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A B S T R A C T

Sirtuin 1 (SIRT1) is a class III family of protein histone deacetylases involved in NAD+-dependent deacetylation
reactions. It has been suggested that SIRT1 activators may have a protective role against type 2 diabetes, the
aging process, and inflammation. This study aimed to explore and identify medicinal plant compounds from
Indonesian Herbal Database (HerbalDB) that might potentially become a candidate for SIRT1 activators through
a combination of in silico and in vitro methods. Two pharmacophore models were developed using co-crystalized
ligands that allosterically bind with SIRT1 similar to the putative ligands used by SIRT1 activators. Then, these
were used for the virtual screening of HerbalDB. The identified compounds were subjected to molecular docking
and 50 ns molecular dynamics simulation. Molecular dynamics simulation was analyzed using MM-GB(PB)SA
methods. The compounds identified by these methods were tested in an in vitro study using a SIRT-Glo™ lu-
minescence assay. Virtual screening using structure-based pharmacophores predicted that mulberrin as the best
candidate SIRT1 activator. Virtual screening using ligand-based pharmacophores predicted that gartanin, qui-
nidine, and quinine to be the best candidates as SIRT1 activators. The molecular docking studies showed the
important residues involved were Ile223 and Ile227 at the allosteric region. The MM-GB(PB)SA calculations
confirmed that mulberrin, gartanin, quinidine, quinine showed activity at allosteric region and their EC50 in
vitro values are 2.10; 1.79; 1.71; 1.14 μM, respectively. Based on in silico and in vitro study results, mulberin,
gartanin, quinidine, and quinine had good activity as SIRT1 activators.

1. Introduction

Aging is a systemic process that progressively affects organs and
causes dysfunction in cellular homeostasis. It results in a decline in
organ function and intervention during physiological trauma (Kitada
et al., 2016). Diabetes mellitus is a chronic metabolic disorder that can
be caused by various factors, including cell and tissue aging, genetic
disposition, obesity, lifestyle factors, and environmental factors, which
result in the pancreas not producing adequate insulin, with a con-
sequent elevation in blood glucose concentrations. The prevalence of
diabetes increases with age. The International Diabetes Federation re-
ported that, in 2017, there were as many as 10–20 million people with
diabetes (www.diabetesatlas.org/across-the-globe.html). Thus, part of
the intention behind this study was to identify substances with the
capability to slow down the aging process.

Many of targeting signaling pathways play significant roles in

diabetes mellitus, including 5′ adenosine monophosphate-activated
protein kinase (AMPK), peroxisome proliferator-activated receptor
(PPAR) α, β, and γ, histone deacetylases (HDAC), and sirtuin 1 (SIRT1)
(Liu et al., 2010). SIRT1 regulates cell metabolism and factors that
mediate aging and SIRT1 activator have an impact on treating age-as-
sociated diabetes (Dai et al., 2018). Sirtuins are class III members of
histone deacetylase (HDAC) family and are involved nicotinamide
adenine dinucleotide (NAD+)-dependent reactions. They are divided
into seven types (SIRT1–7) according to the cellular location. Sirtuin
improves glucose homeostasis via the PGC1α complex (Rodgers et al.,
2005; Kitada and Koya, 2013), LXR, FXR, AceCS1, UCP2 (Nakagawa
and Guarente, 2011), apoptosis, aging, insulin secretion, and regulation
(Wanga and Fan Yia, 2012; Pulla et al., 2012; Huynh et al., 2013). In
the liver, sirtuin increases gluconeogenesis and reduces glycolysis; it
also protects β cells and enhances lipolysis in adipose tissues (www.
kegg.jp/kegg/pathway.html). SIRT1 is activated by sirtuin-activating
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compound (STAC), which binds to an allosteric site (Sinclair and
Guarente, 2014; Kumar and Chauhan, 2016). Resveratrol is also a sir-
tuin activator and has been shown to exert anti-aging effects. When
combined with metformin, resveratrol improves the quality of met-
formin therapy for diabetes, indicating that both metformin and re-
sveratrol are antidiabetic agents (Bruckbauer and Zemel, 2013).

This study focused in silico and in vitro on SIRT1 activators. In silico
studies allow research on therapeutic substances to be conducted at a
relatively low cost through computer modeling such as pharmacophore-
based techniques. The pharmacophore-based drug design currently in-
volves two main modeling processes: structure-based and ligand-based
pharmacophore processes (Yang, 2010). The present study used both
methods, applied to SIRT1 (Protein Data Bank [PDB] ID: 4ZZJ) (Dai
et al., 2015). Fig. 1 illustrates the crystal structure of human SIRT1
[PDB] ID: 4ZZJ, showing the allosteric region as STAC-binding domain
(SBD) (residues 183–243) [alpha helix(H)1-turn(T)-H2-T-H3]) and the
catalytic region as deacetylase domain [residues 244–512]. The 4ZZJ
receptor complex involves important residue interactions, including
residue Arg234 at polybasic linker (residues 233-238, Lys-Arg-Lys-Lys-
Arg-Lys) from N-terminal STAC-binding domain (SBD) to the catalytic
region [Asp475, His473, and Val459] (Fig. 1a). In addition, acetylated
p53 (substrate) [Arg1-His2-Lys3-Aly4-Leu5-Nle6-Phe7] (Fig. 1b) inter-
acts as hydrogen bonds of the carbonyl oxygen of Val412 with the ℇ-N
of the acetyllysine (substrate/peptide).

The aim of this study was to explore and identify the most potent
SIRT1-activating compounds from the Indonesian Medicinal Plants
Database (HerbalDB) (Yanuar et al., 2011). The pharmacophores gen-
erated from structure-based and ligand-based models were used as
templates for virtual screening to select candidate compounds from the
HerbalDB. The compound affinity was then confirmed by the molecular
docking method. The system was created using molecular dynamics
(MD) simulation to examine the constant structural change of macro-
molecules and substrates at 300 K. As a preliminary MD study, a rigid
system was created using AutoDock4Zn to predict the binding affinity
of ligand residues. The resulting MD simulation provided values of root
mean square deviation and fluctuation (RMSD and RMSF, respectively)
and binding affinity through a Molecular Mechanics Generalized Born
(Poisson–Boltzmann) Surface Area (MM-GB(PB)SA) calculation
(Genheden and Ryde, 2015). The potential for SIRT1 activation was

indicated by activator interactions in the allosteric region, in ac-
cordance with the known mechanism for SIRT1 activation (Dai et al.,
2010).

