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Abstract
Cytochrome P450 monooxygenase 704B (CYP704B), a member of the CYP86 clan, was found to be needed in Arabidopsis 
and rice to biosynthesize precursors of sporopollenin through oxidizing fatty acids. In the present study, we cloned and char-
acterized a CYP704B gene in Panax ginseng, named PgCYP704B1. It shared high sequence identity (98–99%) with CYP704 
of Arabidopsis, Theobroma cacao, and Morus notabilis. The phylogenetic comparison of ginseng and higher plants between 
the members of CYP86 clan revealed that ginseng CYP704 was categorized as a group of CYP704B with dicot plants. The 
expression of PgCYP704B1 is low in the stem, leaf, and fruit, and high in flower buds, particularly detected in the young 
gametic cell and tapetum layer of the developing anther. Arabidopsis plants overexpressing PgCYP704B1 improved plant 
biomass such as plant height, siliques and seed number and size. A cytological observation by transverse and longitudinal 
semi-thin sections of the siliques cuticles revealed that the cell length increased. Furthermore a chemical analysis showed 
that PgCYP704B1ox lines increased their cutin monomers contents in the siliques. Our results suggest that PgCYP704B1 
has a conserved role during male reproduction for fatty acid biosynthesis and its overexpression increases cutin monomers 
in siliques that eventually could be used for seed production.

Keywords  Panax ginseng · Cytochrome P450 · Overexpressing plants · PgCYP704B1 · Reproduction · Fatty acid · Seed 
yield · Biomass

Introduction

Cytochrome P450s (CYPs) are conserved heme-thiolate 
monooxygenases throughout the plant kingdom that are 
associated in the synthesis of essential backbone structures 
characteristic of distinct primary and secondary metabolite 
groups [1–3]. There are 244 CYP genes in the Arabidopsis 
genome, divided into nine clans, covering 65 families, based 
on their phylogeny [4]. CYPs divide into three groups based 
on the biochemistry catalyzed [5]. The first group biosyn-
thesizes organic compounds and comprises clans 51, 97, 
710, and 711. The second group catalyze the biosynthesis 
of secondary metabolites, and comprises clan 71. The third 
group biosynthesizes plant hormones and fatty acids, and 
comprises clans 72, 74, 85, and 86 [4].

Regarding plant reproductive development, CYP704B 
family belongs to the clan CYP86, reported to be involved 
in the ɷ-hydroxylation of long-chain fatty acids essential 
for pollen wall’s exine formation, and particularly expressed 
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during young microspore stage of the developing anther. 
Catalysis of ɷ-hydroxylated long-chain fatty acids, lipids 
and their derivatives, including fatty acids, waxes [6, 7], 
and phospholipids [8, 9], are important components for 
development of pollen wall [10–12]. Altered exine of pol-
len wall was observed in mutants of Arabidopsis CYP704B1 
[11], Brassica napus CYP704B1 [13] and rice CYP704B2 
[12]. However, rice CYP704B2, besides the altered pollen 
exine, it showed undeveloped anther cuticle and male ster-
ile phenotype [12]. Further studies in other plants will help 
to elucidate diversified CYP704B function regarding plant 
reproductive development.

Panax ginseng is a slow-growing perennial herb that 
has been cultivated for its highly valued root for medicinal 
purposes since 5000 years ago [14, 15]. In the third year 
of growth, P. ginseng flowers and, usually, after four years 
of cultivation the roots are harvested [15, 16]. Attempts to 
increase ginseng yield and amounts of ginsenosides have 
been done by developing ginseng hybrids, and although 
they display heterosis, F1 hybrid plants showed male steril-
ity derived from pollen defects at the young microspores 
stage [16]. Previously we studied and described the morpho-
genesis of anther and carpel at a cytological level to com-
prehend and specify P. ginseng reproductive developmental 
phases [17, 18]. Despite the importance of ginseng repro-
ductive development, studies on functional gene analysis 
and molecular regulation remains scarce. In the research 
presented here, we isolated and cloned CYP704B1 gene 
from P. ginseng, PgCYP704B1, expressed highly in flower 
bud, during anther reproductive development. Overexpres-
sion of PgCYP704B1 in Arabidopsis showed improved plant 
biomass in terms of seed yield, potentially caused by the 
accumulation of saturated fatty acids and 2-hydroxy fatty 
acids in siliques. Our results suggest that PgCYP704B1 has a 
conserved role during male reproduction and also boosts the 
accumulation of fatty acids helping to improve seed yield.

