Rooftop PV System Policy and Implementation Study for a Household in Indonesia

Elieser Tarigan*
Department of Electrical Engineering, and Center for Environmental and Renewable Energy Studies, University of Surabaya (UBAYA), Indonesia. Email: elieser@staff.ubaya.ac.id

Received: 05 March 2020 Accepted: 13 June 2020 DOI: https://doi.org/10.32479/ijeep.9539

ABSTRACT
This paper discusses the recent solar rooftop photovoltaic (PV) system policies in Indonesia, particularly for the implementation of the residential sector. The aim of this study is to demonstrate the rooftop PV system for a household based on the current related policies. The study is conducted by literature reviews and computer simulation for a typical rooftop PV system for residential in Surabaya, Indonesia. The most recent solar energy policy in Indonesia is the Ministry of Energy and Mineral Resources Regulation No. 49, the year 2018, which establishes net metering for the residential, commercial and industrial National Grid (PLN) customers that have excess power from solar rooftop installations. The simulation shows the average values global solar irradiation on a horizontal surface in Surabaya vary between 6.81 kWh/m² and 4.82 kWh/m² with an average of 5.54 kWh/m²/day. Energy output by 3 kWp rooftop PV system in Surabaya is found about 4,200 kWh/year, with an average of 11.67 kWh/day. Economically, under present conditions, rooftop on-grid PV system investment would give about 9-10 years of the payback period.

Keywords: Rooftop, PV System, Solar Energy, Residential, Indonesia

1. INTRODUCTION
Solar energy is one of the most promising of renewable energies in attempting to reduce fossil-based fuel consumption due to its limited reserved and the greenhouse gas (GHG) emissions from the combustion process. Indonesia is located around the equator line, which fortunate to have relatively high and stable daily solar energy throughout most of the year. Statistically, the daily solar irradiation in Indonesia would provide more than 500 GW of potential solar sources (Dang, 2017; UNEP DTU Partnership, 2016). However, the solar photovoltaic (PV) sector has not been well tracked in Indonesia. By the time of writing this paper, based on various sources (Hamdi, 2019; Tarigan, 2018; Tarigan et al., 2015), it is estimated that there are approximately 14.7 MW of solar PV system running on-grid, 48 MW under construction, and an estimated 326 MW in the pipeline. This capacity is relatively small in comparing to the neighboring South East Asian countries such as Thailand (2.6 GW) and the Philippines (868 MW) (Hamdi, 2019).

The success of the implementation of the rooftop PV system in a country might be affected by many factors such as technical and policy or regulation. It is important for electricity consumers to consider the factors to ensure the beneficial use of the PV system. A number of studies for different countries were found in the literature regarding the policies that regulate the rooftop PV systems in particular countries. Goel (2016) studied and reported the policies, challenges, and outlook of solar rooftop in India. It is reported that with a strong commitment to increasing the renewable sources based energy capacity to 175 GW by 2022, India has a target to install 100 GW of solar energy capacity. Of this 40 GW would be the share of grid-connected solar PV rooftop (Goel, 2016). Xin-Gang and Yi-Min (2019) studied the economic performance of industrial and commercial rooftop PV in China.
It was reported that for a small rooftop PV investment payback period is short and the risk is low. The levelized cost of electricity is reported at about 0.2727 - 0.5573 CNY/kWh. The techno-economic impact of the rooftop PV system for schools in Palestine schools as the study cases. It is reported that the application of the rooftop PV systems was experiencing a significant increase and expanding vastly as an alternative source of energy provider for different buildings.

The Government of Indonesian under the Ministry of Energy and Mineral Resources (MEMR) has set a target of 23% of renewable energy of total national energy needs by 2025 (ESDM, 2016). In this connection, the PV rooftop system regulation has recently been introduced (Government of Indonesia, 2018), i.e Permen ESDM or MEMR Regulation No 49/2018. The regulation allows and encourages users, including residents, public, and commercial buildings to generate electricity by using PV system installed on the building roofs. The produced energy can be exported or fed into the utility grid.

The present paper discusses the current solar rooftop PV system policies in Indonesia, particularly for implementation for the residential sector. The available previous related policies on solar energy are compared, and the electricity Feed-in Tariffs (Fit) per are identified. In addition, simulation for a 3 kWp rooftop PV system for residential is done using solar PVSpot (SolarGis, 2017). The objective of this study is to demonstrate the rooftop PV system for households based on the current related policies and to figure out the opportunity benefits from the user’s perspective. The information and the results from this work are expected to be useful for the development of solar rooftop PV system applications for a larger scale in Indonesia, particularly for residential sectors.

2. METHOD

The study in this present work is carried out by literature reviews and computer simulation. The related solar PV policies documents and literature were retrieved through the internet, and then they were reviewed and discussed. Implementation of solar rooftop PV system for a typical household is simulated by taking Surabaya as object location.