The best candidate compounds identified by the in silico study were
then subjected to in vitro tests of activity based on a deacetylated en-
zymatic reaction with SIRT1 and NAD+ cofactor. The EC50 concentra-
tion was determined using luminescence intensity data. Finally, the
correlation between the in silico and in vitro results was evaluated
(Hayes and Archontis, 2011).

2. Materials and methods

2.1. Equipment

The in silico assay used a graphical processing unit with the fol-
lowing specification: operating system, Linux Ubuntu 12.04 LTS 64 bit;
processor, Intel® Xeon(R) CPU E5620 @ 2.40 GHz×16; and graphics
card, NVIDIA Geforce 780 GTX. In addition, a Mac Mini was used with
the following specification: operating system OSX Yosemite, version
10.10; a processor, 2.6 GHz Intel Core i5; memory, 8 GB 1600MHz
DDR3; and graphics card, Intel Iris 1536 MB. The in vitro assay used
GloMax® Discover software version 3.0 (Madison, WI 53711 USA) with
the luminescence mode.

2.2. Protein and compound structures

The three-dimensional (3D) sequence for the human SIRT1 enzyme
was obtained from the Protein Data Bank online database PDB ID: 4ZZJ
as 4ZZJ.pdb format file (www.rcsb.org/structure/4ZZJ). This was
chosen because it included the CNA, peptide (substrate), Zn, in the
catalytic region and ligand in the allosteric region. The database for the
virtual screening assay used 1377 compounds from the HerbalDB
downloaded in the two-dimensional structure with *.smile format
(Yanuar et al., 2011).

The active compounds as activators of SIRT1 were collected from
previous reports (Kumar and Chauhan, 2016; Mellini et al., 2015; Pulla
et al., 2014), including the known active ligand [benzimidazole, imi-
dazothiazole, quinoline, quinazolinone, thiazolopyridine, imidazopyr-
idine, pyrroloquinoxaline, oxazolopyridine, terpenylated coumarin]

Fig. 1. (a). Crystal structure of human SIRT1 (PDB ID: 4ZZJ), showing allosteric [183–243] and catalytic [244–512] regions and residues involved in important
interactions, (b) substrate [Arg1-His2-Lys3-Aly4-Leu5-Nle6-Phe7], visualized using LigandScout 4.2.
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divided into the training set (12 compounds) (Supplementary Fig. 1)
and the test set (25 compounds). The 2D structures *.ism file of decoys
(1392 compounds) were built using a Directory of Useful Decoys
(DUDE) (http://dude.docking.org/generate) (Mysinger et al., 2012).

2.3. Pharmacophore model generation and validation

The 3D ligand-based pharmacophores were generated using
LigandScout4.2 (Wolber and Langer, 2005). The generation and re-
finement of pharmacophore models for different SIRT1 activator,
therefore, provide a starting point for the design of SIRT1 activator. The
pharmacophore models were developed using the LigandScout pro-
gram.

Structure-based pharmacophore model is built using the 3D phar-
macophore-based ligand of the co-crystallized of PDB ID 4ZZJ. Ligand-
based pharmacophore model is built from the SIRT1 activators as a
training set.

The pharmacophore model from both structure-based and ligand-
based were validated using 25 compounds of SIRT1 activator as a test
set and 1392 decoys. Various validation parameters were calculated,
including sensitivity, specificity, accuracy, receiver operating char-
acteristic (ROC), areas under the curves (AUC1,5,10,100%), and enrich-
ment factors (EF1,5,10,100%) (Bendix et al., 2010).

2.4. Pharmacophore-based virtual screening of HerbalDB compounds

Based on the calculated validation parameters, structure-based and
ligand-based pharmacophore models were used for the virtual
screening assay. The 1377 plant compounds from the HerbalDB were
screened against these pharmacophore models and the hits were scored
as the pharmacophore fit score. Lipinski’s rule of five from LigandScout
and drug-likeness scores and molecular property prediction from
Molsoft software (http://www.molsoft.com) were applied to select the
compounds with the best hits as drug candidates. (Supplementary
Fig. 2) shows workflow pharmacophore-based virtual screening of
HerbalDB compounds.

2.5. Molecular docking of SIRT1 activator

Molecular docking was performed using AutoDock4Zn (auto-
dock.scripps.edu/resources/autodockzn-forcefield). The compounds
selected by the virtual screening were docked with SIRT1 protein (PDB
ID: 4ZZJ). Ligands and water molecules were removed to form 4ZZJ
[ligand:Zn:carba-NAD:peptide]. Carba-NAD was processed by removing
NAD+ [carba-NAD→NAD+].

The parameters of docking were set as follows: grid box npts,
60×60×60 Å points; grid center, (−0.827; 45.618; −1.076), and a
grid-point spacing of 0.375 Å. The number of independent docking runs
performed for each docking simulation was set to 100 with 2,500,000
energy evaluations for each run. The structure of the complex was
generated as a mesh surface image and interaction by using
LigandScout 4.09.1. (Inte: Ligand, Austria)