Materials and methods

Plant materials and growth conditions

Columbia ecotype (CS60000) of Arabidopsis thaliana was 
used as a system model. Seeds were surface sterilized with 
70% ethanol for 1 min. Then with 50% sodium hypochlo-
rite for 5 min. Then, washed thoroughly five times with 
distilled water. Sterilized-seeds were sown on half-strength 
Murashige and Skoog medium (Duchefa Biocheme) con-
taining 1% sucrose, 0.8% (w/v) agar, and pH 5.7. Under 
long-day photoperiod of 16 h light and 8 h dark at 23 °C, 
3-day-old cold-treated seeds were germinated. The ginseng 
(Panax ginseng) plant organs (root body, stem, leaf, flower 
bud, fruit) were acquired from the Ginseng Bank in South 

Korea. Transformants were screened on hygromycin (50 μg/
mL)-selective medium plates. Under the same light/dark 
conditions 10-day-old seedlings were transplanted to soil 
and cultivated for 5 weeks.

Identification of PgCYP704B1 gene and sequence 
analysis

To obtain a full-length coding sequence of PgCYP704B1 
gene, homologous sequences of CYP704 EST were searched 
against the SNU Genome database (kindly provided by Prof. 
Tae-Jin Yang, Seoul National University) using a BLASTX 
algorithm. A pTriplEx phagemid for CYP704 cDNA was 
excised from the λpTriplEx2 and used as a template for 
sequence analysis. DNASIS program was used to analyze 
nucleotide and amino acid sequence (Hitachi, Japan).

The amino acid sequence of PgCYP704B1 was utilized to 
search for homologous proteins via BLAST network services 
at the NCBI. Sequence alignment was done using Clustal 
X and the subcellular localization for N-terminal was pre-
dicted by psortb (https​://www.psort​.org/psort​b/) [19]. The 
subcellular target of the transit peptide was identified by 
Predotar v. 1.03 (https​://urgi.versa​illes​.inra.fr/predo​tar/predo​
tar.html) [20]. A neighbor-joining tree was constructed with 
MEGA4 software, using the reliability of each node estab-
lished by the bootstrap method. A 3D model was prepared 
on a SWISS-MODEL Workspace in automated mode [21] 
using CYP704 as a template. The generated 3D structure was 
visualized using the UCSF Chimera package. The hydropa-
thy value was calculated using the method [22] and the sec-
ondary structures were evaluated using Multiple Alignment 
(SOPMA) self-optimized prediction [23]. The estimation of 
protein characteristics was evaluated using ProtParam [24].

Vector construction and Arabidopsis transformation

The CYP704 gene was amplified from P. ginseng cDNA 
library and cloned into KpnI and SmaI sites of the pCAM-
BIA1390 vector containing the Cauliflower Mosaic Virus 
35S promoter and the yellow fluorescent protein (YFP). 
Before plant transformation, we verified nucleotide sequenc-
ing of the transgene construct. Agrobacterium tumefaciens 
C58C1 (pMP90) [25] transformants comprising pCAM-
BIA1390 plasmids with CYP704B1 were tested on a 
50 mg/L kanamycin solid YEP medium. The transforma-
tion of plasmids into A. tumefaciens C58C1 was confirmed 
by PCR using PgCYP704B1-specific primers after plasmids 
were isolated from kanamycin-resistant C58C1 colonies. 
The construct was transformed into Arabidopsis using A. 
tumefaciens C58C1. The insertion of transgenes into the 
transformants was confirmed by PCR. Homozygous plants 
with a 3:1 segregation ratio on antibiotic plates were selected 
for additional analyses. Among several T2 independent lines, 
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two selected lines were further analyzed for statistical and 
metabolite analysis.

Subcellular localization

Leica TCS SP5 confocal laser scanning microscope (Leica 
Microsystems (UK) Ltd) was used to observe fluorescence 
(YFP excitation collected at 520–600 nm). The images 
were processed using the Leica TCS SP5 software (Leica 
Microsystems (UK) Ltd).