3. RESULTS

3.1. Solar Energy Policies in Indonesia

Since 2013, the government of Indonesia, through the Directorate General of New and Renewable Energy and Energy Conservation (DGNREEC) of the MEMR has started to regulate solar energy sectors in Indonesia. The first policy was introduced with MEMR Regulation Number 17/2013. In the early years, solar technology was still perceived as expensive and unreliable relative to conventional technologies. This has made the lack of a market for solar energy.

In the course of time, there have been the regulation changes in Indonesia as shown in the road map solar energy policies in Figure 2. Table 1 presents the comparison of solar regulations ever issued in Indonesia. The important issues of regulations are mainly concerning: requirement of local content, feed-in tariffs, procurement method, residential application, the build own operate transfer (boot) rules, and deemed dispatch in case of force majeure. It can be seen that none of the regulations specifically regulate the rooftop PV system until the latest MEMR Regulation Number 49/2018 was introduced.

3.2. Rooftop PV System Policy

The most recent solar energy policy is in Indonesia is MEMR Regulation No. 49 the year 2018 which establishes a net metering...
scheme for the customers of PLN, including the residential, commercial and industrial customers that have excess power from solar rooftop installations. Under the regulation, the installation and construction of a rooftop PV system require prior approval and verification from PLN. The process of approval and verification involves application submission to office of relevant PLN distribution unit, along with the required technical information and administrative matters, such as the PLN customer identification number, the capacity of the rooftop PV system planned to install, one-line diagram of the planned PV system, and the specifications of the equipment to be installed.

Upon customer application, PLN will make the evaluation on the application and notify the decision within 15 business days. The decision can be either approved or rejected. The installation work for the PV system can only be started after a customer gets formal approval.

With the rooftop PV system, the electricity bill for PLN customers will be calculated monthly using the export-import energy meter. The calculation is based on the energy used (kWh import) value minus energy produced by the rooftop PV system (kWh export) value. Under MEMR Regulation No 49 the year 2018, the price of electricity by rooftop PV customers that exported to the grid will be valued at 65% for compensation. If the export is higher, the balance can be accumulated for up to 3 months before it expires.

Table 1: Solar energy policies in Indonesia

<table>
<thead>
<tr>
<th>Regulation</th>
<th>MEMR Regulation No. 12/2017 Updated by No. 50/2017</th>
<th>MEMR Regulation No. 49/2018 – (Solar Rooftop)</th>
<th>Regulation No. 17 the Year 2013</th>
<th>Regulation No. 19 the Year 2016</th>
<th>Regulation No. 12 the Year 2017, Updated by Regulation No. 50 the Year 2017</th>
<th>Regulation No. 49 the Year 2018 – (Solar Rooftop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The requirement of local content</td>
<td>Feed-in tariffs</td>
<td>Yes</td>
<td>Yes US$ 0.30/kWh (using modules with >40% local content) US$ 0.25/kWh (using modules with <40% local content)</td>
<td>Yes</td>
<td>Yes The range between US$ 0.145 – 0.25/kWh depending on the project location</td>
<td>Yes The tariff should be lower than the National supply cost of electricity (National BPP) or no more than 85% of local electricity supply cost (regional BPP) which ranges from US$ 0.048 – 0.144/kWh depending on the location</td>
</tr>
<tr>
<td>Procurement method</td>
<td></td>
<td>Auction based on quota per annum Direct appointment allowed if only 1 company bids</td>
<td>Auction based on quota for certain pre-determined regions Project size per developer is subject to a limit based on the available quota in the region</td>
<td>Direct selection based on quota capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOT</td>
<td></td>
<td>Not regulated</td>
<td></td>
<td></td>
<td>Not regulated</td>
<td></td>
</tr>
<tr>
<td>Deemed Dispatch in case of force majeure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upon customer application, PLN will make the evaluation on the application and notify the decision within 15 business days. The decision can be either approved or rejected. The installation work for the PV system can only be started after a customer gets formal approval.

With the rooftop PV system, the electricity bill for PLN customers will be calculated monthly using the export-import energy meter. The calculation is based on the energy used (kWh import) value minus energy produced by the rooftop PV system (kWh export) value. Under MEMR Regulation No 49 the year 2018, the price of electricity by rooftop PV customers that exported to the grid will be valued at 65% of the applicable PLN tariff. To illustrate, if a rooftop PV system customer exported 1000 kWh to the grid (daily accumulated for a certain month), and the customer imported 1200 kWh from PLN, the export value will be calculated as 650 kWh. In this case, the customer would be billed for 550 kWh (i.e. 650 subtracted from imported of 1200 kWh). Some key points of MEMR Regulation 49 the year 2018 are:

- The allowed capacity of the rooftop PV system is limited at a maximum of 100% of the PLN customer’s installed capacity.
exemption of emergency energy charge and capacity charge for rooftop PV systems;
• The industrial users can install rooftop PV systems either off-grid on an on-grid installation. For the off-grid installations, capacity charge and emergency energy charge are exempted, while for on-grid installation will be subject to both charges.

