieved many un-judged documents in the top 10 search results. This observation, along with the large RBP residuals reported in Table 2, suggest that the evaluation of our runs may be affected by the large number of un-judged documents. The new assessments in CLEF 2017 may provide a fairer estimate of the effectiveness of the considered KB query expansion approaches.

## 5 Future Work and Conclusion

Future work will seek to further improve the effectiveness of the expanded queries by exploring post-processing the results, for example by promoting documents that are more likely to be health related.

In conclusion, using CLEF 2016 dataset, we found that Entity Query Feature Expansion Model [2] can effectively improved the query effectiveness. The expanded queries can then be further improved by performing Relevance Feedback and Pseudo Relevance Feedback.

Acknowledgment: Jimmy conducted this research as part of his doctoral study which is sponsored by Indonesia Endowment Fund for Education (Lembaga Pengelola Dana Pendidikan / LPDP).

### References

- Bendersky, M., Metzler, D., Croft, W.: Effective query formulation with multiple information sources. In: WSDM'12. pp. 443–452 (2012)
- Dalton, J., Dietz, L., Allan, J.: Entity Query Feature Expansion Using Knowledge Base Links. In: SIGIR'14. pp. 365–374 (2014)
- Díaz-Galiano, M., Martín-Valdivia, M., Ureña-López, L.: Query expansion with a medical ontology to improve a multimodal information retrieval system. Journal of Computers in Biology and Medicine 39(4), 396–403 (2009)
- Goeuriot, L., Kelly, L., Suominen, H., Névéol, A., Robert, A., Kanoulas, E., Spijker, R., Palotti, J., Zuccon, G.: CLEF 2017 eHealth Evaluation Lab Overview. In: CLEF 2017 - 8th Conference and Labs of the Evaluation Forum. Lecture Notes in Computer Science (LNCS), Springer (2017)
- Jimmy, Zuccon, G., Koopman, B.: Boosting Titles Does Not Generally Improve Retrieval Effectiveness. In: ADCS'16. pp. 25–32 (2016)
- Palotti, J., Zuccon, G., Jimmy, Pecina, P., Lupu, M., Goeuriot, L., Kelly, L., Hanbury, A.: CLEF 2017 Task Overview: The IR Task at the eHealth Evaluation Lab. In: Working Notes of Conference and Labs of the Evaluation (CLEF) Forum. CEUR Workshop Proceedings (2017)
- 7. Plovnick, R., Zeng, Q.: Reformulation of consumer health queries with professional terminology: a pilot study. JMIR 6(3) (2004)
- 8. Silva, R., Lopes, C.: The effectiveness of query expansion when searching for health related content: Infolab at clef ehealth 2016. In: CLEF'16 (2016)
- 9. Toms, E., Latter, C.: How consumers search for health information. Health Informatics Journal 13(3), 223–235 (2007)
- Zeng, Q., Kogan, S., Ash, N., Greenes, R., Boxwala, A.: Characteristics of consumer terminology for health information retrieval. Journal of Methods of Information in Medicine 41(4), 289–298 (2002)
- 11. Zhang, Y.: Searching for specific health-related information in MedlinePlus: Behavioral patterns and user experience. JAIST 65(1), 53–68 (2014)
- Zuccon, G., Palotti, J., Goeuriot, L., Kelly, L., Lupu, M., Pecina, P., Mueller, H., Budaher, J., Deacon, A.: The IR Task at the CLEF eHealth evaluation lab 2016: user-centred health information retrieval. In: CLEF'16 (2016)
- Zuccon, G., Koopman, B., Palotti, J.: Diagnose this if you can: On the effectiveness of search engines in finding medical self-diagnosis information. In: Advances in Information Retrieval, pp. 562–567. Springer (2015)

CEUR Workshop Proceedings

Vol-1866 urn:nbn:de:0074-1866-8

hted by its editors

lished and c

CLEF 2017 CLEF 2017 Working Notes

Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum

Copyright © 2017 1

Dublin, Ireland, September 11-14, 2017.