RNA isolation and semi‑quantitative RT‑PCR analysis

Total RNA extraction from frozen samples was performed 
using RNeasy mini kit (Qiagen, Valencia, CA, USA). 1 μg 
of total RNA was used for cDNA synthesis. For semi qRT-
PCR, specific primers for PgCYP704B1 (F-5′-CAG TCC 
CTC AGG ATC CAA AA-3′ and R-5′-CAA GGC AAA 
TCC TAG GAC CA-3′) and a constitutively expressed Gin-
seng actin gene (F-5′-CGT GAT CTT ACA GAT AGC TTG 
ATG A-3′and R-5′-AGA GAA GCT AAG ATT GAT CCT 
CC-3′) were used, with the following program: 4 min at 
95 °C; followed 33 cycles of 95 °C for 30 s; 54 °C for 30 s, 
72 °C for 20 s; and a final extension of 72 °C 7 min. The 
signal instensities were measured with ImageJ 1.50i [26].

RNA in situ hybridization

Different developmental stages of flowers were collected and 
fixed in formalin-acetic acid alcohol (FAA, 50% ethanol, 
5% glacial acetic, 3.7% formaldehyde in water) at 4 °C for 
16 h. Then dehydrated on graded ethanol series (85, 90, 
95, 100%), followed by xylene series, embedded in Para-
plast Plus (Oxford Labware), and sectioned at 7 μm. The 
PgCYP704B1 cDNA was prepared from RNA isolated from 
ginseng flowers at different developmental stages and then 
cloned to the pJET clone vector. In vitro transcription under 
T7 promoter with RNA polymerase using DIG RNA labeling 
kit (Roche) was made for DIG-labeled anti-sense (forward, 
5′-TTC ATC TAT AGA TGG AGC-3′; reverse, 5′-GCC TGA 
GCA AAG CAA TTC-3′) and sense probes. RNA samples-
DIG-labeled were made according to the manufacturer’s 
guidelines using DIG RNA labeling kit (SP6/T7) (Roche, 
Mannheim, Germany).

A sense probe was used as a negative control. RNA 
hybridization and immunological detection of the hybrid-
ized probes were performed as described [27].

Histology

Semi-thin section was performed utilizing siliques of 
5-weeks old plants, fixed in FAA. Then dehydrated on 
graded ethanol sequence (70, 80, 90, and 100%) 30 min each 

step. Then embedded in KULZER’s Technovit 7100 cold 
polymerizing resin (Heraeus Kulzer GmbH Philipp-Reis-
Straβe 8/13, D-61273 Wehrheim/Ts) by three steps of prein-
filtration, infiltration, and embedding at 45 ºC [28–30]. Then 
sectioned 4 μm thick in an Ultratome III ultramicrotome 
(LBK), and stained with 0.25% toluidine blue O (Chroma 
Gesellshaft Shaud). Bright-field photographs of the anther 
and siliques sections were observed in a Nikon ECLIPSE 
80i microscope.

SEM was performed using anthers that were fixed and 
washed as described for semi-thin section, except dehydra-
tion, instead using 20, 30, 40, 50, 60, 70, 80, 90, and 100% 
ethanol 3 min for each step. Then the samples were dried at 
critical point temperature (Leica EM CPD300). Followed 
by 5 nm thick Aurum coating with a Leica EM SCD050 ion 
sputter. Then the Aurum-coated samples were observed in a 
Hitachi S3400N scanning electron microscope.

Microtome sections of resin-embedded flowers and 
siliques were used for lipid staining with Sudan IV as 
described [31, 32] with modifications. Exine observation 
was performed accordingly as described [11].

Pollen viability test was performed using anthers stained 
with Alexander staining as described [33]. Nail polished 
slides were sealed and observed in a Nikon ECLIPSE 80i 
microscope.

Analysis of silique cutin monomers

Cutin from siliques of 5-week old plants were examined as 
described [7] with modifications. 10–20 mg of dried siliques 
were dipped in 2 mL of chloroform 1 min. The resulting 
chloroform extract was spiked with 10 μg of tetracosane 
(Fluka) as internal standard and transferred to a new glass 
vial. Then the solvent was evaporated under a light stream 
of nitrogen. Then the compounds containing free hydroxyl 
and carboxyl groups were transformed to trimethysilyl ethers 
and esters using 20 μL bis-(N, N-trimethysilyl)-tri-fluoro-
acetamine (Sigma-Aldrich) in 20 μL pyridine for 40 min 
70 °C. The monomers were identified from their electron 
ionization-mass spectrometry spectra (70 eV, m/z 50 to 700) 
after GC separation (column 30 m X 0.32 mm X 0.1 μm film 
thickness [DB-1; JandW Scientific].