There have been some questions raised related to the latest MEMR Regulation 49/2018, including how the electricity that exported from rooftop PV systems valued by the government, and what is the additional requirements to obtain approval prior to system installation. The multiplier of 65% applied to exported energy is considered unfavorable to rooftop PV users (Hamdi, 2019).

3.3. Implementation Study for Household
The conversion process of solar energy into electricity is affected by many factors, including materials properties and operating environment conditions. The material properties have been fixed during the manufacturing process of solar cells, while environmental operating conditions factors can be simulated to find optimum conditions. The Solar GIS PV planner simulation results showed the potential of the site solar irradiation presented in the form daily sum of global irradiation.

The result from the simulation shows that the average values global solar irradiation on a horizontal surface in Surabaya vary between 6.81 kWh/m² and 4.82 kWh/m² with an average of 5.54 kWh/m²/day. The global solar irradiation consists of direct, diffuse, and reflected components. The diffuse component of radiation is quite significant especially during March – October, while reflected radiation relatively small throughout the year. The monthly global from simulation results is shown in Figure 3. The global radiation in the past time was usually higher during month April – October than the other months due to dry season, meanwhile low radiation during December – March due to rainy season. However, in the present time, the season period is likely unpredictable, and further investigation should be done. Daily air temperature showed that the ambient temperature in Surabaya varies about 26-30°C.

The results of the simulation on energy output by 3 kWp PV system presented in Figure 4. Total annual energy production from the system is found at about 4200 kWh. The lowest energy production was in December and January which is about 190 kWh. Further specific studies are recommended to investigate the main factors such as dust, shading, weather, etc to optimize the energy output.

3.4. Economic Analysis
A quick market survey on the retail price of PV system components in Surabaya was conducted using the internets. There was a variation of the price for each of the components by different brands, types and vendors or suppliers. The average prizes among all surveyed data are used for economic analysis. The retail price of components and cost for installing 3kWP rooftop on-grid PV is presented in Table 2.

A financial simulation was carried out with RETScreen software with financial parameters as presented in Table 3. Assuming that the price of one kWh of exported electricity from rooftop PV

<table>
<thead>
<tr>
<th>Components</th>
<th>Retail price or cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 kWp PV modules</td>
<td>2400</td>
</tr>
<tr>
<td>Inverters 3000 W</td>
<td>350</td>
</tr>
<tr>
<td>Cabling</td>
<td>100</td>
</tr>
<tr>
<td>Construction cost</td>
<td>250</td>
</tr>
<tr>
<td>Total</td>
<td>3100</td>
</tr>
</tbody>
</table>

Table 2: Cost component for 3 kWp PV system

Figure 3: Global irradiation and air temperature in Surabaya
system to the grid is 0.09 (USD/kWh), then during 1 year, based current situation above, the system will be generated earning: 4.200 (kWh/year) × 0.09 (USD/kWh) × 1 (year) = 378 (USD/year). Lifetime for PV panels is considered about 20 years, while for inverters are 6-7 years.

Table 3: Simulation parameters for financial simulation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt ratio</td>
<td>50%</td>
</tr>
<tr>
<td>Debt interest rate</td>
<td>6%</td>
</tr>
<tr>
<td>Inflation rate</td>
<td>5%</td>
</tr>
<tr>
<td>Project life</td>
<td>20 year</td>
</tr>
<tr>
<td>Electricity export rate</td>
<td>1.2 USD/kWh</td>
</tr>
<tr>
<td>GHG emission factor</td>
<td>0.709 tCO₂/MWh</td>
</tr>
<tr>
<td>debt term</td>
<td>10 year</td>
</tr>
<tr>
<td>Capacity factor</td>
<td>14%</td>
</tr>
</tbody>
</table>

The annual cumulative cash flows are presented in Figure 5. The cumulative cash flow in the figure is from the accumulation of money value of electricity produced by the PV system in comparison to system incremental of installation cost. It can be seen that under present conditions, rooftop on-grid PV system investment would give about 9-10 years of the payback period.

3.5. Environmental Analysis
Replacing fossil fuel with renewable ones for power generation would give a positive impact on the environment. It has been known that the combustion process of fossil fuels in power plants would realize GHG such as Sulphur dioxide (SO₂), nitrogen oxide (NOx), and Carbon dioxide (CO₂) to the atmosphere. Besides, it also produces a large amount of ash that needs particular handling. Mathematically, reducing GHG emissions from using 3 kWp solar panels in Surabaya (due to replace the burning of fossil fuel...
with the equivalent of produced energy) (RETScreen, 2019) is presented in Table 4.

