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ABSTRACT ARTICLE HISTORY
Nano-sized silica/polysulfone (PSf) flat sheet asymmetric MMMs with high CO, permeance for CO,/N, Received 20 April 2018
separation were fabricated by dry/wet phase inversion method using N, N-dimethylacetamide (DMAc) Revised 23 June 2018

and tetrahydrofuran (THF) as solvents and ethanol as additives. The results indicated that the addition of ~ Accepted 3 September 2018
nano-silica on the polymer matrix resulted on reduced membrane performance due to void formation KEYWORDS

and particle agglomeration. Optimum membrane performance was obtained at the following fabrication Carbon capture; gas
parameters: 22 wt.% PSf, 31.8 wt.% DMACc, 31.8 wt.% THF, 14.4 wt.% ethanol, 20 s evaporation time, and separation; mixed-matrix;

0 wt.% silica loading, with CO,/N; selectivity of 15.6 and CO, permeance of 14.2 GPU. phase inversion; polymeric
membrane
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Introduction

Due to the increasing concern of climate change,
reduction of green house gas emission, which largely
consists of CO,, has gained considerable attention for
years. Research on the advancement of technology
for selective CO, capture and separation has been
[1=31" Conventional separation processes for
CO, are adsorption with monoethanolamine (MEA)
and cryogenic removal. Adsorption of CO, with
MEA is a robust process with more than 90% CO,
being captured. However, the drawbacks include sig-
nificant energy requirement for MEA regeneration,
degradation of MEA by trace components such as
sulphur oxide and corrosion.'! Cryogenic removal
of CO, does not require any chemicals addition and
can be operated at athmospheric pressure. Yet, as the
process is conducted at very low temperature, the
water content at the feed stream become critical
parameter to avoid plugging of the cooling unit due
to the ice formation.'

In recent years, research on membrane based gas
separation technology have been significant due to its
low energy demand, compactness, low maintenance
requirement, flexibility in scale up, and easy to operate.-
(513 polymeric membranes are favourable due to their
unique intrinsic transport properties, low cost, and flex-
ibility in fabrication and engineering.'* '*! The perfor-
mance of polymeric membranes for gas separation is
characterized by the gas selectivity and permeability. In
general, there are three types of polymeric membranes
for gas separation; dense, asymmetric and composite.
Asymmetric membrane in particular, posses several
advantages such as relatively high gas permeance due
to the thin selective top-layer and good mechanical
strength due to the presence of support sub-layer.
However, defects in selective top-layer and sub-layer
resistance become challenges in asymmetric membrane
application. Pinnau and Koros, introduced dry/wet
membrane fabrication method to overcome those chal-
lenges, which included convective or free standing eva-
poration of polymer solution prior to immersion in the
precipitation bath. In this method, determination of
membrane fabrication parameters, such as solvent eva-
poration time and solvent ratio, were crucial to control
membrane thickness and avoid membrane defect.!®!
Despite the optimum membrane thickness and the lack
of membrane defects, trade-off between gas selectivity
and permeability on polymeric asymmetric membranes
application exists with Robeson’s upperbound to be
surpassed.

extensive.

Recent advances on membrane for gas separation
focused on mixed matrix membranes (MMMSs) to over-
come the selectivity and permeability trade-off. MMM:s
are consisted of two or more materials, one of which
forms continuous phase known as matrix, while another
material forms discrete phase, or filler. Polymers are
usually used as the continuous phase and inorganic
materials, such as zeolites, silica, carbon molecular
sieves, nano metal oxides, and metal organic frameworks
(MOFs) have been frequently used as the discrete phase
in MMMs fabrication."” ' In prior works on MMM:s
for gas separation, reduction of gas permeability were
reported due to extended tortuous path as the filler
particle was added to the polymer matrix. This predic-
tion was postulated as Maxwell model. However, further
work investigated the n-butane/CH, gas separation per-
formance of PMP/nano-sized silica MMMs, showed
contradictive results with Maxwell model. Compared to
the PMP membrane, the n-butane/CH, selectivity was
twice as much with the incoporation of nano-sized silica
in the matrix of high-free-volume glassy polymers.!"* In
addition, remarkable enhancement in n-butane perme-
ability was also observed.