The cutin monomer composition of the siliques polyesters 
was analyzed as described [34]. The siliques were extracted 
for 2 weeks in freshly added 1 mL of chloroform:methanol 
(1:1 v/v). This step was repeated four times before the 
siliques were finally dried at 30 ºC for 16 h. Then the delipi-
dated siliques were depolymerized by transesterification in 
1 mL of 1 N methanolic HCL at 80 ºC for 2 h. Then added 
2 mL of saturated NaCl/H2O and 10 μg of drotriacontane 
(Fluka) as internal standard. Then hydrophobic monomers 
were extracted three times with 1 mL of hexane. Then the 
organic phases were mixed, the solvent was evaporated, and 
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the remaining sample was derivatized as described above. 
GC–MS (Agilent gas chromatograph coupled to an Agilent 
5973 N quadrupole mass selective detector) and GC-FID 
(Agilent 6890 gas chromatograph) analysis were performed.

Statistical analysis

Data were analyzed with GraphPad Prism 8 (GraphPad Soft-
ware, Inc., San Diego, CA, USA). All data are expressed as 
means ± standard error of the mean for at least six replicates. 
The statistical significance of all the differences between 
the phenotypic traits of height, seeds-per silique, seed size, 
and siliques per plant, was determined using a one-way 
ANOVA and Kruskal–Wallis non-parametric post-hoc test. 
P value ≤ 0.05 was considered significant.

Results

PgCYP704B1 encodes a putative cytochrome P450 
hydroxylase in ginseng

Full genomic DNA sequence of PgCYP704B1 was ana-
lyzed using the genomic DNA sequence retrieved from the 
database of ginseng genome (http:/im-crop.snu.ac.kr/new/
index.php). An NCBI Blast search (http:/www.ncbi.nlm.nih.
gov/BLAST​/) displayed the conserved superfamily P450, 
suggesting that PgCYP704B1 belongs to the P450 family. 
The CYP704 family belongs to the CYP86 clan of fatty-
acid hydroxylases, and since the CYP704 family underwent 
only one duplication, it divided the subfamilies CYP704A 
and CYP704B, predicting the differentiation between mono-
cots and [2, 4, 11]. To gain information about the potential 
function of PgCYP704B1, its protein sequence and its rela-
tives in higher plants, including Arabidopsis [11] and rice 
[12], were used to build a phylogenetic tree (Fig. 1). Based 
on our phylogenetic comparison, PgCYP704B1 was placed 
in clan 86 subfamily CYP704B, separated from the clos-
est associated clan 71 [4]. Several members in the clan 86 
have been shown to catalyze fatty acid hydroxylation [12, 
35–38], and the CYP704B subfamily members are expressed 
in the reproductive organs, among plants from bryophytes 
to angiosperms [12, 39], indicating an essential and con-
served function that PgCYP704B1 may have in fatty acid 
hydroxylation during plant male reproductive development. 
In addition, multiple sequence alignment (Fig. S1) showed 
that the CYP704 proteins and PgCYP704B1 contain the 
conserved domains such as AGRDT, TETLR; PERFW, and 
the FQAFPRICLG (F, G and C residues), as a common fea-
ture for CYPs functions [4, 11]. The predicted transit peptide 
of PgCYP704B1 (indicated arrow in Fig. S1) is shown to be 
positioned at its N-terminal with a cytoplasmic location [19] 
targeting endoplasmic reticulum (ER) and could function 

in the hydroxylation of fatty acids. Fatty acids are hydroxy-
lated in plant cells in the ER through members of the CYP 
family [5, 40, 41]. To confirm the subcellular location of 
PgCYP704B1, we developed a translational fusion of the 
full-length PgCYP704B1 coding region and yellow fluo-
rescent protein (YFP) controlled by the cauliflower mosaic 
virus 35S promoter (35Spro:PgCYP704B1:YFP). As we 
expected, the fluorescence of 35Spro:PgCYP704B1:YFP was 
targeted to the ER organelle (Fig. 1b–d). Consistently, pre-
vious studies have shown that CYP704B1 is targeted to ER 
in Arabidopsis and B. napus [13, 42]. CYPs can be divided 
into four classes depending on how electrons from NAD(P)
H are delivered to the catalytic site, and a typical feature of 
class II is to be independently anchored on the outer face of 
the ER by amino-terminal hydrophobic anchors [43], as also 
confirmed in our results (Fig. S3b). The cDNA encoding 
PgCYP704B1 has a length of 1,557 bp, encoding 518 amino 
acids; moreover, the PgCYP704B1 gene contains six exons 
and five introns (Fig. S2), which is a common characteristic 
with Arabidopsis and B. napus CYP704B1 genes [11, 13].