GHG reduction as shown in Table 4 is just representing by applying the PV system by a household. If the number of the house installing PV increases then the amount of reduction GHG should be multiplied by the number of houses with PV systems.

| Table 4: Greenhouse gasses reduction by 3 kWp PV system |
|-------------------------------|-----------------|-----------------|
| Greenhouse gasses from the coal power plant | Per kWh (g) | For annual energy production of E=4200 kWh (kg) |
| SO₂ | 1.24 | 5.21 |
| NOₓ | 2.59 | 10.88 |
| CO₂ | 970 | 4075.00 |
| Ash | 68 | 285.6 |

4. CONCLUSIONS

The regulation on solar energy application in Indonesia has been reviewed, and the simulation of the rooftop PV system a typical household in Surabaya Indonesia has been conducted. The most recent solar energy policy in Indonesia is MEMR Regulation No. 49 the year 2018 which establishes a net metering scheme for the customers of PLN, including the residential, commercial and industrial customers that have excess power from solar rooftop installations. Under the current regulation, the electricity bill for PLN customers will be calculated monthly using the export-import energy meter. The calculation is based on the energy used (kWh import) value minus energy produced by the rooftop PV system (kWh export) value.

The price of electricity by rooftop PV customers that exported to the grid will be valued at 65% of the applicable PLN tariff. The simulation shows the average values global solar irradiation on a horizontal surface in Surabaya vary between 6.81 kWh/m² and 4.82 kWh/m² with an average of 5.54 kWh/m²/day. Energy output by 3 kWp rooftop PV system in Surabaya is found about 4200 kWh/year, with an average of 11.67 kWh/day. Economically, under present conditions, rooftop on-grid PV system investment would give about 9-10 years of the payback period. Environmentally, a 3 kWp rooftop PV system would reduce CO₂ emission about 4, 7-ton kg/year.

REFERENCES

Editorial Team

EDITORS

Ilhan Ozturk, Editor-in-Chief, Cag University, Mersin, Turkey
Ali ACARAVCI, Co-Editor, Mustafa Kemal University, Hatay, Turkey

SECTION EDITORS

Serkan Yilmaz KANDIR, Co-Editor, Çukurova University, Adana, Turkey
Muhittin KAPLAN, Istanbul University, Istanbul, Turkey
Alper ASLAN, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
Seyfettin ARTAN, Karadeniz Technical University, Trabzon, Turkey
Gazi Salah UDDIN, Linkoping University, Sweden
Constantinos ALEXIOU, Cranfield University, Bedfordshire, United Kingdom
Abdulnasser Hatemi, UAE University, United Arab Emirates
Hooi Hooi Lean, Universiti Sains Malaysia, Penang, Malaysia
Muhammad Shahbazi, School of Management and Economics, Beijing Institute of Technology, China
Cem SAATCIOLGU, Istanbul University, Istanbul, Turkey
Faik BILGILI, Erciyes University, Kayseri, Turkey
Abu N.M. WAHID, Tennessee State University, United States
Chor Foon TANG, Universiti Sains Malaysia, Penang, Malaysia
Yunke YU, Louisiana State University, Louisiana, United States
Yu Hsing, Southeastern Louisiana University, United States
Yue-Jun Zhang, Business School of Hunan University, China

Aviral Kumar Tiwari, ICFAI University Tripura, India

Nicholas Apergis, University of Derby, United Kingdom

Mohamed El Hedi Aroui, EDHEC Business School, France

Ali Ahmed, Linköping University, Linköping, Sweden

Usama Al-mulali, Sohar University, Oman

Mohammad Salahuddin, Trent University (Canada) & University of Southern Queensland, Australia

Abdul Jalili, Quaid-i-Azam University, Pakistan

Diana Mihaela Pociovalisteana, "Constantin Brancusi" University of Târgu Mureș, Romania

Vincenzo Bianco, University of Genoa, Italy

Mita Bhattacharya, Monash University, Australia

Seyed Ehsan Hosseini, Arkansas Tech University, United States

Burcu Ozcan, Firat University, Elazığ, Turkey

Rabindra Nepal, University of Wollongong, Australia

Mohammad H. Ahmadi, Shahrood University of Technology, Iran, Islamic Republic of

Roula Inglesi-Lotz, University of Pretoria, South Africa

Songül Kakilli ACARAVCI, Mustafa Kemal University, Hatay, Turkey

Victor M.F. Moutinho, Universidade de Aveiro, Portugal

Samuel Asumadu Sarkodie, Nord University, Business School, Norway

Abdul Rauf, Nanjing University of Information Science and Technology, China

Ardi Gunardi, Universitas Pasundan, Indonesia

Qazi Muhammad Adnan Hye, Mohammad Ali Jinnah University, Karachi, Pakistan

Solarin Sakiru Adebola, Multimedia University, Melaka, Malaysia
Abbas Ali Chandio, Sichuan Agricultural University, Chengdu, Chengdu, China

Arshian Sharif, Universiti Utara Malaysia, Malaysia

Hoang Phong Le, University of Economics Ho Chi Minh City & Ho Chi Minh City University of Law, Viet Nam

Festus Victor Bekun, Istanbul Gelisim University, Turkey

Oludele Folarin, University of Ibadan, Nigeria

Festus Adedoyin, Bournemouth University, United Kingdom

Adedoyin I. Lawal, Landmark University, Omu Aran, Nigeria

Muddassar Sarfraz, Nanjing University of Information Science & Technology, WuXi, Jiangsu, China