Ahn, et al investigated the O,/N, and CO,/CH, gas
separation performance and permeation properties of
MMMs prepared from polysulfone (PSf) and nonporous
silica nanoparticles."®! The addition of non-porous
nano-sized silica, which had opposed properties with
porous inorganic fillers, showed great potential to affect
polymer chain packing in glassy and high-free-volume
polymers. Due to the non-permeability of the nonporous
silica particles, the incorporation of this filler into the
polymer matrix did not directly contribute to the change
of transport property. However, the particles altered the
molecular packing of the polymer chains, resulting on
improved gas permeation as well as the selectivity.

One-third of CO, emitted worldwide was produced
by the combustion process in power plant. As the so-
called flue gas has low CO, content, typically ranged
from 3 to 15%, the gas flow rate to be processed is
significant. In this particular condition, CO, permeance
is an important parameter to justify the feasibility of
MMM membrane for CO, separation. In this work, flat
sheet MMMs (FSMMMs) were fabricated following
dry/wet method with PSf as the continuous phase and
colloidal nano-sized silica as the disperse phase. The
effect of three membrane fabrication parameters, such
as solvent ratio, force convective time and nano-silica
loading, on the FSMMMs performance were investi-
gated. The membrane fabrication parameters were var-
ied following the Box-Behnken experimental design to



optimize membrane formulation and provide statistical
validation on the results.

Materials and methods
Materials

PSf polymer was purchased from Solvay Advanced
Polymers (Alpharetta, GA) under the trade name of
‘Udel Polysulfone P-3500 LCD’. The 40 wt.% dispersion
of colloidal nano-silica was purchased from DuPont.
The nominal size of nano-silica particles was 12 nm'?®
! with net negative charge at pH above 1.6. BET sur-
face area and the pore volume of the particles are
262 m’/gram and 0.75 cm?®/gram, respectively. N,N-
dimethylacetamide (DMAc) and tetrahydrofuran
(THF) were used as less volatile and more volatile
solvents in the membrane fabrication. The organic
non-solvent used in this study was ethanol (EtOH).
Tap water and methanol (MeOH) were used as coagu-
lation medium during phase inversion process. All
polymers and chemicals were used as received without
further purification.

Membranes fabrication

Asymmetric PSf flat sheet membranes were fabricated
by casting method. PSf particles with concentration
of 22 wt% were firstly dissolved in DMAc, THF, and
14.4 wt% EtOH (nonsolvent). The composition of
DMAc and THF was varied with the weight ratio of
DMAc: THF of 0.75, 1 and 1.25. The solution was
then mixed in a beaker glass using a magnetic stirrer
at 60°C for 6 h to form homogeneous casting
solution.

The dry/wet phase separation process was conducted
to prepare asymmetric flat sheet membranes. Casting
solutions were cast on a glass plate with a casting knife
at ambient temperature of 27°C and relative humidity
of 83%. The gap between the casting knife and the glass
plate was 200 pm. Forced-convective evaporation was
induced by blowing inert gas stream across the mem-
branes surface for a certain period. Afterward, the
casted membranes were immersed in water as the coa-
gulation medium for 10 minutes and methanol for
2 hours. The membranes were then air-dried for
1 day. The air-dried membranes were further dried in
desiccators for 1 day prior to gas permeation test and
membrane characterization. The schematic diagram of
asymmetric membrane preparation is shown in
Figure la.