PgCYP704B1 hydrophobicity profile and its nearest 
homologs  indicate that both the N and C terminals are 
highly conserved (Fig. S3b). The conserved domains of 
CYPs (AGRDT, TETLR; PERFW, and FQAFPRICLG) are 
hydrophobic, compatible with their place in the predicted 3D 
model, as they form part of the helixes (Fig. S3a). A similar 
number of alpha-helices, beta-turns, extended strands, and 
random coils (Table 1) was found on the secondary struc-
ture analysis (Fig. S3c) of PgCYP704B1 and the CYP704 
proteins with close phylogenetic relationship.

PgCYP704B1 is highly expressed in flower buds

To verify the conserved function of PgCYP704B1 in the 
anther as it has been described for Arabidopsis [11], rice 
[12], and B. napus [13], we conducted PgCYP704B1 expres-
sion analysis by semi qRT-PCR utilizing ginseng tissues 
such as root, stem, leaf, flower buds and fruit. The tran-
script of PgCYP704B1 was expressed highly in flower buds, 
although expression was identified at lower intensity in stem, 
leaves, and fruit (Fig. 2a, Fig. S2C).

To gain insight into the spatial and temporal patterns 
of PgCYP704B1 expression in anthers, we performed 
in situ hybridization (Fig. 2b–d). The results showed that 
PgCYP704B1 is expressed in the tapetal cell layer and meio-
cytes during the anther reproductive developmental stages 
3 to 5 (classification made by Kim et al. [17]). In stage 3, 
when the microspore mother cells initiate meiotic division, 
the maximum amount of PgCYP704B1 in the tapetum and 
dyads was observed. The hybridization weakened to tapetal 
cells, tetrads, and microspores after the development of tet-
rads at stage 4. For control hybridization, a sense probe was 
used (Fig. 2e).

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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Fig. 1   Phylogenic analysis of PgCYP704B1. a A neighbor-join-
ing method analysis was performed using MEGA 4 based on the 
Table  S1. Bootstrap values are percentage of 1000 replicates. The 
scale bar shows 0.1 amino acid substitutions per site. Black dots show 
reported CYP704B genes. Subcellular localization of PgCYP704B1 

by confocal laser scanning microscopy images of 7 d-old seedlings 
roots in transgenic lines expressing 35Spro:PgCYP704-YFP in endo-
plasmic reticulum (ER), b YFP fluorescence, c bright field, and d 
merged images. Bars; b–d 100 mm

Table 1   Secondary structure 
characteristics of ginseng 
CYP704B1 and other plants 
with close phylogenetic 
relationship

Protein Alpha-helices Beta-turns Extended 
strands

Random coils

PgCYP704B1 219 41 111 146
TcCYP704B1isoform1 [EOY01870] 250 41 95 149
TcCYP704B1isoform2 [EOY01871] 249 41 95 152
MnCYP704C1 [EXB92426] 259 36 96 174
AtCYP704B1 [OAP12978] 242 38 100 144
CcCYP704C1 [KYP54385] 266 36 92 121
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Overexpression of PgCYP704B1 improves plant 
productivity in transgenic Arabidopsis

Due to difficulties in obtaining transgenic regenerated P. 
ginseng plants, we observed the effect of overexpressing 

PgCYP704B1 in transgenis Arabidopsis (PgCYP704B1ox). 
We examined plant biomass-related characteristics such 
as plant height, number and size of siliques and seeds. 
PgCYP704B1ox produced 21% taller plants compared 
with wild-type and mutant (Fig. 3a, b). As observed in 

Fig. 2   Expression pattern of PgCYP704B1. a Spatial and temporal 
expression analysis of PgCYP704B1 transcript in selected tissues 
and anther development by semi qRT-PCR. Tissues from 5 year-old 
ginseng and flowers from 14 to 24  days after sprouting were ana-
lyzed for the presence of PgCYP704B1. Ginseng actin (Pg Actin) 
expression was used as a control. Rb, root body; S, stem; L, leaf; Fb, 
flower bud, and F, fruit; 1, stage 1; 2, stage 2; 3, stage 3; 4, stage 4; 

