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Abstract. In this paper we describe our participation to the CLEF
2017 e-Health IR Task [6]. This track aims to evaluate and advance
search technologies aimed at supporting consumers to find health advice
online. Our solution addressed this challenge by developing a knowledge
base (KB) query expansion method. We found that the two best KB
query expansion methods are mapping entity mentions to KB entities
by performing exact matching entity mentions to the KB aliases (EM-
Aliases) and multi-matching entity mentions to all KB features (Title,
Categories, Links, Aliases, and Body) (EM-AIl). After mapping between
entity mentions to KB entities established, we found the Title of the
mapped KB entities as the best source of expansion terms compared
to the aliases or combination of both features. Finally, we also found
that Relevance Feedback and Pseudo Relevance Feedback are effective
to further improve the query effectiveness.

1 Introduction

A major challenge for users in consumer health search (CHS) is how to effectively
represent complex and ambiguous information needs as a query [11,9, 10, 13]. In
this work we seek to overcome this problem by reformulating the consumer’s
health query with more effective terms (e.g., less ambiguous, synonyms, etc.).
Previous work has shown that manually replacing query terms with those from
medical terminologies (e.g., UMLS) proved to be effective [7] — but can it be
done automatically?

This work addressed the adhoc search task defined in the CLEF eHealth
2017 [4], Task 3: Patient-Centred Information Retrieval, sub task IRTaskl [6].
In 2017, this task will use the same set of queries as in CLEF eHealth Task in
2016. However, only results that were un-judged in 2016 will be considered.

2 Knowledge Base Query Expansion

In the general search domain, there have been a number of automated query
reformulation approaches that link queries to entities in a knowledge base (KB)



such as Wikipedia and Freebase and then used related entities for query expan-
sion. Bendersky et al. [1] approach involved linking the query to concepts in
Wikipedia. Concepts from the query, denoted as kg, were weighted; the same
was done for concepts in each of the documents in the corpus, denoted as xp.
The relevance score sc(Q, D) between query Q and document D was calculated
as relatedness measure between kg and kp [1].

Later, the Entity Query Feature Expansion model [2] extended this previous
work by automatically expanding queries by linking them to Wikipedia. Instead
of just using entities from the Wikipedia (as done by Bendersky et al. [1]), the
Entity Query Feature Expansion model labelled words in the user query and in
each document with a set of entity mentions Mg and My [2]. Each entity mention
was related to KB entities eeF, with different relationship types. The queries
were expanded by including entity aliases, categories, words, and types from
Wikipedia articles. The expanded query was then matched against documents
in the corpus using the query likelihood model with Dirichlet smoothing.

We posit that this Entity Query Feature Expansion model would have merit
in CHS. It provides a means of mapping health queries to health entities in a
health related subset of a general KB (Wikipedia). The initial query can then
be expanded based on related entities. Our decision to use a general KB differs
from other approaches in health search which typically expand the query using
specialised medical KB (e.g., MeSH, UMLS) [3,8]. Our rationale for this was
the observation that consumers tend to submit queries using general terms and
that these are covered by Wikipedia entities. However, Wikipedia also covers
many of the medical entities found in specialised medical KBs. More importantly,
there are links between the general and specialised entities in Wikipedia — links
that can be exploited for query expansion. Nevertheless, we adopt the Entity
Query Feature Expansion model for our empirical evaluation, determining if
such a KB retrieval approach is effective for CHS. Note however that while
Wikipedia content is manually curated by an active, large community, editors
may not include medical experts or clinical terminologists. Thus, there may be
errors in some of the information included for medical entities in Wikipedia, also,
information in Wikipedia may be incomplete.

3 Our KB Query Expansion Model for CLEF 2017

We use the Entity Query Feature Expansion model for retrieval and the Wikipedia
as the KB. A single Wikipedia page represents a single entity (the page title
identifies the entity). Beyond titles, Wikipedia also contains many page features
useful in a retrieval scenario. Figure 1 shows those we used to map the queries
to entities in the KB and as the source of expansion terms: entity title (E),
categories (C), links (L), aliases (A), and body (B).

We formally define the query expansion model as:

Dg =YY Ndyem.se) (1)
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Fig. 1. Summary of expansion sources.

where M are the entity mentions and contain uni-, bi-, and tri-gram generated
from the query; f is a function used to extract the expansion terms. Ase(0, 1)
is a weighting factor. ¥ g, sp) is a function to map entity mention M to the
Wikipedia features EM (i.e., “Title”, “Aliases”, “Links”, “Body”, “Categories”,
“All”) and extract expansion terms from source of expansion SFE (i.e.,“Title”,
“Aliases”, “Title and Aliases”).

3.1 Relevance Feedback and Pseudo Relevance Feedback

On top of the KB query expansion, we also perform relevance feedback (RF)
and Pseudo Relevance Feedback (PRF). We performed RF by extracting the
ten most important health related words (based on tf.idf) from the top three
relevant documents (i.e. relevance score greater than 0 in the CLEF 2016 qrel).
A word is considered as health related if it exactly matches a title or an alias of
a Wikipedia health page. We consider a Wikipedia page as being health related
if it contains an infobox of health type or links to medical vocabulary resources,
e.g MeSH.