Asymmetric mixed matrix PSf flat sheet mem-
branes were also prepared by casting method
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following the aformentioned procedure. The colloi-
dal nano-silica was added into the DMAc-THF
mixture and dispersed under ultrasonic treatment
for 30 minutes to achieve better inorganic particles
distribution. The polymer was then added and stir-
red at 60°C for 6 hours to form homogeneous
casting solution. The solution was casted on a
glass plate and after evaporation step, the mem-
branes were immersed in the coagulation medium
followed by air drying.

Gas permeation test

Single gas permeation tests using nitrogen (N,) and
carbon dioxide (CO,) gases were conducted to exam-
ine the gas separation performance of the mem-
branes. Circular membrane discs with an effective
permeation area of 13.5 cm®  were used.
Experiments were conducted at ambient temperature
of 27°C. Feed pressure was set at 1.7 bar while
permeate side was set at atmospheric pressure. The
experimental set-up of gas permation test is pre-
sented in Figure 1b. CO, and N, permeances were
determined by recording the gas flux through the
membranes and permeance were calculated following
Eq. (1).

(P/1); =T/ Api ey

where (P/]); is the permeance of gas i (GPU)), Ji is the flux
of gas i, and Ap is the pressure difference across mem-
brane. Gas selectivity of the membranes were calculated
following Eq. (2).

&coz/N2 = (P/Z)coz/<P/l)N2 (2)

To provide better understanding of the effect of
nano-silica loading inside polymer matrix on the gas
separation performance, the experimental results of gas
permeation test were compared with ideal Maxwell
equation model as shown in Eq. (3).1*

Pr=Po(1—)/(1-0.5) (3)

where P and P, are the permeability coefficients of
the inorganic-filled polymer matrix and of the pure
polymer, respectively, and @f is the volume fraction
of nano-silica particle in polymer matrix. This model
predicts the reduction of gas permeability in hybrid
system of non-porous filler and polymeric matrix
due to the loss of polymer volume available for
sorption and increased length of penetrant diffusion
pathway.
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Figure 1. (a) Schematic of membrane preparation steps, and (b) Gas permeation experimental set up.

Membrane characterization

Morphology of the prepared membranes were observed
under scanning electron microscope (SEM) JEOL JSM-
6360LA equipped with energy dispersive spectrometer
system JEOL JED-2300 at 5000 times magnification.
Prior to the SEM characterization, the membranes
were sputtered with gold. Membrane densities were
measured by gravimetric analysis as described in the
literature.!"®! The weight of the membrane samples was
measured by an analytical balance and the volume of
membrane samples were obtained by dissolving the

samples into the solvent. The measured density (pys)
was then calculated as the ratio of sample weight and
volume. The theoretical density (pr) was calculated
using Eq. (4), with the polymer volume fraction (¢,)
equal to 1 - ¢y

(4)

where ¢y is the volume fraction of the inorganic com-
ponent. The excess specific volume fraction (¢,,) was
calculated using Eq. (5).

Pr = pp§0p +pf¢f

(Pele_pM/PT (5)



Table 1. Factors, their coded levels, and actual values as used in
the experimental design.

Actual values of coded levels

Variables -1 0 1
Solvent weight ratio, DMAC:THF (A) 0.75 1.00 1.25
Evaporation time (B), s 10 20 30
Nano-sized silica loading (C), wt.% 0 1 2

Experimental design

Box-Behnken experimental design for response surface
methodology was used to investigate the influence of
DMACTHF solvent weight ratio (A), evaporation time
(B), and nano-sized silica loading (C) on CO, permeance
and CO,/N; selectivity of the asymmetric PSf membrane.
Box-Behnken design is an incomplete factorial design,
which consists of a central point and middle points at
each edges of the experimental design box. This design is
more efficient compared to the three level factorial design
and central composite design. As the factors in Box-
Behnken design are at the middle level, combinations of
factors at extreme conditions (e.g. highest or lowest levels)
can be avoided.”®! Each operating conditions was set as
independent variables with three variations and coded as
-1 (low), 0 (medium) and 1 (high). The coded and actual
values of the variables are presented in Table 1. The experi-
ments were conducted in three blocks, in each of which two
operating conditions were varied on low and high level
while keeping one operating condition constant.
Experiment on center point (i.e. at medium level of all
operating conditions) was conducted in three replicates.
Analysis of Variance (ANOVA) was performed to deter-
mine the significance of each operating parameters and
interaction of operating parameters on the CO, permeance
and CO,/N, selectivity using statistical design software
Minitab version 16.