2.6. Molecular dynamics simulation of SIRT1 activator

The compounds from the database screening with the best affinity
were chosen for docking [ligand:NAD+:peptide:Zn:4ZZJ] and MD si-
mulation (Case et al., 2014). The simulation was carried out on Amber
Molecular Dynamics using pmemd.cuda in the graphical processing
unit environment. The separation of the [ligand:pepti-
de:Zn:NAD+:4ZZJ] complex to be used in the MD simulation then
generated the topology and coordinates for ligands, NAD+, Zn, mac-
romolecules, and ligand–macromolecular complexes in a vacuum at-
mosphere and in water solvents. The AM1-BCC charge was added to the
ligand in Antechamber and parameterized by using Sander (Wang et al.,
2004; Lee and Duan, 2004). Generating parameters and coordinates of

macromolecule files containing Zn, znb.lib, frcmod.zinc, and leaprc.-
zinc were developed by Pang Lab (mayoresearch.mayo.edu/mayo/re-
search/camdl/zinc_protein.cfm). The original sequence of [Arg1-His2-
Lys3-Aly4-Leu5-Nle6-Phe7] substrate was processed by removing Aly
with Lys (deacetylation) and Nle with methionine. Thus, The para-
meters and coordinates of the macromolecules containing the pep-
tide= sequence {NArg His Lys Lys Leu Met CPhe} using tleap and
leaprc.ff99SB were developed. Preparations for the formation of NAD+

as a cofactor with a positive charge. To create macromolecules that
included NAD+, the parameters of the NAD+.lib and NAD+.frcmod
files were obtained from Ross Walker (Walker et al., 2002; Pavelites
et al., 1996) and the coordinates were changed with those of the NAD+

file bound to the macromolecules. Antechamber was used to add charge
to the ligand. During the preparation for the MD simulation, the charge
of the system was neutralized by adding Na+ ions. The system was
solvated using the water model TIP3BOX octahedron with a size of
12.0 Å. The next process was to run MD simulation for the [li-
gand:peptide:Zn:NAD+:4ZZJ] complex to obtain an equilibrated
system. The solvated [ligand:peptide:Zn:NAD+:4ZZJ] complex by per-
forming a short minimization to ensure the stability of the system with
50 ps of heating and 50 ps of density equilibration with weak restraints
on the complex, followed by 500 ps of constant pressure equilibration.
The simulation was conducted at 300 K, the default temperature for MD
simulations. All simulations were run with SHAKE on hydrogen atoms,
a 2-fs time step, and Langevin dynamics for temperature control. The
production simulation was run for 50 ns, recording the coordinates
every 10 ps. The system dynamics were analyzed for 50 ns and visua-
lized by Visual Molecular Dynamics (VMD). The hydrogen bond inter-
action limit was set to< 3 Å and the bonding angle to 60°. The resulting
MD simulation provided values of RMSD, RMSF, and the binding affi-
nity through MM-GB(PB)SA calculations as implemented in the AMBER
package (amber.org). The MM-GBSA and MM-PBSA method is to cal-
culate the free energy difference between two states.

The MM-GBSA, binding free energy to calculate of energy compo-
nent: VDWAALS (van der walls), EEL (electrostatic interaction), EGB
(polar contribution to solvation energy by GB method), ESURF (non-
polar contribution to solvation energy using SASA (solvent accessible
surface area) for GB.) The MM-PBSA, binding free energy to calculate of
energy component (VDWAALS, EEL, EPB (polar contribution to solva-
tion energy by PB method, ENPOLAR (nonpolar contribution to solva-
tion energy from repulsive solute-solvent interactions for PB). The
binding free energy delta-G binding, solvated can be calculated, shown
in Eq. (1). (Miller et al., 2012). Then, the 2D interaction was visualized
snapshot MD using LigandScout 4.09.1.

ΔG binding,solvated= ΔG complex,solvated – (ΔG ligand,solvated + ΔG re-

ceptor,solvated) (1)

2.7. In vitro study of SIRT1 activators

The most promising candidate compounds in the in silico study
were included in an in vitro study utilizing Promega implemented with
SIRT-Glo™ (G6451) (substrate, developer, nicotinamide) (www.
promega.com) and SIRT1 active enzymes (S35-31H-05). Quinine and
quinidine were obtained from LIPI and PT SIL (Sinkona Indonesia
Lestari). Gartanin and mulberrin were purchased from ChemFaces CAS
No.33390-42-0, ChemFaces CAS No.62949-79-5, respectively.
Determining linear range using SIRT1 enzymes. Prepare serial twofold
initial dilution of the SIRT1 active enzymes at 1–5 μg/mL in SIRT-Glo™
Buffer in raws A–D of a white-walled 96-well plate. The final volume of
a dilute enzyme in each well should be 100 μl for 96-well plates.
Equilibrate 10ml of SIRT-Glo™ Buffer to the SIRT-Glo™ substrate. Add
10 μl of developer reagent to form the SIRT-Glo™ to form the SIRT-Glo™
Reagent, then mix. Add an equal volume of SIRT-Glo™ SIRT-Glo™ to
each assay 100 μM for 96-well. Mix briefly at room temperature using
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an orbital shaker at 500–700 rpm to ensure state of being homo-
geneous. Incubate at room temperature for 15–45min. Measure lumi-
nescence at signal-state. Determining SIRT activator/inhibitor potency,
Prepare serial twofold of hit compound and nicotinamide in SIRT-Glo™
buffer in a white-walled 96-well plate. The final volume in each well
should be 50 μl for 96-well plates.

Dilute the SIRT enzyme using SIRT-Glo™ buffer to the desired
concentration is within the linear range determined. Dispense 50 μl of
SIRT-Glo™ enzyme to each well of activator prepared and no-activator
controls columns. Add 50μM of SIRT-Glo™ buffer to the no-sirtuin
controls (columns). Mix briefly at room temperature using an orbital
shaker at 500–700 rpm to ensure homogeneity and incubate sirtuin/
activator mixes at room temperature for at least 30min. Add an equal
volume of SIRT-Glo™ reagent to each assay 100 μl 96-well. Mix and
measure luminescence at signal steady-state (15–45min after adding
the SIRT-Glo™ reagent).

The luminescence signal data from the lysine deacetylation reaction
on the substrate was used to measure the % activator (EC50). EC50 value
determined using the aid of GraphPad Prism® software.

3. Results and discussion

3.1. Pharmacophore models and virtual screening

3.1.1. Structure-based pharmacophore model
Structure-based pharmacophore model using the LigandScout pro-

gram, the 3D pharmacophore-based ligand of the 4TQ ligand of 4ZZJ
showed four hydrophobic interactions (HI1, HI2, HI3, and HI4) and one
hydrogen bond acceptor (HBA) (Fig. 2).