Ionel Bostan, Ştefan cel Mare University of Suceava, Romania

Bashar H. Malkawi, University of Sharjah, Sharjah, United Arab Emirates

Andrew Adewale Alola, University of Vaasa, Vaasa, Finland

Fabio Pizzutilo, University of Bari “Aldo Moro”, Italy

Sana Ullah, Quaid-i-Azam University, Islamabad, Pakistan

Nuno Carlos Leitão, Évora University, Évora, Portugal

Idiano D’Adamo, Sapienza Università di Roma, Italy

Fayyaz Ahmad, Lanzhou University - Lanzhou, Gansu, China

Akbar Maleki, Shahrood University of Technology, Iran, Islamic Republic of

Shah Fahad, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Muhammad Tariq Majeed, Quaid-i-Azam University, Islamabad, Pakistan

Muhammad Hafeez, University of Sialkot, Sialkot, Pakistan

Muntasir Murshed, North South University, Dhaka, Bangladesh

Daniel Balsalobre-Lorente, University of Castilla-La Mancha, Spain
Danish Khan, University of Foreign Studies, India
Avik Sinha, Goa Institute of Management, India
Nisar Ahmad, Sultan Qaboos University, Oman
Kazi Sohag, Ural Federal University, Russian Federation
Phouphet - Kyophilavong, National University of Laos, Lao People's Democratic Republic
Angeliki N. Menegaki, Agricultural University of Athens-EU Conexus, Greece
Kamil Sertoğlu, Eastern Mediterranean University, Famagusta, Cyprus
Danish Iqbal Gohr, Dar-ul-Madina International University, Islamabad, Pakistan
Dinh Tran Ngoc Huy, Binh Duong University, Viet Nam
Larisa Ivascu, Politehnica University of Timisoara, Romania
Lucian-Jonel Cioca, Lucian Blaga University of Sibiu, Romania
Sobia Naseem, Shijiazhuang Tiedao University, China
Aura Domil, West University of Timisoara, Romania
Muhammad Mohsin, Hunan University of Humanities, Science and Technology, China
Ayfer Gedikli, Duzce University, Duzce, Turkey
Seyfettin Erdogan, Istanbul Medeniyet University, Istanbul, Turkey
Balakrishnan Deepanraj, Jyothi Engineering College, Thrissur, India
Vol. 10 No. 5 (2020)

Published: 2020-08-10

Articles

Modeling the Efficiency of Using Digital Technologies of Energy and Resource Saving Technologies at Petrochemical Enterprises
Alexey I. Shinkevich
1-6

Rule of Law and Environment Nexus in Saudi Arabia
Haider Mahmood, Awad Ali Alanzi
7-12

Analysis and Prospects for the Development of Regional Energy Integration of the Eurasian Economic Union Countries
Natalya Yuryevna Sopilko, Olga Yuryevna Myasnikova, Nataliya Vital'evna Bondarchuk, Natalia Anatolyevna Navrotskaia, Tatyana Evgenyevna Migaleva
13-20

Renewable Energy Projects on Isolated Islands in Europe: A Policy Review
Marula Tzaqkari, Jordi Roca Jusmet
21-30

Energy Consumption and Sustainable Economic Welfare: New Evidence of Organization of Petroleum Exporting Countries
Somayeh Azami, Shabnam Almasi
31-40
The Investments in Energy Distribution Networks: Does Company Ownership Matter?
Francesca Di Pillo, Nathan Levialdi, Laura Marchegian
41-49

Renewable Energy Use and Its Effects on Environment and Economic Growth: Evidence from Malaysia
Muhammad Raza, Ahmed E. Ahmed, Ali Saleh Alshebami, Aleksandra G. Polyakova
50-57

Analysis of Economic Growth, Oil Stocks and SIN Stocks in United States
Iis Nasralsih, Nugraha Nugraha, Disman Disman, Rozmita Dewi Yuniarti, Kharisya Ayu Effend
58-63

Future Natural Gas Price Forecasting Model and Its Policy Implication
Ambya Ambya, Toto Gunarto, Ernie Hendrawaty, Fajarin Satria Dwi Kesumah, Febryan Kusuma Wisnu
64-70

Examining the Driving Forces Affecting Energy Intensity during Financial Crisis: Evidence from ASEAN-6 Countries
Dhani Setyawan, Rakhmin Dyarto, Hadi Setiawan, Rita Helbra Tenrini, Sofia Arie Damayanty
71-81

Energy Price Formation and Energy Consumption by Households as a Factor of Ensuring Energy Safety
Valery Prasolov, Valery Bezpalov, Svetlana Doguchaeva, Rodion Rogulin
82-93

The Driving Forces of Change in Energy-related CO2 Emissions in the Polish Iron and Steel Industry in 1990-2017
Zbigniew GoÅ‚a, aÀš
The Effect of Ownership and Financial Performance on Firm Value of Oil and Gas Mining Companies in Indonesia
Hasanudin Hasanudin, Andini Nurwulandari, I. Made Adnyana, Novi Loviana
103-105