5, stage 5; 6, stage 6; 7, stage 7; 8, stage 8. b–d RNA in situ analysis 
of PgCYP704B1 in anthers. The anthers at stage 3 (b), 4 (c), and 5 
(d) showing strong signal of PgCYP704B1 in tapetal cells and micro-
spores; e The sense probe produces no signal at stage 4 (control). 
Dds, dyads; Msp, microspore; T, tapetum; Tds, tetrads. Bars; a 10 cm 
and 1 mm, b–d 50 μm

Fig. 3   Overexpression of PgCYP704B1 in Arabidopsis improves bio-
mass. Greater growth in a, b height, c siliques per plant, d siliques 
size, e, f seed size, and g seeds per silique. Bars show mean expres-

sion levels ± SE. WT, Wild-type; cyp704B1, mutant; OX # 6, PgCYP-
704B1ox # 6; OX # 9, PgCYP704B1ox # 9. *P < 0.05. Bars; a 10 cm, 
d 5 mm e–h 500 μm
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PgCYP704B1ox, the siliques increased 43.25% in number 
compared with wild-type and mutant (Fig. 3c, d). PgCYP-
704B1ox increased 10% in seed size and 45.25% in average 
yield compared with those of control (Fig. 3e–g).

In addition we stained mature anthers with lipophilic dye 
Sudan IV to observe the cuticular lipid deposition [31, 32]. 
Compared to wild-type, anthers of cyp704B1 and PgCYP-
704B1ox showed increased lipidic compounds in the anther 
epidermal layer, and an opposite effect on the pollen wall 
(Fig. S4). As cyp704B1 also shows high lipidic compounds, 
it confirms the conserved function of this CYP704B is the 
biosynthesis of lipidic precursors essential for anther repro-
ductive development.

PgCYP704B1 can functionally complement 
the Arabidopsis cyp704B1 mutant

The Arabidopsis cyp704B1 was reported to show impaired 
pollen walls lacking a normal exine layer that displays a 
stripped surface called zebra phenotype [11]. To determine 
whether PgCYP704B1 was able to complement the Arabi-
dopsis cyp704B1, we performed a complementation assay 
by reciprocal hand pollination of PgCYP704B1ox with 
cyp704B1. The stable incorporation of the PgCYP704B1 
gene into cyp704B1 was confirmed by PCR (Fig. S5). To 
observe the anthers and pollen phenotype, we used Alex-
ander staining, semi-thin cross sections, Auramine O, 
and SEM. Pollen viability showed to not be affected, we 
assume that this recovery is due to PgCYP704B1 being 
involved in the sporopollenin biosynthesis and lipidic 
precursors, that could be stably co-transmitted to prog-
eny plants and that it co-segregated with the introduced 
DNA. Although the anther of PgCYP704B1ox looks simi-
lar to the wild type and cyp704B1, the number of pollen 
grains increase and exhibits a compacted arrangement in 
PgCYP704B1ox (Fig. S6a–d). To characterize the altera-
tions of the PgCYP704B1ox complementary lines we 
used Alexander staining showing that the anthers where 
reduced in size, in both height and width, but viable pol-
len (Fig. S7 a, b). Compared with wild-type, the anthers 
of PgCYP704B1ox and cyp704B1 exhibited bigger pol-
len grains at stage 14 [44] (Fig. S6e–h). Laser scanning 
confocal microscopy (LSCM) of Auramine O-stained 
PgCYP704B1ox exhibits a more tightly organized exine 
architecture compared to wild-type, further we also con-
firmed that cyp704B1 exhibits no exine membrane as 
Dobritsa et al. [11] reported (Fig. S6i–l). PgCYP704B1 
overexpression complemented the zebra pollen pheno-
type of cyp704B1 checked by Auramine O (Fig. S7c, d), 
confirming the functional ortholog of PgCYP704B1 to 
CYP704B1 of Arabidopsis. Examination by SEM analysis 
showed that the outer surface of the pollen had a denser 
exine compared to wild-type and cyp704B1 (Fig. S6m–p). 

Complementary-PgCYP704B1ox exhibits a normal pollen 
exine (Fig. S7g–h). Moreover, SEM analysis of anthers 
showed similar surface structure compared to wild-type 
(Fig. S6q–x). Complementary-PgCYP704B1ox exhibits 
no difference on the anther surface (Fig. S7g–j). Taken 
together, these results indicate that the overexpression of 
PgCYP704B1 significantly affected pollen number and 
exine development.