The calculated validation parameters for the 3D-pharmacophore
model of SIRT1 (4ZZJ) (Fig. 2c) generated using LigandScout 4.09.1
were as follows: AUC1,5,10,100%, 0.78, 0.95, 0.97, and 0.57, respectively;
EF1;5;10;100%, 12.1; 4.0; 3.5; and 3.5, respectively; accuracy, 93%; and
specificity, 94%. These values complied with the requirements for
AUC1,5,10,100% all to be> 0.5 and EF1;5;10;100%. all to be>1. The virtual
screening produced 81 hits out of the 25 active compounds and 1392
decoys.

The virtual screening against HerbalDB compounds captured as hits
the compounds that showed the spatial overlap of their chemical group
(map) with corresponding features in the pharmacophore model. The
total number of molecules were obtained after searching the website
http://herbaldb.farmasi.ui.ac.id. Ten compounds showed the highest
pharmacophore fit scores (Supplementary Table 1) and were tested
using Molsoft software (http://www.molsoft.com) to investigate their
drug-likeness scores and molecular property prediction. Lipinski’s rule
was also applied as the main standard to identify the compounds that
were the most likely drug candidates. The evaluation of drug-likeness
involved assessing whether the parameters in Lipinski’s rule of five

were met, that is, molecular weight< 500 g/mol,< 10 HBAs,< 5 hy-
drogen bond donors (HBDs), and a partition coefficient clogP value<5
(Lipinski, 2004).

Based on the drug-likeness score and the molecular property pre-
diction, the best hit among the 10 compounds was mulberrin.
Mulberrin (C25H26O6) 2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-3,8-bis
(3-methylbut-2-enyl)chromen-4-one (Mr: 422.477 g/mol) has five
HBAs, four HBDs, six (Methylbut-2-enyl and phenyl group) as hydro-
phobic interactions (HI), 3 aromatic rings (AR), cLogP= 5.3, and a
drug-likeness score of 1.17 (Supplementary Fig. 3).

Mulberrin has similar structure chromen-4-one group of SIRT1 ac-
tivator (7-hydroxy-4H-chromen-4-one) (Kumar and Chauhan, 2016).
Mulberrin compounds are found in the plants Artocarpus heterophyllus
and Morus australis. Mulberrin has been shown to reduce the type 2
diabetes in mice significantly (Wilson and Islam, 2015).

3.1.2. Ligand-based pharmacophore model
Modeling 3D-pharmacophore ligand-based active compounds of

SIRT1 as training sets were used for virtual screening with
LigandScout4.09.1. This resulted in ten 3D- pharmacophore models
(Supplementary Table 2). Of these, Model 1 had the highest score of
0.7729; its features comprised two hydrophobic interactions (HI1 and
HI2), two aromatic rings (AR1 and AR2), and HBA. Fig. 3 shows the
calculation of the distance between the pharmacophore features for
Model 1.

The validation of ligand-based 3D pharmacophore models was
performed automatically using the LigandScout program, calculating
EF1%values and AUC based on ROC curves (which should be>0.5)
(Table 1).

The evaluation results for Models 1 to 10 given in Table 1 showed
that Model 1 was the best, with an AUC value of 0.88 and sensitivity of
0.84%, specificity of 0.91%, accuracy of 91.1%; this was therefore
chosen for the pharmacophore model for SIRT1 activator virtual
screening. The screening of 1377 compounds from HerbalDB resulted in
18 compounds with the features HI1, HI2, AR1, AR2, and HBA (Sup-
plementary Table 3). The compounds with the highest Pharmacophore-
Fit Score were quinine (54.11), quinidine (53.46), and gartanin (53.42),
indicating they were the best candidate SIRT1 activators. Then, these
compounds were screened with Lipinski's rules and by using the Molsoft
drug-likeness program. The results for the three compounds were as
follows (Supplementary Figs. 4–6). Quinine (C20H24N2O2), (R)-
[(2S,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl](6-methox-
yquinolin-4-yl)methanol (Mr: 324.424 g/mol) has three HBAs, one
HBD, three (ethenyl and quinolinyl group) as hydrophobic interactions,
2 aromatic rings (AR), cLogP=2.887, and a drug-likeness score of
0.88. Quinine compounds cause hypoglycemia in malaria sufferers
(Ogetii et al., 2010).

Quinidine (C20H24N2O2) (S)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo

Fig. 2. Pharmacophore building of the SIRT1 ligand using the LigandScout program. (a) SIRT1. (b) The 3D pharmacophore. (c) Pharmacophore features of the co-
crystallized 4TQ Ligand. HI1, HI2, HI3, and HI4: hydrophobic interactions; HBA, hydrogen bond acceptor.

A. Azminah, et al. Computational Biology and Chemistry 83 (2019) 107096

4

http://herbaldb.farmasi.ui.ac.id
http://www.molsoft.com


[2.2.2]oct-2-yl](6-methoxyquinolin-4-yl)methanol (Mr: 324.424 g/
mol) has three HBAs, one HBD, three (ethenyl and quinolinyl group) as
hydrophobic interactions, 2 aromatic rings (AR), cLogP= 2.887, and a
drug-likeness score of 0.88. Quinidine compounds are found in the
Cinchona calisaya plant and have been used for malaria drugs. There is a
relationship between quinidine compounds and insulin secretion
(Phillips et al., 1986; medlineplus.gov/ency/article/000310.htm).
Quinine and Quinidine have similar structure with quinolines group of
SIRT1 activator (Vu et al., 2014).