Rooftop PV System Policy and Implementation Study for a Household in Indonesia
Elieser Tarigan
110-115

The Impact of the Oil and Oil Products Market on Economic Development: A National Aspect
Araliym Suleimenova, Kulyash Turkeyeva, Aigul Tulemetova, Nazigul Zhanakova
116-122

How Oil Price and Exchange Rate Affect Non-oil GDP of the Oil-rich Country – Azerbaijan?
Famil Majidli, Hasraddin Guliyev
123-130

Nuclear Power Production: The Future or the Past?
Sergey Kashurnikov, Valeriy Prasolov, Vladimir Gorbanyov, Rodion Rogulir
131-141

Stock Prices Reaction to Oil Price Fluctuations: Empirical Evidence from Nigeria
Henry Inegbedion, Eseosa Obadiaru, Olamide Adeyemi
142-146

Relationship between Oil and Stock Markets: Evidence from Pakistan Stock Exchange
Muhammad Hanif
150-157

Strategic Energy Partnership between Russia and China
Pavel Baboshkir
158-163
Does the Choice of the Multivariate GARCH Model on Volatility Spillovers Matter? Evidence from Oil Prices and Stock Markets in G7 Countries
Dimitrios Kartsonakis-Mademlis, Nikolaos Dritsakis
164-182

Drivers of the Quality of Electricity Supply
Remy Tehero, Emmanuel Brou Ake
183-195

Macro Economics of Virtual Power Plant for Rural Areas of Botswana
Sampath Kumar Venkatachary, Jagdish Prasad, Ravi Samikannu, Annamalai Alagappan, Leo John Baptist, Raymon Antony Raj
196-207

Analysis of the Effects of Cell Temperature on the Predictability of the Solar Photovoltaic Power Production
Sameer Al-Dahidi, Salah Al-Nazer, Osama Ayadi, Shuruq Shawish, Nahed Omrara
208-219

Cross-country Analysis of the Comparative Efficiency of Government Support for Coal and Lignite Production
Alan Karaev, Vadim Ponkratov, Andrey Masterov, Elena Kireeva, Maria Volkova
220-227

Accurate Estimated Model of Volatility Crude Oil Price
Toto Gunarto, Rialdi Azhar, Novita Tresiana, Supriyanto Supriyanto, Ayi Ahadiat
228-233

The Relationship Between Crude Oil Prices, EUR/USD Exchange Rate and Gold Prices
Benlaria Houcine, Gheria Zouheyr, Belbali Abdessalam, Hadji Youcef, Abdelli Hanane
234-242
Foreign Direct Investment, Electricity Power Supply and Economic Growth in Nigeria
Sherifatu O. Onayemi, Philip A. Olomola, Philip O. Alege, Oluwakemi O. Onayem
243-247

A Look to the Biogas Generation from Organic Wastes in Colombia
Michel Durán Contreras, Rodrigo Sequeda Barros, Jorlany Zapata, Marley Vanegas Chamorro, Alberto Albis Arrieta
248-254

Oil and Food Prices for a Net Oil Importing-country: How Are Related in Indonesia?
Agus Widjarjono, Indah Susantun, Sarastri M. Ruchba, Ari Rudatir
255-263

Relationship Between Crude Oil prices and Macro-economic Variables: Evidence from BRICS Countries
Guntur Anjana Raju, Shripad Ramchandra Marathe
264-271

Clean Energy in the EAEU in the Context of Sustainable Development: Compliance and Prospects
Natalia A. Sadovnikova, Valery L. Abramov, Andrey A. Ogryzov, Olga A. Makhove
272-280

Factors Associated with Electricity Losses: A Panel Data Perspective
Hugo Briseño, Omar Rojas
281-286

The Influence of Board Diversity on Environmental Disclosures and Sustainability Performance in Malaysia
Rohaida Abdul Latif, Nurul Huda Yahya, Kamarun Nisham Taufil Mohd, Hasnah Kamardin, Arifatul Huse Mohd Arif
Do Electricity Consumption and Economic Growth Lead to Environmental Pollution? Empirical Evidence from Association of Southeast Asian Nations Countries
Van Chien Nguyen, Hai Phan Thanh, Thu Thuy Nguyen
297-304

Oil Rent, Geopolitical Risk and Banking Sector Performance
Naif Alsaghir, Stefan F. Van Hemmen Almazor
305-314

Identifying the Dynamic Connectedness between Propane and Oil Prices: Evidence from Wavelet Analysis
Ngo Thai Hung
315-326

An Approach to the Large-scale Integration of Wind Energy in Albania
Lorenc Malka, Ilirian Konomi, Ardit Gjeta, Skerdi Drenova, Jugert Gjikoka
327-343

The Influence of Fiscal Progress on Energy Consumption in Kazakhstan
Azamat Zhansaitov, Gulnur Raikhanova, Sagynysch Mambetova, Serik Daribekov, Yerbolsyn Akbayev
344-347