3.2 Runs

We submitted 7 runs as described in Table 1. Runs included a baseline which
consists in submitting the original, not expanded queries to a system imple-
menting BM25F. To produce this submission, we indexed the Cluewebl12b-13
collection using Elasticsearch 5.1.1, with stopping and stemming. For BM25F,
we set b = 0.75 and k1 = 1.2. BM25F allows to specify boosting factors for
matches occurring in different fields of the indexed web page. We consider only
the title field and the body field, with boost factors 1 and 3, respectively. These
were found to be the optimal weights for BM25F for this test collection in pre-
vious work [5]. This is a strong baseline as it outperforms all runs submitted to
CLEF 2016 (excluding the organisers’ relevance feedback baselines) [12].

For constructing the KB, we considered candidate pages from the English
subset of Wikipedia (dump 1/12/2016), limited to current revisions only and



Run Id Description

Baseline with Relevance Feedback

EM-Aliases

EM-Aliases with Relevance Feedback

EM-Aliases with Pseudo Relevance Feedback

EM-AIll

EM-AIl with Relevance Feedback

EM-AIl with Pseudo Relevance Feedback
Table 1. Runs description

N Utk W

Run nDCG@10 bpref RBP@10 RBP res.
. baselineRf 0.21177%57 (0.1994%5  0.3477%1%7 0.1450
. EM-Aliases  0.2357134567 (0.18351346 (.3175134%67 (0.1060
EM-AliasesRf 0.213524%%7  0.2021%° 0.3397%557 (.1816
. EM-AliasesPrf 0.1799*27  0.2015%°7 0.2680'23°7 0.3172
. EM-All 0.1720'2%  0.1835%346 0.226912346 (.4014
. EM-AIIRf 0.1822'237  (.1954%% 0.277112357 (.3878
7. EM-AlIPrf  0.159712346  0.1887%  0.2264!23%6 0.4668
Table 2. Performance of the runs submitted to CLEF 2017 - evaluated using CLEF
2016 relevance assessments. Superscripts refer to statistical significance between the
result and the method associated with the superscript.
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without talk or user pages. Of the 17 million entries, we filtered out pages that
were redirects; this resulted in a Wikipedia corpus of 9,195,439 pages.

These candidate pages were then filtered by retaining only pages that con-
tain health infobox type and links to medical terminologies as Mesh, UMLS,
SNOMED CT, ICD. This choice is proven to be more effective that retaining
all Wikipedia pages. The retained pages were then indexed using Elasticsearch
5.1.1 with field based indexing (fields: title, links, categories, types, aliases, and
body), to support the use of different fields as the source of query expansion
terms.

Once the Knowledge Base was constructed, we extended the initial query
by firstly extract mentions all uni-, bi-, and tri-grams of the queries). Next, we
mapped the extracted mentions to KB’s entities by exact matching the query
mentions to terms in KB’s aliases field (EM-Aliases) and to all KB’s fields (EM-
All). Finally, we extended the initial query with the title of the mapped entities.

We further extended the queries from EM-Aliases and EM-AIl by performing
Relevance Feedback (RF) and Pseudo Relevance Feedback (PRF). Our RF used
the top ten health related words from the top three relevant results. Health
related words are words that match title of a Wikipedia health pages (i.e., title of
a page in KB). Relevant results are documents that are judged relevant following
CLEF2016 grels. In this work, PRF used the top ten health words from the top
three results (regardless of whether it was judged or not).



# unjudged docs in top 10

baseline

baselineRf

EM-Aliases -

EM-AliasesPRF | |-
EM-AliasesRF -
EM-AIl |
EM=AIIPrf | |-

EM-AIRf }

Fig. 2. Distribution of unjudged documents in top ten search results.

4 Results

Runs produced with the methods outlined above were stripped of any documents
assessed in CLEF 2016, as per instructions for the CLEF 2017 submissions [6].
Before the removal of these documents, we did evaluate the results with respect
to NDCG@10, BPref and RBP@10. Note that BPref results are based on the
top 1,500 results for each query (this is because of the need to retrieved more
documents than the 1,000 documents threshold so that when removing docu-
ments assessed in CLEF 2016, we still could retain 1,000 documents). Results
according to the CLEF 2016 relevance assessments are reported in Table 2.

We further analysed the runs with respect to the number of un-judged doc-
uments retrieved (using the CLEF 2016 relevance assessments). Figure 2 shows
that our expansion retrieved many un-judged documents in the top 10 search re-
sults. This observation, along with the large RBP residuals reported in Table 2,
suggest that the evaluation of our runs may be affected by the large number of
un-judged documents. The new assessments in CLEF 2017 may provide a fairer
estimate of the effectiveness of the considered KB query expansion approaches.

5 Future Work and Conclusion

Future work will seek to further improve the effectiveness of the expanded queries
by exploring post-processing the results, for example by promoting documents
that are more likely to be health related.

In conclusion, using CLEF 2016 dataset, we found that Entity Query Feature
Expansion Model [2] can effectively improved the query effectiveness. The ex-
panded queries can then be further improved by performing Relevance Feedback
and Pseudo Relevance Feedback.
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