Edited by

Linda Cappellato \* Nicola Ferro \* Lorraine Goeuriot \*\* Thomas Mandi \*\*\*

| * Department of Information Engineering (DI | El), University of Padua, Via Gradenigo 6/B, 35131, Padova, Italy |
|---------------------------------------------|-------------------------------------------------------------------|
| Department of mormation Engineering (Di     | 1), Oniversity of Fadua, via Gradenigo 6/6, 55151, Fadova, italy  |
| ** Université Grenoble Alpes, France        |                                                                   |
| *** University of Hildesheim, Germany       |                                                                   |

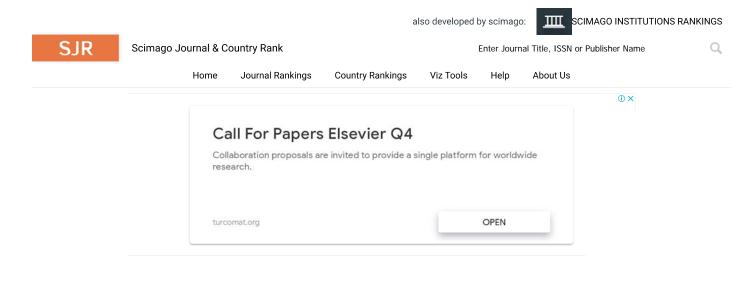
## **Table of Contents**

#### Preface

Linda Cappellato, Nicola Ferro, Lorraine Goeuriot, Thomas Mandl

#### **CLEF NewsREEL**

- CLEF 2017 NewsREEL Overview: Offline and Online Evaluation of Stream-based News Recommender Systems Benjamin Kille, Andreas Lommatzsch, Frank Hopfgartner, Martha Larson, Torben Brodt
- A System for Online News Recommendations in Real-Time with Apache Mahout Paul David Beck, Manuel Blaser, Adrian Michalke, Andreas Lommatzsch
- A News Recommender Engine with a Killer Sequence Pieter Bons, Nick Evans, Peter Kampstra, Timo van Kessel
- News Recommender System based on Association Rules @ CLEF NewsREEL 2017 Christián Golian, Jaroslav Kuchař
- Deep Neural Architecture for News Recommendation
   Vaibhav Kumar, Dhruv Khattar, Shashank Gupta, Manish Gupta, Vasudeva Varma
- CLEF NewsREEL 2017: Contextual Bandit News Recommendation Yu Liang, Babak Loni, Martha Larson
- Recommending News Articles in the CLEF News Recommendation Evaluation Lab with the Data Stream Management System Odysseus Cornelius A. Ludmann


#### LifeCLEF

- LifeCLEF Bird Identification Task 2017 Hervé Goëau, Hervé Glotin, Willem-Pier Vellinga, Bob Planque, Alexis Joly
   Plant Identification Report on Native Web Date the America Deformance of Deep Learning (J.
- Plant Identification Based on Noisy Web Data: the Amazing Performance of Deep Learning (LifeCLEF 2017) Hervé Goëau, Pierre Bonnet, Alexis Joly
- Plant Identification with Large Number of Classes: SabanciU-GebzeTU System in PlantCLEF 2017 Sara Atito, Berrin Yanikoglu, Erchan Aptoula
- A Multi-modal Deep Neural Network approach to Bird-song Identication Botond Fazekas, Alexander Schindler, Thomas Lidy
- Recognizing Bird Species in Audio Files Using Transfer Learning Andreas Fritzler, Sven Koitka, Christoph M. Friedrich
- Residual Network with Delayed Max Pooling for Very Large Scale Plant Identification Siang Thye Hang, Masaki Aono
- Automatic Whale Matching System using Feature Descriptor S.M. Jaisakthi, P. Mirunalini, Rutuia Jadhav
- Large-Scale Bird Sound Classification using Convolutional Neural Networks Stefan Kahl, Thomas Wilhelm-Stein, Hussein Hussein, Holger Klinck, Danny Kowerko, Marc Ritter, Maximilian Eibl
- Image-based Plant Species Identification with Deep Convolutional Neural Networks
- Mario Lasseck
- LifeClef 2017 Plant Identification Challenge: Classifying Plants using Generic-Organ Correlation Features Sue Han Lee, Yang Loong Chang, Chee Seng Chan
- Improving Model Performance for Plant Image Classification With Filtered Noisy Images
- Andreas R. Ludwig, Helga Piorek, Andreas H. Kelch, David Rex, Sven Koitka, Christoph M. Friedrich
- Image Matching for Individual Recognition with SIFT, RANSAC and MCL Dávid Papp, Ferenc Mogyorósi, Gábor Szücs
- Audio Bird Classification with Inception-v4 extended with Time and Time-Frequency Attention Mechanisms Antoine Sevilla, Hervé Glotin
- UPB HES SO @ PlantCLEF 2017: Automatic Plant Image Identification using Transfer Learning via Convolutional Neural Networks Alexandru Toma, Liviu Daniel Stefan, Bogdan Ionescu
- Marine Animal Detection and Recognition with Advanced Deep Learning Models Peiqin Zhuang, Linjie Xing, Yanlin Liu, Sheng Guo, Yu Qiao
- Learning with Noisy and Trusted Labels for Fine-Grained Plant Recognition Milan Sulc, Jiří Matas