World Practice of Using Biogas as Alternative Energy
Aslan B. Tasmaganbetov, Zhumabay Ataniyazov, Zhangul Basshieva, Abu U. Muhammedov, Anar Yessengeldina
348-352

Time Series Analysis of Carbon Dioxide Emission, Population, Carbon Tax and Energy use in South Africa
Rufaro Garidzira
An Analysis of Electricity Generation with Renewable Resources in Germany
Eduardo Vicente Mendoza Merchán, Moisés David Velázquez Gutiérrez, Diego Armando Medina Montenegro, Ricardo Nuñez Alvarez, John William Grimaldo Guerrero
361-367

Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling
Zeeshan Arshad, Margarita Robaina, Anabela Botelho
368-383

Determinants of Diversification from Oil Sector in Saudi Arabia
Khalid Abdullah Alkhatlan, Tarek Tawfiq Yousef Alkhateeb, Haider Mahmood, Wardah Abdulrahman Bindabel
384-391

Energy Prices, Income and Electricity Consumption in Africa: The Role of Technological Innovation
Taiwo Owoeye, Dayo Benedict Olanipekun, Akindele John Ogunsola, Augustine Adebayo Kutu
392-400

Evaluation of the Gas Industry Company’s Competitiveness in the Domestic Market
Natalya S. Shcherbakova, Yulia A. Nazarova, Natalia A. Navrotskaia, Nataliya V. Bondarchuk, Alla V. Vivilina
401-408

The Lead Lag Relationship between Spot and Futures Markets in the Energy Sector: Empirical Evidence from Indian Markets
Guntur Anjana Raju, Sanjeeta Shirodkar
409-414

An Investigation of the Causal Relationship between Energy Consumption and Economic
Growth: A Case Study of Vietnam
Xuan Hoi Rui
415-421

The Impact of COVID-19 on Price Volatility of Crude Oil and Natural Gas Listed on Multi Commodity Exchange of India
Bharat Kumar Meher, Iqbal Thonse Hawaldar, Latasha Mohapatra, Adel M. Sarea
422-431

Price and Volatility Spillovers between Crude Oil and Natural Gas markets in Europe and Japan-Korea
Theodosios Perifanis, Athanasios Dagoumas
432-446

Energy Intensity of Kazakhstan’s GDP: Factors for its Decrease in a Resource-export Developing Economy
Nurlan Kurmanov, Ulubek Aliyev, Aizhan Satbayeva, Gulmira Kabdullina, Darkhan Baxultanov
447-453

Management of Sustainable Consumption of Energy Resources in the Conditions of Digital Transformation of the Industrial Complex
Marina V. Shinkevich, Nikolay A. Mashkin, Izida I. Ishmuradova, Valeria V. Kolosova, Olga V. Popova
454-460

The Effect of Oil Price Fluctuation on the Economy of Nigeria
Jelilov Gylych, Abdullahi Ahmad Jbrin, Bilal Celik, Abdurrahman Isik
461-468

Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria
469-478
Renewable Energy, Foreign Direct Investment and Sustainable Development: An Empirical Evidence
Narayan Parab, Ramashanti Naik, Y. V. Reddy
479-484

Effect of Oil Revenues on Government Size in Selected Oil-exporters with an Emphasis on Iran’s Economy
Davood Danesh Jafari, Hamid Nazemian, Javid Bahrami, Mohammad Hassan Kheiravar
485-497

Biogas Fed-fuel Cell Based Electricity Generation: A Life Cycle Assessment Approach
498-502

Negating the Role of Institutions in the Long Run Growth of an Oil Producing Country
Mohammad Imdadul Haque
503-505

Do Oil Price Shocks Give Impact on Financial Performance of Manufacturing Sectors in Indonesia?
Sudarso Kaderi Wiryono, Oktofa Yudha Sudrajad, Eko Agus Prasetyo, Marla Setiawati
510-514

Decovidization through Rurbanization: The Re-development Option for Sustainable Energy Access
Salil K. Sen
515-523

Bosnia and Herzegovina’s Renewable Energy Policy and Perspective
Amir Tokic, Tahir Cetin Akinci, Aydin Tarik Zengin
524-530
Arslan Kulanov, Assiya Issakhova, Olga Koshkina, Parida Issakhova, Alma Karshalové
531-538

International Economic Cooperation of Central Asian Countries on Energy Efficiency and Use of Renewable Energy Sources
Gulnar Shaimardanovna Kaliakparova, YDulena Evgenevna Gridneva, Sara Sarsebekovna Assanova, Sandugash Babagalikzyy Sauranbay, Abdizhapar Djumanovich Saparbayev
539-545

Theoretical Implications of Renewable Energy using Improved Cooking Stoves for Rural Households
Muhammad Abrar Ul Haq, Muhammad Atif Nawaz, Farheen Akram, Vinodh K. Natarajan
546-554