Gartanin (C23H24O6) 1,3,5,8-Tetrahydroxy-2,4-bis(3-methylbut-2-
en-1-yl)-9H-xanthen-9-one (Mr: 396.439 g/mol) has five HBAs, four
HBDs, five hydrophobic interactions (HI), 3 aromatic rings (AR).
cLogP=4.786, and a drug-likeness score of 0.15. Gartanin compound
is found in Garcinia dulcis and G. mangostana (mangosteen) plants and
have been used to treat mumps and swellings (Pedraza-chaverri et al.,
2008). Gartanin has similar structure to γ-mangostin, a xanthone from
mangosteen of SIRT1 activator (Wang et al., 2018). An ethanol extract
of G. mangostana has been shown to exhibit hypoglycemic activity
(Taher et al., 2016).

3.2. Molecular docking

The ligand 4TQ was re-docked using AutoDock4Zn into the mac-
romolecule crystal of PDB: 4ZZJ to evaluate the RMSD. Lower values of
RMSD indicate greater similarity between the re-docked compound and
the reference. RMSD values< 2.0 Å were considered acceptable. The
binding sites for 4TQ with 4ZZJ were at residues Leu206, Pro211,
Pro212, Ile223, Ile227, as hydrophobic residues and Thr209, Gln222,
Asn226 as hydrophilic residues.

The four screened compounds (mulberrin, quinine, quinidine, and
gartanin), resveratrol (C14H12O3) 5-[2-(4-hydroxyphenyl)ethenyl]ben-
zene-1,3-diol (as a positive control) and nicotinamide (as a negative
control) were docked into 4ZZJ at allosteric region (alpha helix(H)1-

turn(T)-H2-T-H3) using AutoDock4Zn to evaluate the binding energy to
estimate the ligand’s affinity towards the macromolecule.

The molecular docking score of mulberrin showed binding energy of
-4.89 kcal/mol (Fig. 4a and b). Essential residues of SIRT formed in the
mulberrin:4ZZJ complex included methylbut-2-eny group contacts with
Leu206 and Ile227 as Hydrophobic Interaction (HI), and eOH (hy-
droxy) group bonding with Ile223, Thr209, and Asn226 as HBD (hy-
drogen bonding donor).

Quinine had a docking score of −4.71 kcal/mol, with interactions
of quinine–4ZZJ at quinolin-4-yl group with residues Leu206 (HI),
Ile223, Ile227 (HI) and eOH (hydroxy) group with Ile223 (HBD),
(Fig. 4c). Quinidine had a docking score of -4.98 kcal/mol, with inter-
actions of quinidine–4ZZJ at quinolin-4-yl group with residues Thr206
(HI), Ile223 (HI), Ile227 (HI) and ethenyl group with Thr209 (HI)
(Fig. 4d). Gartanin had a docking score of -5.67 kcal/mol, with inter-
actions of gartanin–4ZZJ at the methylbutenyl group with residues
Leu202, Leu206 (HI), Thr209 (HI), Thr219 (HI), Ile223 (HI), and xan-
thone group with Ile227 (HI) (Fig. 4e). In comparison, the resveratrol
compounds had a docking score of −4.29 kcal/mol, with interactions
of resveratrol–4ZZJ at eOH (hydroxy) with hydrophilic residues
Gln222 and phenyl-ethenyl group with Thr219, Ile223 as hydrophobic
interaction. Nicotinamide had a docking score of -4.63 kcal/mol, with
interactions of nicotinamide–4ZZJ at benzene group with residues
Ile210 (HI), and –NH2 group with Pro207 (HBD) (Supplementary
Fig. 7) The docking scores for mulberrin, quinine, quinidine, and gar-
tanin were better than that for the resveratrol compounds (active
compound of SIRT1).

The results of molecular docking calculations the binding site for
4TQ, mulberrin, quinine, quinidine, gartanin, resveratrol, nicotinamide
with 4ZZJ and in the allosteric region are summarized in Fig. 5. In
molecular docking studies, the important residues involved were Ile223
and Ile227, which interacted hydrophobically with all four compounds,
similar to the crystal ligand in 4ZZJ (Dai et al., 2015), except nicoti-
namide (as SIRT1 inhibitor) no interaction with Ile223 and Ile227.

3.3. Molecular dynamics simulation

The MD simulations for the [4ZZJ:NAD+:Zn:peptide] complex and
each of the four compounds, nicotinamide, no ligand (apo) were run for
50 ns at a temperature of 300 K (27 °C). The processes of minimization,
equilibration, and production were performed using Amber. The system
was first checked at the minimization level to make sure the ligand
bound to the protein (the macromolecule). The equilibration state in-
cluded checking the temperature, pressure, and energy were stable and
optimized to make sure the system would continue for 50 ns.

System dynamic stability was determined by the values of RMSD
and RMSF. Based on the RMSD of each compound with
4ZZJ:NAD+:Zn:peptide (Supplementary Fig. 8) shows the RMSD values
and the differences for five conformational changes (flexibility) at al-
losteric and catalytic region. Interaction ligand:4ZZJ complex stable in
the allosteric region of the [4ZZJ:NAD+:Zn:peptide] complex during
1–50 ns of the simulation. In the figure, it can be seen that the nicoti-
namide complex shows interaction only for 10 ns, whereas at 20 ns it
does not show interactions between nicotinamide and
[4ZZJ:NAD+:Zn:peptide].

The RMSFs are shown in Supplementary Fig. 9. The duration of the
simulation was set to 50 ns to extend the monitoring of the flexibility
and complexity of the macromolecule at the allosteric site. Amino acid
residues such as Ile223, Ile227 (hydrophobic) and Asn226, Glu230
(hydrophilic) were the key to the allosteric sites of the ligands of
mulberrin, quinine, quinidine, or gartanin with
[4ZZJ:NAD+:Zn:peptide]. At these residues, the RMSF was relatively
low, indicating that the compounds (mulberrin, quinine, quinidine, or
gartanin) had bound to the receptor (allosteric region).

Fig. 3. Pharmacophore Model 1, showing some of its features and the distances
between them. HI1 and HI2, hydrophobic interactions; AR1 and AR2, aromatic
rings; HBA, hydrogen bond acceptor.

Table 1
Areas under curve (AUC) and enrichment factors (EF) for Models 1–10 obtained
from the ligand-based virtual screening validation.