|     | Lab on Digital Text Forensics                                                                                                                                                                                                |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Overview of the Author Obfuscation Task at PAN 2017: Safety Evaluation Revisited<br>Matthias Hagen, Martin Potthast, Benno Stein                                                                                             |     |
|     | Overview of the 5th Author Profiling Task at PAN 2017: Gender and Language Variety Identification in Twitter<br>Francisco Manuel Rangel Pardo, Paolo Rosso, Martin Potthast, Benno Stein                                     |     |
|     | Overview of the Author Identification Task at PAN-2017: Style Breach Detection and Author Clustering<br>Michael Tschuggnall, Efstathios Stamatatos, Ben Verhoeven, Walter Daelemans, Günther Specht, Benno Stein, Martin Pot | tha |
| *   | Author Profiling, instance-based Similarity Classification<br>Yaritza Adame-Arcia, Daniel Castro-Castro, Reynier Ortega Bueno, Rafael Muñoz                                                                                  |     |
|     | Twitter Author Profiling Using Word Embeddings and Logistic Regression<br>Liliya Akhtyamova, John Cardiff, Andrey Ignatov                                                                                                    |     |
|     | Author clustering with the Aid of a Simple Distance Measure<br>Houda Alberts                                                                                                                                                 |     |
|     | Arabic Tweeps Gender and Dialect Prediction<br>Khaled Alrifai, Ghaida Rebdawi, Nada Ghneim                                                                                                                                   |     |
|     | Author Masking using Sequence-to-Sequence Models<br>Oleg Bakhteev, Andrey Khazov                                                                                                                                             |     |
|     | N-GrAM: New Groningen Author-profiling Model<br>Angelo Basile, Gareth Dwyer, Maria Medvedeva, <mark>J</mark> osine Rawee, Hessel Haagsma, Malvina Nissim                                                                     |     |
|     | Discovering Author Groups using a B-compact graph-based Clustering<br>Yasmany García-Mondeja, Daniel Castro-Castro, Vania Lavielle-Castro, Rafael Muñoz                                                                      |     |
|     | Author Masking by Sentence Transformation<br>Daniel Castro-Castro, Reynier Ortega Bueno, Rafael Muñoz                                                                                                                        |     |
| ÷,  | Including Dialects and Language Varieties in Author Profiling<br>Alina Maria Ciobanu, Marcos Zampieri, Shervin Malmasi, Liviu P. Dinu                                                                                        |     |
| -   | Subword-based Deep Averaging Networks for Author Profiling in Social Media<br>Marc Franco-Salvador, Nataliia Plotnikova, Neha Pawar, Yassine Benajiba                                                                        |     |
| -   | Author Clustering using Hierarchical Clustering Analysis<br>Helena Gómez-Adorno, Yuridiana Alemán, Darnes Vilariño Ayala, Miguel A. Sanchez-Perez, David Pinto, Grigori Sidorov                                              |     |
| ÷,  | Author Clustering based on Compression-based Dissimilarity Scores<br>Oren Halvani, Lukas Graner                                                                                                                              |     |
|     | OPI-JSA at CLEF 2017: Author Clustering and Style Breach Detection<br>Daniel Karaś, Martyna Śpiewak, Piotr Sobecki                                                                                                           |     |
| *   | Author Profile Prediction Using Trend and Word Frequency Based Analysis in Text<br>Jamal Ahmad Khan                                                                                                                          |     |
|     | Style Breach Detection: An Unsupervised Detection Model<br>Jamal Ahmad Khan                                                                                                                                                  |     |
|     | INSA LYON and UNI PASSAU's Participation at PAN@CLEF'17: Author Profiling task<br>Guillaume Kheng, Léa Laporte, Michael Granitzer                                                                                            |     |
|     | UniNE at CLEF 2017: Author Clustering<br>Mirco Kocher, Jacques Savoy                                                                                                                                                         |     |
| =   | UniNE at CLEF 2017: Author Profiling Reasoning<br>Mirco Kocher, Jacques Savoy                                                                                                                                                |     |
|     | Author Profiling with Bidirectional RNNs using Attention with GRUs<br>Don Kodiyan, Florin Hardegger, Stephan Neuhaus, Mark Cieliebak                                                                                         |     |
|     | Social-Media Users can be profiled by their Similarity with other Users<br>Adrián Pastor Lopez-Monroy, Manuel Montes-y-Gómez, Hugo Jair Escalante, Luis Villaseñor-Pineda, Thamar Solorio                                    |     |
|     | Language- and Subtask-Dependent Feature Selection and Classifier Parameter Tuning for Author Profiling<br>Ilia Markov, Helena Gómez-Adorno, Grigori Sidorov                                                                  |     |
| ŧŝ, | PAN 2017: Author Profiling - Gender and Language Variety Prediction<br>Matej Martinc, Iza Škrjanec, Katja Zupan, Senja Pollak                                                                                                |     |
|     | Author Profiling with Word+Character Neural Attention Network<br>Yasuhide Miura, Tomoki Taniguchi, Motoki Taniguchi, Tomoko Ohkuma                                                                                           |     |
|     | Language Variety and Gender Classification for Author Profiling in PAN 2017<br>Alexander Ogaltsov, Alexey Romanov                                                                                                            |     |
| e i | Using Character n-grams and Style Features for Gender and Language Variety Classification<br>Rodrigo Ribeiro Oliveira, Rosalvo Ferreira Oliveira Neto                                                                        |     |