The Impact of Environmental, Social and Governance Index on Firm Value: Evidence from Malaysia
Muhammad Sadiq, Jaspal Singh, Muhammad Raza, Shafi Mohamad
555-562

Effect of Economic Growth and Foreign Direct Investment on Carbon emission in the Asian States
Toto Gunarto
563-566

Seeing Domestic and Industrial Logistic in Context of CO2 Emission: Role of Container Port Traffic, Railway Transport, and Air Transport Intensity in Thailand
Chaisri Tarasawitpipat, Thammarak Srimarut, Witthaya Mekhum
570-576

What Difference Urban Sprawl, Industrialization and Migration Can Make in Energy Consumption? A Time-series Analysis of Thailand
Chonmapat Torasa, Waleerak Sittisom, Witthaya Mekhum
577-583

PDF

The Impact of Foreign Direct Investment on CO2 Emissions in ASEAN Countries
Rizky Eriandani, Saiful Anam, Dewi Prastiwi, Ni Nyoman Alit Trian
584-592

PDF

Long Run Association of Oil Prices and Stock Prices: A Case of Indonesia
Venkata Sai Srinivasa Rao Muramalla, Hassan Ali Alqahtani
593-600

PDF

Energy Consumption and Economic Growth in Indonesia
Nguyen Duy Dat, Nguyen Hoang, Mai Thanh Huyen, Dinh Tran Ngoc Huy, Luong Minh Lai
601-607

PDF

Estimating the Impact of Energy Consumption on Carbon Emissions Using Environmental Kuznets Curve
Naif Dalish N. Alanazi, Zavyalov Dmitriy, Aleksandra G. Polyakova
608-614

PDF

The Influence of Biological Asset Accounting Policies and Corporate Governance Practices on the Financial Performance: Moderating Role of Knowledge about Renewable Energy
Retno Martanti Endah Lestari, Wahyudin Zarkasyi, Ida Farida
615-622

PDF

Development and Challenges for the Functioning of the Renewable Energy Prosumer in Poland: A Legal Perspective
Dawid StadniczeÄ„,kc
623-630

PDF

Utilization of Energy Sources, Financial Stability and Prosperity in the Economy of Indonesia
Hoang Thanh Hanh, Dinh Tran Ngoc Huy, Pham Minh Dat
Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan
Sholpan Saimova, Gulsim Makenova, Aizhan Skakova, Aitolkyn Moldagaliyeva, Ardak Beisembina, Zhamilya Berdiyarova, Bagdagul Imanbekova
638-646

Impact of Accounting Information System and Intensity of Energy on Energy Consumption in Sugar Industry of Indonesia: Moderating Role of Effectiveness of Supply
Meiryni Meiryni, Leny Suzan, Jajat Sudrajat, Watcharin Joemsittiprasert
647-654

Impact of Energy consumption and Economic Growth on Environmental Performance: Implications for Green Policy Practitioners
Mahmoud Radwan Hussein AlZgool, Syed Mir Muhammad Shah, Umair Ahmec
655-662

The Increasing of Competitiveness of Agro-Industry Products Through Institutional Empowerment to Support the Achievement of Sustainable Agricultural Development
Achmad Faqih, Roosganda Elizabeth, Delima Hasri Azahar
663-671

Impact of Energy Consumption, and Economic Dynamics on Environmental Degradation in ASEAN
Tri Andjarwati, N. Anggoro Panji, Agus Utomo, Linda Nur Susila, P. Anton Respati, Abdul Talib Bor
672-678

Analysis of the Level of Implementation of Programs for the Efficient Use of Energy and Unconventional Sources: Case Study Colombia
Marlen Fonseca Vigoya, JosÃ© GarcÃ­a Mendoza, Sofia Orjuela Abri
679-686

COUNTRY
Turkey

SUBJECT AREA AND CATEGORY
Economics, Econometrics and Finance

Energy (miscellaneous)

PUBLISHER
EconJournals

H-INDEX
33

HISTORY

ISSN
21454853

COVERAGE
2011-2020

INFORMATION
Homepage:
how to publish in this journal
info@energyjournals.org

SCOPE

Join the conversation about this journal
Source details

Open Access
Scope coverage years: from 2011 to 2021
Publisher: Econjournals
ISSN: 2146-4553
Subject area: Economics, Econometrics and Finance: General Economics, Econometrics and Finance, Energy: General Energy
Source type: Journal

CiteScore 2020: 3.5
SJR 2020: 0.449
SNIP 2020: 1.302

CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more

CiteScore Tracker 2021: 4.0
4,951 Citations to date
1,227 Documents to date
Last updated on 04 March, 2022 - Updated monthly

CiteScore rank 2020:

<table>
<thead>
<tr>
<th>Category</th>
<th>Rank</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics, Econometrics and Finance</td>
<td>20/243</td>
<td>91st</td>
</tr>
<tr>
<td>General Economics, Econometrics and Finance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>20/65</td>
<td>70th</td>
</tr>
<tr>
<td>General Energy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View CiteScore methodology CiteScore FAQ Add CiteScore to your site