PgCYP704B1 promotes significant silique cell 
elongation and affects fatty acids contents 
in transgenic Arabidopsis

We carried out light microscopic analysis of semi-thin sec-
tions to further observe the phenotype of the elongated 
siliques. The results revealed that PgCYP704B1ox exhib-
ited longer exocarp cells observed by longitudinal sections 
and increased number of sclerenchyma cells observed by 
transverse sections in comparison with wild-type and 
cyp704B1 (Fig. S8).

The cuticle is a hydrophobic layer, that coats the sur-
face of the aerial organs such as leaves, stems, flowers, 
and fruits [12]. The cuticle layer functions not only in the 
interaction with the environment but also in plant devel-
opment and growth [45]. All cuticles are biopolymers 
composed of two classes of lipophilic constituents, cutin 
and waxes [12, 46–50]. Because of the elongated siliques 
phenotype of PgCYP704B1ox and that the exocarp is made 
of cutin, we further performed gas chromatography-mass 
spectrometry (GC–MS) and gas chromatography-flame 
ionization detection (GC-FID). The levels of cutin mono-
mers were found to increase up to 1.34 times of incre-
ment in PgCYP704B1ox in comparison with wild-type 
(Fig. 4a). The overexpression of PgCYP704B1 signifi-
cantly promoted the accumulation of saturated fatty acids 
such as C18:0 (1.5 times), C18:1 (1.8 times), C18:2 (1.6 
times), C18:3 (1.8 times), C20:2 (2.1 times), and C24:0 
(1.1 times) (Fig. 4b). The contents of 2-hydroxy fatty acids 
also significantly increased for C16:0 (1.2 times), C22:0 
(1.5), C24:0 (1.2 times), C24:1 (1.2 times), C25:0 (1.9 
times), and C26:0 (1.2 times) (Fig. 4c). Compared with the 
reported AtCYP704, OsCYP704, and BnCYP704 the com-
mon effect with PgCYP704B1 is the increment of long-
chain fatty acids. However PgCYP704B1 is also increas-
ing very long-chain fatty acids, moreover PgCYP704B1 
did not show any increment of dicarboxylic fatty acids, 
terminal-hydroxy fatty acids, and alcohols (Fig. 4d–f). 
These data indicate that overexpression of PgCYP704B1 
in Arabidopsis synthesizes and promotes the accumulation 
of cutin in siliques.
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Discussion

PgCYP704B1 is ortholog of AtCYP704B1 and it 
is highly expressed in the developing anther

PgCYP704B1 is ortholog of AtCYP704B1 (Fig. 1, S1) 
and it contains the four CYPs conserved domains (Fig. 
S1) indispensable for CYP functions [3, 11]. First, a Thr-
containing binding pocket for molecular oxygen required 
in catalysis (AGRDT). Second, the E-R-R triade, using 
the consensus TETLR and PERW, generally thought to 
be involved in locking the heme pocket into position to 
assure stabilization of the conserved core structure. And 
lastly, the heme-binding domain (FQAGPRICLG) in the 
C terminus.

Both PgCYP704B1 and AtCYP704B1, show a con-
served function during anther reproductive development 
for sporopollenin biosynthesis [11] (Fig. 2). In accord-
ance, PgCYP704B1 expression in developing anther shows 
common tendencies with Arabidopsis, rice, and B. napus 
[11–13] at developing young microspores stage (Fig. 2). 
Although CYP704B expression in the developing anther 
slightly varies among P. ginseng, Arabidopsis rice, and B. 
napus. AtCYP704B1 starts at the young microspore and it 
fades at vacuolation [11] and OsCYP704B2 starts at the 
tetrad and it fades at mitosis I [12]. Whereas BnCYP704 
starts at early meiosis and it fades at pollen maturation [13]. 
PgCYP704B1 starts at cell division (early meiosis) and it 
peaks its expression at meiosis fading at young microspore 
(stage 3, Fig. 2a). Suggesting that the tapetum might be 
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Fig. 4   Chemical analysis of siliques cutin monomers in the wild-type, 
cyp704B1, and PgCYP704ox lines by GC–MS and GC-FID. a Total 
cutin amount per milligram of dry weight (μg/mg). b Saturated fatty 
acids per milligram of dry weight (μg/mg). c 2-hydroxy fatty acids 
per milligram of dry weight (μg/mg). d Dicarboxylic fatty acids per 

milligram of dry weight (μg/mg). e Terminal-hydroxy fatty acids per 
milligram of dry weight (μg/mg). f Alcohols per milligram of dry 
weight (μg/mg). The values indicate means of five biological repli-
cates ± SD. *P < 0.05; **P < 0.01
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metabolically overactivated, thus increases meiotic division, 
and ultimately PgCYP704B1ox produces more number of 
pollen grains (Fig. S7).