|    | <ul> <li>Using TF-IDF n-gram and Word Embedding Cluster Ensembles for Author Profiling<br/>Adam Poulston, Zeerak Waseem, Mark Stevenson</li> </ul>                                                                                    |                                                                                      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|    | <ul> <li>Style Breach Detection with Neural Sentence Embeddings<br/>Kamil Safin, Rita Kuznetsova</li> </ul>                                                                                                                           |                                                                                      |
| ł  | <ul> <li>UniNE at CLEF 2017: TF-IDF and Deep-Learning for Author Profiling<br/>NIIs Schaetti</li> </ul>                                                                                                                               |                                                                                      |
| ł  | Convolutional Neural Networks for Author Profiling in PAN 2017                                                                                                                                                                        |                                                                                      |
| ÷  | Sebastian Sierra, Manuel Montes-Y-Gómez, Thamar Solorio, Fabio A. González<br>Gender and language-variety Identification with MicroTC<br>Gender Charles Charles (MicroTC)                                                             |                                                                                      |
| LE | Eric S. Tellez, Sabino Miranda-Jiménez, Mario Graff, Daniela Moctezuma<br>EF eHealth Evaluation Lab                                                                                                                                   |                                                                                      |
|    | CLEF eHeath 2017 Multilingual Information Extraction task Overview: ICD10 Coding of Death Certificates in English and F                                                                                                               | rench                                                                                |
|    | Aurélie Névéol, Aude Robert, Robert Anderson, Kevin Bretonnel Cohen, Cyril Grouin, Thomas Lavergne, Grégoire Re<br>CLEF 2017 Technologically Assisted Reviews in Empirical Medicine Overview                                          |                                                                                      |
|    | Evangelos Kanoulas, Dan LI, Leif Azzopardi, Rene Spijker<br>• CLEF 2017 Task Overview: The IR Task at the eHeath Evaluation Lab - Evaluating Retrieval Methods for Consumer Heatt                                                     | 1 O                                                                                  |
|    | Joao Palotti, Guido Zuccon, Jimmy, Pavel Pecina, Mihai Lupu, Lorraine Goeuriot, Liadh Kelly, Allan Hanbury                                                                                                                            | il Search                                                                            |
|    | <ul> <li>NoNLP: Annotating Medical Domain by using Semantic Technologies<br/>Ghislain Auguste Atemezing</li> </ul>                                                                                                                    |                                                                                      |
| *  | SIBM at CLEF eHealth Evaluation Lab 2017: Multilingual Information Extraction with CIM-IND<br>Chloé Cabot, Lina F. Soualmia, Stéfan J. Darmoni                                                                                        |                                                                                      |
|    | A Lexicon Based Approach to Classification of ICD10 Codes. IMS Unipd at CLEF eHealth Task 1<br>Giorgio Maria Di Nunzio, Federica Beghini, Federica Vezzani, Geneviève Henrot                                                          |                                                                                      |
| ŝ  | <ul> <li>Fusion Methods for ICD10 Code Classification of Death Certificates in Multilingual Corpora<br/>Mike Ebersbach, Robert Herms, Maximilian Eibl</li> </ul>                                                                      |                                                                                      |
| ł  | LITL at CLEF eHealth2017: Automatic Classification of Death Reports<br>Lydia-Mai Ho-Dac, Cécile Fabre, Anouk Birski, Imane Boudraa, Aline Bourriot, Manon Cassier, Léa Delvenne, Charlin                                              | no Corris Convolor, Euro Roo Kong, Elico Dispinini, Comillo Robrischer, Auro Sánujar |
| ÷  | Automatic Coding of Death Certificates to ICD-10 Terminology                                                                                                                                                                          | to Garcia-Guizzalez, Europee Rang, Ensa Precimin, Garnine Rombacher, Aura Geguler    |
| ,  | Jitendra Jonnagaddala, Feiyan Hu<br># KFU at CLEF eHealth 2017 Task 1: ICD-10 Coding of English Death Certificates with Recurrent Neural Networks                                                                                     |                                                                                      |
|    | Zulfat Miftahutdinov, Elena Tutubalina<br>* Multi-lingual ICD-10 Coding using a Hybrid rule-based and Supervised Classification Approach at CLEF eHealth 2017                                                                         |                                                                                      |
|    | Jurica Ševa, Madeleine Kittner, Roland Roller, Ulf Leser<br>« ICD10 Coding of Death Certificates with the NCBO and SIFR Annotator(s) at CLEF eHealth 2017 Task 1                                                                      |                                                                                      |
|    | Andon Tchechmedjiev, Amine Abdaoui, Vincent Emonet, Clement Jonquet                                                                                                                                                                   |                                                                                      |
|    | <ul> <li>Multiple Methods for Multi-class, Multi-label ICD-10 Coding of Multi-granularity, Multilingual Death Certificates<br/>Pierre Zweigenbaum, Thomas Lavergne</li> </ul>                                                         |                                                                                      |