Model AUC 100% EF 1% Sensitivity% Specificity% Accuracy %

1 0.88 12.1 0.84 0.91 91.1
2 0.86 8.1 0.80 0.91 90.8
3 0.84 12.1 0.92 0.63 63
4 0.90 16.2 0.96 0.60 61
5 0.76 0.0 0.96 0.47 48
6 0.88 16.2 0.96 0.58 58
7 0.90 16.2 1.00 0.44 45
8 0.78 20.2 0.92 0.62 60
9 0.79 16.2 0.92 0.62 65
10 0.92 12.1 1.00 0.62 46
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3.4. Hydrogen bond interaction

The hydrogen bond occupancy can be divided into three categories:
weak (25%–50%), strong (50%–75%), and very strong (75%–100%)
(Kästner et al., 2009). The 10 ns MD simulation of SIRT1 with the
compounds reveal the hydrogen bond occupancy between allosteric
region residue (Arg234) and catalytic region residues (Asp475, His473
and Val459) is shown at Fig. 6.

The 4ZZJ complex with SIRT1 activator involves important residue
interactions, including guanidinium group interaction between Arg234
via hydrogen bond formation [NH-O] with Asp475. The hydrogen bond
interaction [NH-O] was also observed between residues Arg234 with
His473 and Val459, which have a key role in enzyme activation (Dai
et al., 2015). The interaction between Arg234 and Asp475 via hydrogen
bond formation [NH-O] was observed during MD simulation of SIRT1
complex with mulberrin (99.9%); quinine (99.8%); quinidine (99.7%);

gartanin (99.9%); nicotinamide (99.4%); apo-form (99.8%). Thus, the
complex of SIRT1 with mulberrin, quinine, quinidine, gartanin, nico-
tinamide and apo-form showed very strong bond with residue Arg234
(in the allosteric region of SIRT1) to Asp475 (in the catalytic region),
indicating their enzyme activity.

The hydrogen bond interaction [NH-O] were observed between NH
and carbonyl group of Arg234 and His473 of SIRT1 with mulberrin
(26.9%), quinine (10.5%), quinidine (31.3%), and gartanin (12%), ni-
cotinamide (62.7%), apo (53.5%). Nicotinamide and apo form shows
more occupancy interactions than the other compounds.

The hydrogen bond interactions were observed between Arg234 and
Val459 residues of SIRT1 with mulberrin (75.8%), quinine (71.4%),
quinidine (83.8%), gartanin (72.9%), nicotinamide (57.3%), apo-form
(62.3%). The complex of SIRT1 with mulberrin, quinine, quinidine and
gartanin showed very strong bond, while nicotinamide and apo form of
the enzyme show the strong bond with residue Arg234 in the SIRT1

Fig. 4. (a) Two-dimensional scheme of the interaction between mulberrin and the 4ZZJ complex, generated by LigandScout 4.2. (b) The structure of mulberrin and
4ZZJ complex shown as a mesh surface image, generated by LigandScout (hydrophilic, blue; hydrophobic, grey). The interaction between (c) quinine, (d) quinidine,
(e) gartanin, with the 4ZZJ.
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allosteric region to His473 in the SIRT1 catalytic region.
The hydrogen bonds occupancy of the carbonyl oxygen of Val412 of

SIRT1 with the N of the deacetylated-lysine 4 of the peptide substrate
was also observed during 10 ns of MD simulation with mulberrin
(90.0%); quinine (91.2%); quinidine (96.8%); gartanin (83.9%), and
apo-form (80.0%) (Fig. 6). The complex of SIRT1 with mulberrin,
quinine, quinidine, gartanin and apo-form showed very strong hy-
drogen bond occupancy with N atom of the deacetylated-lysine. Nico-
tinamide as SIRT1 inhibitor was observed to be a weaker bond with
55.8% hydrogen bond occupancy of Val412 with atom N of the dea-
cetylated-lysine.

3.5. Binding free energy calculations for the receptor–ligand interaction

The binding free energy calculated by molecular docking was re-
calculated using the MM-GB(PB)SA method. The calculation of binding
free energy using the molecular mechanics Poisson–Boltzmann (MM-
PBSA) and generalized Born surface area models MM-GBSA, respec-
tively) methods gave more selective results to estimate ligand-binding
affinities. (Karaman and Sippl, 2015; Genheden and Ryde, 2015).

These calculations of binding free energy for the interactions of
mulberrin, quinine, quinidine, and gartanin ligands with SIRT1 in the
allosteric region [alpha helix(H)1-turn(T)-H2-T-H3] resulted which
evaluated on the trajectory at the end of 50 frames of 10, 20, 30, 40,
and 50 ns simulation (Table 2).

The binding free energy MM-GBSA calculation according to Miller
method resulting the ΔG=−17.37 ± 2.805 kcal/mol of SIRT1-mul-
berrin complex. (Supplementary Fig. 10) (Miller et al., 2012).

Mulberrin-SIRT1 complex show interaction methyl butenyl group
with Ile223 and methyl butenyl, phenyl group with Ile227 at the al-
losteric site of the trajectory at the end of 50 frames of 10, 20, 30, 40,
and 50 ns simulation (Fig. 7). The minimum binding free energy (MM-
GBSA ΔG = −27.258 ± 2.984 kcal/mol) of mulberrin with 4ZZJ at
20 ns, with interactions of methyl butenyl group with Thr209, Leu215,
Ile223, Ile227 as hydrophobic interactions (4 amino acids) and eOH
(hydroxyl) group with Asn226 (HBA), Pro470 (HBD). The maximum
binding free energy was at 30 ns, with interactions of methyl butenyl
group with six amino acids of Leu202, Leu206, Thr209, Ile223, Ile227
as hydrophobic interactions (Table 2, Supplementary Fig. 11). The
difference between the maximum and minimum energy (Δ) is

Fig. 5. Interactions between the residues on the SIRT1 allosteric site and the ligands of (1) 4TQ in the crystal structure of 4ZZJ, and the results of the molecular
docking of (2) mulberrin, (3) quinine, (4) quinidine, (5) gartanin, (6) resveratrol, (7) nicotinamide.