Table 2. Summary of ANOVA for CO, permeance as response.
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Additional experiments with nano-silica loading of
0.5 wt.% and 1.5 wt.% were also conducted subsequent
to the analysis of Box Behnken experimental design to
provide better understanding on the effect of nano-
silica loading to the PSf/silica MMM:s performance.

Results and discussion
Summary of ANOVA

The effect of main parameters and their interaction on
CO, permeance and CO,/N, selectivity were determined
statistically through the Box-Behnken of response surface
methodology (RSM). The effect of three main para-
meters, such as solvent ratio (A), evaporation time (B)
and nano-sized silica loading (C), on the gas separation
performance were assesed by 15 randomized experi-
ments. The regression equations of CO, permeance and
CO,/N; selectivity are presented in Eq. 6 and 7.

CO, permeance (GPU)= 51,28 — 63,9A — 1,454B
10,85C + 26,85A % A + 0,
0083B*B —2,48C*x C+ 1,
30A % B +9,62A % C + 0,
063B x C
(6)
CO, /Nyselectivity = —19, 15 + 39,41A + 0,70B — 1,
54C—17,68A % A — 0,017B % B
+0,58C* C+0,053A xB — 1,
47A «C —0,027B % C
(7)

The statistical significance of regression equations (Eq. (6)
and (7)) were checked by conducting the F-test, and the
results are shown in Tables 2 and 3. The calculated

Source DF Sum of square (adj) Mean of square (adj) F-value P-value
Model 9 839.6 933 214.1 0.0
Linear 3 734.0 244.7 561.5 0.0
A 1 321.7 321.7 7383 0.0
B 1 46.1 46.1 105.7 0.0
C 1 366.2 366.2 840.6 0.0
Square 3 38.7 38.7 29.6 0.0
AxA 1 10.4 10.4 239 0.0
B x B 1 25 25 5.9 0.0
CxC 1 228 228 523 0.0
2-way interaction 3 66.9 66.9 51.2 0.0
AxB 1 422 42.2 96.8 0.0
AxC 1 23.2 23.2 53.1 0.0
CxD 1 1.6 1.6 3.7 0.1
Error 5 5 5 0.4
Lack-of-fit 3 1.8 0.6 3.6 0.2
Pure error 2 0.3 0.2
Total 14 14
Model summary
R-sq R-sq (adj) R-sq (pred)
99.7% 99.3% 96.4%
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Table 3. Summary of ANOVA for CO,/N, selectivity as response.

Source DF Sum of square (adj) Mean of square (adj) F-value P-value
Model 9 1.0 0.2 473 0.0
Linear 3 1.2 0.4 107.9 0.0
A 1 0.2 0.2 45.7 0.0
B 1 0.0 0.0 10.9 0.0
C 1 1.0 1.0 267.1 0.0
Square 3 0.4 0.1 337 0.0
AxA 1 0.1 0.1 334 0.0
B xB 1 0.3 0.3 68.9 0.0
CxC 1 0.0 0.0 1.8 0.2
2-way interaction 3 0.0 0.0 0.2 0.9
AxB 1 0.0 0.0 0.5 0.5
AxC 1 0.0 0.0 0.0 1.0
CxD 1 0.0 0.0 0.0 1.0
Error 5 0.0 0.0
Lack-of-fit 3 0.0 0.0 11.9 0.1
Pure error 2 0.0 0.0
Total 14 1.6
Model summary
R-sq R-sq (adj) R-sq (pred)
98.8% 96.8% 82.3%