| 2  | Ranking Abstracts to Identify Relevant Evidence for Systematic Reviews: The University of Sheffield's Approach to CLE<br>Amal Alharbi, Mark Stevenson                                                                                 | F eHealth 2017 Task 2                                                                |
| ł  | SiS at CLEF 2017 eHealth TAR Task<br>Leif Azzopardi, Vassil Kalphov, Georgios Georgiadis                                                                                                                                              |                                                                                      |
| ×  | ECNU at 2017 eHealth Task 2: Technologically Assisted Reviews in Empirical Medicine<br>Jiayi Chen, Su Chen, Yang Song, Hongyu Liu, Yueyao Wang, Qinmin Hu, Liang He                                                                   |                                                                                      |
|    | <ul> <li>Technology-Assisted Review in Empirical Medicine: Waterloo Participation in CLEF eHealth 2017</li> <li>Gordon V. Cormack, Meura R. Grossman</li> </ul>                                                                       |                                                                                      |
|    | An Interactive Two-Dimensional Approach to Query Aspects Rewriting in Systematic Reviews. IMS Unipd At CLEF eHea                                                                                                                      | aith Task 2                                                                          |
|    | Giorgio Maria Di Nunzio, Federica Beghini, Federica Vezzani, Geneviève Henrot<br>A Study of Convolutional Neural Networks for Clinical Document Classification in Systematic Reviews: SysReview at CL                                 | .EF eHealth 2017                                                                     |
| ļ  | Grace Eunkyung Lee                                                                                                                                                                                                                    |                                                                                      |
|    | Christopher Norman, Mariska Leeflang, Aurélie Névéol<br>OUT ielab at CLEF 2017 Technology Assisted Reviews Track: Initial Experiments with Learning To Rank                                                                           |                                                                                      |
|    | Harrisen Scells, Guido Zuccon, Anthony Deacon, Bevan Koopman                                                                                                                                                                          |                                                                                      |
|    | <ul> <li>IIIT-H at CLEF eHealth 2017 Task 2: Technologically Assisted Reviews in Empirical Medicine<br/>Jaspreet Singh, Lini Thomas</li> </ul>                                                                                        |                                                                                      |
|    | <ul> <li>Identifying Diagnostic Test Accuracy Publications using a Deep Model<br/>Gaurav Singh, Iain Marshall, James Thomas, Byron Wallace</li> </ul>                                                                                 |                                                                                      |
|    |                                                                                                                                                                                                                                       |                                                                                      |
|    | Predicting Publication Inclusion for Diagnostic Accuracy Test Reviews Using Random Forests a<br>Allard van Altena, Sílvia Delgado Olabarriaga                                                                                         | nd Topic Modelling                                                                   |
|    | <ul> <li>Data Balancing for Technologically Assisted Reviews: Undersampling or Reweighting<br/>The Yu, Tim Menzies</li> </ul>                                                                                                         |                                                                                      |
|    | <ul> <li>Zhe Yu, Tim Menzies</li> <li>Combining Inter-Review Learning-to-Rank and Intra-Review Incremental Training for Title and Al<br/>Antonios Anagnostou, Athanasios Lagopoulos, Grigorios Tsoumakas, Ioannis Vlahavas</li> </ul> | bstract Screening in Systematic Reviews                                              |
|    | <ul> <li>SINAI at CLEF eHealth 2017 Task 3<br/>Manuel Carlos Díaz-Galiano, María-Teresa Martín-Valdivia, Salud María Jiménez–Zafra, Albe</li> </ul>                                                                                   | erto Andreu, L. Alfonso Ureña-López                                                  |
|    | Ranking and Feedback-based Stopping for Recall-Centric Document Retrieval<br>Noah Hollmann, Carsten Eickhoff                                                                                                                          |                                                                                      |
|    | <ul> <li>QUT ielab at CLEF 2017 e-Health IR Task: Knowledge Base Retrieval for Consumer Health Search<br/>Jimmy, Guido Zuccon, Bevan Koopman</li> </ul>                                                                               | ch                                                                                   |
|    | <ul> <li>KISTI at CLEF eHealth 2017 Patient-Centered Information Retrieval Task-1: Improving Medical Dou<br/>Heung-Seon Oh, Yuchul Jung</li> </ul>                                                                                    | cument Retrieval with Query Expansion                                                |
|    | <ul> <li>Exploring Understandability Features to Personalize Consumer Health Search. TUW at CLEF 201<br/>Joao Palotti, Navid Rekabsaz</li> </ul>                                                                                      | 17 eHealth                                                                           |
|    | Task3 Patient-Centred Information Retrieval: Team CUNI                                                                                                                                                                                |                                                                                      |