Fig. 6. Hydrogen bond strength (% occupancy) show the important residues of Arg234-Asp475; Arg234-His473; Arg234-Val459; Val412-Lys4 in SIRT1 complex
[4ZZJ:NAD+:Zn:peptide] obtained from 10 ns MD simulation of SIRT1 with mulberrin, quinine, quinidine, gartanin, nicotinamide, and apo-form.
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16.487 kcal/mol, this is due to the interaction of the presence of hy-
droxyl (eOH) with Asn226 as hydrophilic at 20 ns. The minimum
binding free energy MM-PBSA ΔG was −24.323 ± 3.682 kcal/mol at
20 ns; the difference with the maximum energy, at 30 ns, was
Δ=11.276 kcal/mol.

Quinine-SIRT1 complex show hydrophobic interaction quinolinyl
group and pyridine of quinolinyl group with Ile223 at the allosteric site
of the trajectory at the end of 10, 20, 30, 40, and 50 ns simulation
(Table 2, Supplementary Fig. 11). Quinine complexed with the SIRT1
showed the minimum binding free energy (MM-GBSA ΔG =
−28.455 ± 2.326 kcal/mol) at 40 ns, with interactions of hydroxyl
(eOH) group with Lys233 [HO-N] as hydrophilic interaction and qui-
nolinyl group with Thr219 and Ile223 and ethenyl group with Leu450
(catalytic region) as hydrophobic interaction. The maximum binding
free energy was at 30 ns, with interactions of ethenyl group with Ile227,
Leu206, quinolinyl group with Leu215, Ile223 as hydrophobic inter-
action. The difference between the maximum and minimum energy
(Δ)= 12.496 kcal/mol. this is due to the interaction of the presence of
hydroxyl (eOH) with Lys233 as hydrophilic interaction and Leu450

(catalytic region) as hydrophobic interaction at 40 ns, The minimum
binding free energy MM-PBSA ΔG was −24.250 kcal/mol, at 10 ns; the
difference with the maximum energy, at 30 ns, was Δ=8.619 kcal/
mol.

Quinidine-SIRT1complex show interaction of hydroxyl group with
Thr209; ethenyl group and benzene of quinolinyl group with Ile223 and
ethenyl group with Ile227 at the allosteric site of the trajectory at the
end of 50 frames of 10, 20, 30, 40, and 50 ns simulation (Table 2,
Supplementary Fig. 11). Quinidine complexed with the SIRT1 showed
the minimum binding free energy MM-GBSA ΔG =
−18.274 ± 2.395 kcal/mol at 10 ns, interactions with hydroxyl of
quinidine with Thr209 [OH-:O], ethenyl group with Ile223, Ile227 as
hydrophobic interaction. The maximum binding free energy was at
30 ns, with interactions ethenyl group with Ile227, quinolinyl group
with Ile227; The difference between the maximum and minimum en-
ergy Δ=3.84 kcal/mol within the standard error of MM-GBSA binding
energy. The minimum binding free energy MM-PBSA ΔG was
−19.38 kcal/mol, at 20 ns; the difference with the maximum energy, at
30 ns, was Δ=2.68 kcal/mol.

Table 2
The binding free energy MM-GB(PB)SA of SIRT1 [4ZZJ:NAD+:Zn:peptide] complex with the mulberrin, quinine, quinidine, gartanin of the trajectory at the end of 50
frames of 10, 20, 30, 40, and 50 ns simulation.

10 ns 20 ns 30 ns 40 ns 50 ns

mulberrin −17.367 ± 2.805 −27.258 ± 2.984 −10.771 ± 3.744 −14.725 ± 1.859 −16.420 ± 1.956
(−17.931 ± 3.056) (−24.323 ± 3.682) (−13.047 ± 3.729) (−16.525 ± 2.182) (−17.900 ± 2.365)

quinine −19.259 ± 2.354 −18.886 ± 1.850 −15.959 ± 2.199 −28.455 ± 2.326 −27.747 ± 2.823
(−18.497 ± 2.283) (−16.922 ± 3.073) (−15.631 ± 2.209) (−24.250 ± 2.549) (−24.125 ± 3.077)

quinidine −18.274 ± 2.395 −17.976 ± 2.806 −14.427 ± 3.487 −16.736 ± 1.969 −17.968 ± 2.000
(−16.693 ± 2.521) (−19.380 ± 2.383) (−15.023 ± 3.780) (−17.817 ± 2.015) (−18.911 ± 2.281)

gartanin −18.593 ± 1.945 −18.027 ± 1.820 −24.896 ± 2.578 −16.932 ± 2.690 −19.373 ± 2.458
(−19.840 ± 2.326) (−19.403 ± 2.103) (−22.383 ± 2.564) (−18.159 ± 2.770) (−19.769 ± 3.165)

MM-GB(PB)SA results ΔG are reported in kcal/mol. The number in parentheses indicated of MM-PBSA results.

Fig. 7. The binding site for the residues of SIRT1 [4ZZJ:NAD+:Zn:peptide] complex with the mulberrin of the trajectory at the end of 50 frames of 10, 20, 30, 40, and
50 ns simulation.
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Gartanin-SIRT1 complex show interaction of methyl butenyl group
with Ile223 and methyl butenyl, benzene of xanthone group with Ile227
at the allosteric site of the trajectory at the end of 50 frames of 10, 20,
30, 40, and 50 ns simulation (Table 2, Supplementary Fig. 11). Gartanin
with the SIRT1 showed the minimum binding free energy (MM-GBSA
ΔG = −24.9 ± 2.578 kcal/mol) at 30 ns, with interactions of methyl
butenyl group with Leu202, Thr209, Leu215, Ile223, Ile227. The
maximum binding free energy at 40 ns show the interactions with
Leu206, Leu215, Ile223, Ile227 as HI, and Glu230 [OH-O] as HBD; The
difference between the maximum and minimum energy Δ=7.97 kcal/
mol. The minimum binding free energy MM-PBSA ΔG was
−22.383 kcal/mol, at 30 ns; the difference with the maximum energy,
at 40 ns, was Δ=4.224 kcal/mol.