F-values of the model for CO, permeance and CO,/N,
selectivity were 214.12 and 47.27, respectively. The prob-
ability value of both responses were equal to 0, which were
lower than the significance level (a = 0.05). This indicates
the significance of the proposed model. Furthermore, the
accuracy of the models were evaluated by the determina-
tion coefficient (R-sq) and the adjusted determination
coefficient (R-sq(adj)) obtained from the ANOVA results.
As shown in Table 2, the calculated R-sq for CO, per-
meance and CO,/N, selectivity were 99,74% and 98,84%.
This values were reasonably close to unity and suggested
that more than 98% of the variability in the data can be
explained by the models. The values of adjusted determi-
nation coefficient (R-sq(adj)) and predicted determina-
tion coefficient were close, indicated a high level of
significance and accuracy of the model. The lack-of-fit
P-values for both responses were higher than significance
level which showed that the lack of fit is insignificant,
indicating a good agreement between the models and
experimental data.

The adequacy of the models can be evaluated from the
residual pattern. Unstructured residual patterns were
expected when the models were correct and the assump-
tions were satisfied. In particular, the residual should be
unrelated to any other variable, including the predicted
response. Figure 2(a and b) presents the residual versus
the fitted value of the CO, permeance and CO,/N, selec-
tivity. Distinct and unstructured pattern moves from
negative to positive were observed. The assumption of
normally distributed data was also satisfied as the residual
value distribute closely to normal distribution line
(Figure 2c and d). This pattern indicates that the deviation
between the corresponding values was small. Therefore,
this response was acceptable.

Simultaneous effect of the membrane synthesis
parameters on psf/nano-silica mmms gas
separation performance

According to ANOVA results on Tables 2 and 3, all
observed main variables (solvent ratio, evaporation
time, and nano-silica loading), significantly affected
CO, permeance and CO,/N, selectivity. The effect of
membrane synthesis parameters on CO, permeance
and CO,/N, were investigated by constructing the
three dimensional (3D) response surface plots.
Figure 3(a) shows CO, permeance as a function of
nano-silica loading and solvent ratio at constant eva-
poration time. The CO, permeance increased with the
increased of solvent ratio and nano-silica loading. The
highest CO, permeance was observed at 2 wt.% nano-
silica loading and 1.25 solvent ratio, while the lowest
was observed at 0 wt.% nano-silica loading and 0.75
solvent ratio. The increase of CO, permeance was fol-
lowed by the reduction of CO,/N, selectivity, as pre-
sented in Figure 3(c). The highest CO,/N, selectivity
was observed at nano-silica loading of 0 wt.% and
solvent ratio of 1.25, while the lowest was observed at
2 wt.% nano-silica loading and 0.75 solvent ratio.

The effect of evaporation time and solvent ratio on
membrane performance is shown in Figure 3(b and d)
with increased CO, permeance at higher solvent ratio.
In this work, solvent ratio indicates the ratio of less
volatile solvent (DMACc) to more volatile solvent (THF).
Therefore, during solvent evaporation step, membrane
fabricated with solvent ratio of more than 1 formed
thinner top-layer due to less solvent being evaporated
and less polymer concentration at the outermost skin
region in the nascent membranes. This led to lower
mass transfer resistance and resulted on much
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permeance and (d) CO,/N, selectivity.

increased CO, permeance. However, thinner top-layer
is generally not defect-free, indicated by reduced CO,/
N, selectivity (Figure 3(d)).

While the focus of this work is to fabricated
MMMs membrane with high permeance, membrane
selectivity is also of importance for process effi-
ciency. The results in Figure 3(c) shows selectivity
reduction with the addition of nano-silica. On the
experiments without nano-silica loading, solvent
ratio and evaporation time influence the CO,/N,
selectivity as indicated in Figure 4. Highest CO,/N,
selectivity of 15.61 was observed at solvent ratio of 1
and evaporation time of 20 s. At experiment with
evaporation time of 10 s, insufficient evaporation
time led to lower polymer concentration at the out-
ermost skin region and resulted on defects formation
on membrane top-layer. Longer evaporation time of
30 s led to higher polymer concentration and thicker

top-layer, which inhibited the transport of gases
through the membrane. At the optimum membrane
fabrication parameters, the CO, permeance was
14.22 GPU.