PgCYP704B1 complemented the zebra pollen pheno-
type of cyp704B1 (Fig. S7c, d), confirming the functional 
ortholog of PgCYP704B1 to CYP704B1 of Arabidopsis and 
that PgCYP704B1 is involved in fatty acid hydroxylation and 
is required for pollen exine formation.

PgCYP704B1 contributes to improve biomass 
of reproductive tissues and affects fatty acid 
contents

PgCYP704B1 overexpression in transgenic Arabidopsis 
improved plant biomass as observed in plant height, size 
and number of siliques and seeds. The increases were 21% in 
plant height, 42.75% in siliques size, 43.25% in siliques num-
ber, 10% in seed size, and 45.25% in seed yield, compared 
to wild-type (Fig. 3). Consistently, PgCYP704B1 expression 
was observed at lower intensity in the fruits (Fig. 2a), the 
phenotype of PgCYP704B1ox displayed longer siliques and 
longer exocarp cells in the siliques of the transgenic Arabi-
dopsis (Fig. 3), and the long-chain and very long-chain fatty 
acids were also increased (Fig. 4). It is well known that spo-
ropollenin is a highly cross-linked biopolymer of hydroxy-
lated fatty acids, aliphatic compounds, and phenolics [5, 11, 
51–62]. In rice, sporopollenin precursors are delivered from 
the tapetum in the form of Ubisch bodies [63]. The tapetum 
is responsible for the biosynthesis of sporopollenin build-
ing blocks in the post-tetrad stage [63]. According to Wang 
et al. [63], the synthesis of sporopollenin precursors involves 
eight vital enzymes in Arabidopsis, including ACYL-CoA 
SYNTHETASE5 (ACOS5) which catalyzes mid-/long-chain 
fatty acids into fatty acyl-CoA, then they are hydroxylated 
by CYP703A2 and CYP704B1. POLYKETIDE SYNTHASE 
A (PSKA) and PSKB catalyze the hydroxylated products 
into triketides and tetraketides α-pyrones, conforming the 
substrates of TETRAKETIDE α-PYRONE REDUCTASE1 
(TKPR1) and TKPR2. And MALE STERILE2 (MS2) cata-
lyzes the protein of palmitoyl acyl carrier into a fatty alcohol 
as a fatty acyl reductase [5, 11, 53, 54, 57, 59, 64, 65]. The 
resulting precursors of sporopollenin are synthesized in the 
tapetum and transferred by the ATP-binding cassette trans-
porter superfamily member (ABCG26) to the anther locule 
[63, 66]. Arabidopsis ABCG26 has been reported to restore 
fertility in terms of seed yields [66] and is also predicted to 
transport synthesized sporopollenin precursors to the anther 
locule [63].

Taken together, this close association of ABCG26 with 
CYP704B1, the fact that ABCG26 regulates seed yield [66], 
and that PgCYP704B1 overexpression showed increased 
lipidic compounds and increased plant biomass (Fig. 3), 
leads to hypothesize that PgCYP704B1 overexpression 

might mediate plant biomass production in terms of fruits 
and seeds, synthesizing essential components of the anther 
and silique cuticle (Fig. 5), nevertheless this hypothesis 
requires further assessment by future studies. It will require 
further investigation to find out whether PgCYP704B1 can 
directly interact with ABCG protein or whether this interac-
tion depends on other molecular players.

Conclusions

In this study, we have identified and characterized an 
unknown P. ginseng gene encoding a cytochrome P450 
protein, which was designated PgCYP704B1. PgCYP704B1 
transcripts are low in the fruits and high in the flower buds, 
specially from the meiosis- to the young microspore-anther 
stages. Overexpression of PgCYP704B1 in transgenic Arabi-
dopsis improves plant biomass of reproductive tissues and 
enhances the accumulation of saturated fatty acids and 
2-hydroxy fatty acids in siliques. It shows a conserved func-
tion in catalyzing ω-hydroxylation of long-chain fatty acids 
serving as building blocks of sporopollenin during anther 
reproductive development, suggesting its conserved role dur-
ing male reproduction; furthermore, it exhibits a diversified 
function regarding reproductive tissues biomass improve-
ment, particularly for seed production.
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