Nicotinamide as SIRT1 inhibitor was docked into the allosteric re-
gion of SIRT1 for MD simulation resulting MM-GBSA ΔG =
−4.456 ± 1.072 kcal/mol at 10 ns, showed hydrophobic interactions
of the pyridine of nicotinamide with Leu202, Leu206, Ile223. Then, at
20 ns of MD simulation there was no interaction observed between
nicotinamide with SIRT1 at allosteric region. Nicotinamide is known as
SIRT1 inhibitor, and it was proven that no interaction between nicoti-
namide with SIRT1 at allosteric region, after 10 ns.

These findings showed that mulberrin, quinine, quinidine, and
gartanin compounds had different energy values for MM-GBSA and
MM-PBSA of the trajectory at the end of 50 frames of 10, 20, 30, 40, and
50 ns simulation, in the range values 0.328–4.726 kcal/mol, within the
standard error of the MMGB(PB)SA binding free energy. The interaction
of mulberrin, quinine, quinidine, and gartanin with SIRT1 showed the
activation of sirtuin that indicated by SIRT1 activator interactions in
the allosteric region [αH2 and αH3], in accordance with the known
mechanism for SIRT1 activation (Dai et al., 2010).

3.6. In vitro assays of the candidate SIRT1 activators

The in vitro study (SIRT-Glo™) assays and SIRT-Glo™ enzym of
mulberrin, quinine, quinidine, gartanin were performed in duplicate,
using serial dilution to obtain concentrations of 220 μM. Based on the
results of determining linear range using SIRT-Glo™ enzymes
(Supplementary Fig. 12). Thus, the concentration of the enzyme used
was 0.125 μM within the linear range determined for activators or in-
hibitors, because, the enzyme concentration of 1.5 μg/mL, 2.0 μg/ml
and 2.5 μg/ml had the same luminescence (RLU) value (6×106).
Activator profiles for SIRT1-Glo™ obtained from the assays of mul-
berrin, quinine, quinidine, and gartanin, showing the relationship be-
tween the concentrations of 55, 27.5, 13.75, 6.875, 3.44, and 1.7 μM of
each compound and the % activation of SIRT1 (Fig. 8).

The compound mulberrin, quinine, quinidine, and gartanin has
been identified as SIRT1 activator with EC50 values were
2.10 ± 0.285, 1.14 ± 0.067, 1.71 ± 0.035, and 1.79 ± 0.095 μM,
respectively. In comparison, nicotinamide as SIRT inhibitor controls
showed IC50= 87.59 μM, profile (Supplementary Fig. 13). Resveratrol
(SIRT1 activator) has been reported to have an EC50 of 23.6 μM (Wu
et al., 2013) or 46.2 μM (Hubbard and Sinclair, 2014). Results proved
that mulberrin, quinine, quinidine, and gartanin are a significant acti-
vator of SIRT1 activity as evident from the results of activation assay.

3.7. In silico and in vitro correlation

Correlations were calculated between the in vitro SIRT1 activation
EC50 values for mulberrin (2.10 μM), quinine (1.14 μM), quinidine
(1.71 μM), and gartanin (1.79 μM), (Fig. 8, with their in silico mole-
cular docking bond energies (ΔG) and with the MM-PB(GB)SA binding
free energy (ΔG) in the MD simulation of trajectory conformation at the
end of 50 frames of 10, 20, 30, 40, 50 ns (Table 2, Supplementary
Fig. 11). The correlation between the EC50 and the molecular docking
score values was R2= 0.1303. Thus, the molecular docking bonding
free energy for the four compounds showed no correlation with the

biological in vitro data. The correlation between the EC50 and ΔG MM-
GBSA values were as follows: 10 ns, R2= 0.867; 40 ns, R2= 0.923; and
50 ns, R2= 0.919. The correlation between EC50 and ΔG MM-PBSA
values were as follows: 20 ns, R2= 0.828; 40 ns, R2= 0.942; and
R2=0.928.

Thus, the performance of MM-GBSA binding free energy (ΔG) at 10,
40, and 50 ns and MM-PBSA binding free energy at 20, 40, and 50 ns,
results for the [4ZZJ:NAD+:Zn:peptide] complex with mulberrin, qui-
nine, quinidine, and gartanin showed significant correlations to the in
vitro results. Karaman et al. (Karaman and Sippl, 2015) reported a
correlation between MM-GBSA binding affinity and in vitro value of
R2=0.75 for inhibitor:SIRT1 complex. The interaction among the li-
gand and [4ZZJ:NAD+:Zn:peptide] receptor provides evidence that
mulberrin, quinine, quinidine gartanin acts as a SIRT1 activator (Dai
et al., 2015).

4. Conclusions

Pharmacophore-based virtual screening using structure-based
pharmacophores predicted that mulberrin, with four hydrophobic in-
teractions and one hydrogen bond as a HBA, was the best candidate
SIRT1 activator. Pharmacophore-based virtual screening using ligand-
based pharmacophores predicted that quinine, quinidine, and gartanin
compounds, with two hydrophobic interactions, two aromatic rings,
and one HBA, were the best candidate SIRT1 activators. Molecular
docking studies of mulberrin, quinine, quinidine, gartanin with 4ZZJ,
showed the important residues involved in hydrophobic interactions
(HI) were Ile223 and Ile227. In the in vitro studies, the EC50 values of
mulberrin, quinine, quinidine, and gartanin were 2.1, 1.14, 1.71, and
1.79 μM, respectively, which were within the range of concentrations
needed to activate SIRT1. Thus, mulberrin, quinine, quinidine, and
gartanin are predicted to be candidate SIRT1 activators. The analysis of
the correlation between the in silico and in vitro results for mulberrin,
quinine, quinidine, and gartanin using MM/PB(GB)SA predicted they
had good activity as SIRT1 activators.
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Supplementary data associated with this article can be found, in the
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