The SEM image of the asymmetric PSf membrane
fabricated following dry/wet phase inversion method
(22 wt.% PSf; 31.8 wt.% DMAc; 31.8 wt% THF;
14.4 wt.% ethanol; and evaporation time = 20 s) is
presented in Figure 5(a) and in accordance to previous
result observed by Pesek and Koros.*! The cross sec-
tion image of the membrane showed a relatively well-
defined dense skin layer with invisible defects. The
approximate dense skin layer thickness was 1.2 um.
The supported membrane layer had a highly porous
open-celled sub layer containing macrovoid. The mor-
phology of MMMs with 1 wt.% and 2 wt.% nano-silica
loading are shown in Figure 5(b) and (c), respectively.
The incorporation of nano-silica particles into
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polymer matrix induced particle agglomeration, which
increased with the increase of nano-silica particles
concentration, as indicated by the black arrows.

The incorporation of nano-silica in PSf asymmetric
membranes provided significant effect on membrane
gas separation performance as indicated by blue and
orange line in Figure 6 (A). The results from this study
demonstrated that the presence of relatively low nano-
silica loading resulted on significant increase in CO,
permeance (up to 181.2% compared to pristine PSf
membrane). However, the enhancement of N, per-
meance was more eminent, thus resulting on 49%
decrease in CO,/N, selectivity. For comparison, pre-
vious study on dense PSf membrane incorporated with
20 vol% nano-silica showed an increase in CO, gas
permeability up to 310% with 62% decrease in CO,/
CH, selectivity.'® This was due to the microvoid for-
mation in dense skin layer as the organic and inorganic
materials were poorly interacted.

Relative gas permeance calculated using Maxwell
equation for MMMs is also presented in Figure 6(a).
The results indicated that the model could not be
applied in this work. This equation predicts lower
gas permeability of nonporous inorganic particles
filled membrane compared to unfilled membrane. An
increase in volume fraction of inorganic particles leads
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Figure 6. (a) Enhancement of relative permeance of PSf-nano-silica MMMs to a variety of penetrants as a function of nano-sized
silica loading (PSf = 22 wt%; DMAc = 31.8 wt%; THF = 31.8 wt%; Ethanol = 14.4 wt%; and evaporation time = 20 s). The CO, and N,
permeance at experiments with Twt.% and 2wt.% nano-silica loading were 14.22 GPU and 0.91 GPU, respectively. (b) Void volume
fraction and density of polysulfone/nano-silica MMMs as a function of nano-silica loading.
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to decrease in gas permeability due to the decrease in
diffusivity by increasing the tortuosity in the polymer
matrix. According to Aroon et al.**!, the Maxwell
equation is applicable to dilute suspension of spheres
and can only be applied for low particle loadings (less
than 20 wt.%). This model based on the assumption
that the streamlines around particles are not affected
by the presence of nearby particles. In addition, the
ideal Maxwell equation actually assumes negligible
interaction between fillers and polymer matrix. These
phenomena are in agreement with previous study!'®),
which stated that introduction of nano-silica causes a
substantial change of free volume (i.e., quantity of
nanospace). Pinnau et al.>>>") also reported that the
addition of nonporous nano-silica to rigid, glassy
high-free-volume polymers (e.g., PMP and PTMSP)
increased the total free volume of the membrane.?*~
7} Void volume in the mixed matrix asymmetric PSf
membrane was formed due to the incompatibility of
silica — polymer interfacial and particles agglomera-
tion. The fraction of void volume in membrane struc-
ture can be determined by the density of the
membrane. The increase in membrane void volume
can be explained by lower measured density as indi-
cated in Figure 6(b), which shows enhancement of
excess void volume with the increase in nano-silica
volume fraction due to the incompatibility of silica -
polymer interfacial.