- Shadi Saleh, Pavel Pecina
- UB-Botswana Participation to CLEF eHealth IR Challenge 2017: Task 3 (IRTask1 : Ad-hoc Search) Edwin Thuma, Nkwebi Motlogelwa, Tebo Leburu-Dingalo
  UEvora at CLEF eHealth 2017 Task 3 Hua Yang, Teresa Gonçalves



# **CEUR Workshop Proceedings**

| COUNTRY                                                                                                              | SUBJECT AREA AI<br>CATEGORY    | ND PUBLISHER                        | H-INDEX     |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|-------------|
| United States                                                                                                        | Computer Scie<br>Computer Scie | Science                             | 46          |
| institutions in United States                                                                                        | (miscellane                    | eous)                               |             |
| PUBLICATION TYPE                                                                                                     | ISSN                           | COVERAGE                            | INFORMATION |
| Conferences and Proceedings                                                                                          | 16130073                       | 1989, 1994-1995, 1998,<br>2000-2020 | Homepage    |
|                                                                                                                      | (j) ×                          |                                     |             |
| Call For Papers Elsevier Q4                                                                                          |                                |                                     |             |
| Peer Reviewed Indexed Journal<br>Collaboration proposals are invited to provisingle platform for worldwide research. |                                |                                     |             |
| turcomat.org                                                                                                         |                                |                                     |             |
| OPEN                                                                                                                 |                                |                                     |             |
|                                                                                                                      |                                |                                     |             |
| SCOPE                                                                                                                |                                |                                     |             |

Information not localized

 $igodoldsymbol{Q}$  Join the conversation about this journal