Comparison of membrane performance in this
study and literature

The gas separation performance of PSf membranes fabri-
cated in this study, particularly those with highest CO,
permeance (nano-silica loading of 2.wt%) and highest
selectivity (nano-silica loading of 0.wt%), were compared
with several membranes in selected literatures, as shown in
Table 4. Membranes performance in this study and litera-
ture were determined by single gas permeation tests. The

highest CO, permeance of membranes fabricated in this
study was obtained in test using 2%.wt nano-silica loading
MMM, which was more than four times higher than PSf
membranes in literature. However, the CO,/N, selectivity
of 2%.wt nano-silica loading MMM was significantly lower
at 7.7. The highest CO,/N, selectivity of membranes fabri-
cated in this study was obtained in test using membrane
without nano-silica loading. Compared to PSf membranes
in the literature, the selectivity of membrane without nano-
silica loading was approximately 30% lower and the CO,
permeance was more than two-fold higher. Therefore, as
the CO, permeability of the membrane facbricated in this
study was significantly higher, it can potentially be applied
for gas separation operation at high feed flow rate despite its
lower selectivity.

Conclusion

Performance of PSf-based asymmetric membrane
for CO,/N, separation can be tailored by optimiz-
ing membrane fabrication parameters, such as sol-
vent ratio, evaporation time and nano-silica
loading. The solvent ratio, evaporation time and
nano-silica loading had significant effect on mem-
brane selectivity and permeance. The results of
experiments designed following Box-Behnken
method indicated reduced membrane performance
with the addition of nano-silica due to more sig-
nificant N, permeance increase compared to CO,.
At relatively low nano-silica loading there was a
significant increase in CO, permeance to 181%
and a decrease in CO,/N, selectivity to 49%. This
was due to the increase of void volume in mem-
brane dense top layer structure as the result of
polymer/nano-silica interphase incompatibility and
particle agglomeration. The optimum membrane
performance (selectivity of 15.6 and CO, permeance
of 14.2 GPU) was observed at the following mem-
brane fabrication parameters: 22 wt.% PSf, 31.8 wt.

Table 4. Comparison of PSf membrane performance in this study and literature.

Membrane material Feed pressure (atm) Temperature (°C) P (CO,) (Barrer) P (N,) (Barrer) Selectivity (CO,/N,) Reference
PSF 10/5 35 56 0.3 224 281
PSF-F 10/5 35 45 0.2 22,5 (291
PSF-O 10/5 35 43 0.2 215 1291
PSF-P 10/1 35 6.8 0.3 213 =0
PSF-AP 2 35 8.1 0.3 29.2 1311
PSF-M 1 35 28 0.1 255 1301
This work* 17 27 17.1%%% 1.1%e 15.6 -
This work** 17 27 30.9%** 4,0%%* 7.7 -

*membrane fabrication parameters: PSf = 22 wt%, DMAc = 31.8 wt%, THF = 31.8 wt%, Ethanol = 14.4 wt%, evaporation time = 20 s, nano-silica

loading = Owt.%.

**membrane fabrication parameters: PSf = 22 wt%, DMAc = 31.8 wt%, THF = 31.8 wt%, Ethanol = 14.4 wt%, evaporation time = 20 s, nano-silica

loading = 2wt.%.
**Approximate membrane thickness in this work is 1.2 um.



% DMAc, 31.8 wt.% THF, 14.4 wt.% ethanol, 20 s
evaporation time and 0 wt-% nano-silica loading.
Comparing the performance of membrane fabri-
cated at optimum condition in this study with the
membranes in literatures, 32% reduction of mem-
brane selectivity was observed. However, more than
twice higher CO, permeance was obtained using
membrane in this study. This highlight the oppor-
tunity of using the membrane fabricated in this
study in application with high flow rate.
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