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Abstract

The concept of developmental origins of diseases has gained a huge interest in recent
years and is a constantly emerging scientific field. First observations hereof originated from
epidemiological studies, linking impaired birth outcomes to adult chronic, noncommunicable
disease. By now there is a considerable amount of both epidemiological and experimental
evidence highlighting the impact of early life events on later life disease susceptibility. Albeit
far from being completely understood, more recent studies managed to elucidate underlying
mechanisms, with epigenetics having become almost synonymous with developmental
programming. The aim of this review was to give a comprehensive overview of various aspects
and mechanisms of developmental origins of diseases. Starting from initial research foci
mainly centered on a nutritionally impaired intrauterine environment, more recent findings
such as postnatal nutrition, preterm birth, paternal programming and putative interventional
approaches are summarized. The review outlines general underlying mechanisms and
particularly discusses mechanistic explanations for sexual dimorphism in developmental
programming. Furthermore, novel hypotheses are presented emphasizing a non-mendelian

impact of parental genes on the offspring's phenotype.

© 2016 The Author(s)
Published by S. Karger AG, Basel

Introduction

Throughout the entire life of an individual, environmental factors play an important role
for its state of health. However, at no stage in life the surrounding environment has a bigger
impact than during embryonic and fetal life. Growth and development in utero are complex
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and dynamic processes which require an orchestration of a variety of maternal, paternal
and fetal factors for an optimal outcome. This complex interaction between mother, father,
placenta and embryo/fetus ensures an optimal supply of nutrients, oxygen and endocrine
signals, all fundamental elements for normal development. Disruptions in this supply
system may not only have a direct impact on altering fetal growth patterns, but, as evidence
suggests, can be associated with the occurrence of diseases in the later life of the offspring.
In the current review, we will discuss exogenous (environmental) as well as endogenous
factors (both parental and offspring genes) contributing to the complex interaction between
mother, father, placenta and embryo/fetus.

Undernutrition

Epidemiological data unequivocally indicate that there is a connection between early
life conditions, anthropometric measures at birth and disease susceptibility in later life [1,
2]. The “Barker Hypothesis”, also called the “Fetal Programming Hypothesis” or the theory
of the “Developmental Origins of Health and Diseases (DOHaD)”, has become the foundation
for this increasingly popular scientific field [2]. Barker et al. were not the first investigating
this subject, but it was their groundbreaking epidemiological studies in England and Wales
in the late 1980ies that inspired research worldwide. Barker et al. initially demonstrated a
geographical relationship between cases of ischemic heart disease in the years 1968-1978
and child mortality rates between 1921-1925 [3]. A follow-up study showed that individuals
born with a reduced birth weight had an increased risk for coronary heart disease in
their adult life [4, 5]. Hales et al. demonstrated in another follow-up study that there is a
similar inverse correlation between birth weight and later life glucose tolerance or insulin
resistance [6]. In addition, they revealed that individuals with the lowest birth weight, in
comparison to heavier newborns, displayed a six fold increased risk for impaired glucose
tolerance or diabetes mellitus type 2 in late adulthood [6]. Until now, these findings have been
replicated in several different study populations and in different ethnic groups [7]. Based
on their observations, Hales and Barker formulated the "Thrifty Phenotype Hypothesis",
a more detailed hypothesis trying to outline a putative mechanism of fetal programming.
According to this explanation model, gestational under nutrition induces a series of adaptive
processes in the fetus, trying to maximize the chances of survival in the given nutrient-poor
environment. However, if a mismatch between pre- and postnatal nutrient supply exists fetal
adaptation can be deleterious, increasing the risk for diseases later in life [7, 8].

The Thrifty Phenotype Hypothesis

Research stimulated by the thrifty phenotype hypothesis has improved the
understanding of the plasticity of early human development, emphasizing an important role
of developmental plasticity as a possible contributing factor to later human disease [9]. Until
now, the thrifty phenotype hypothesis was confirmed by a number of human studies. The
link between a poor intrauterine environment, restricted fetal growth and increased adult
disease risk was well demonstrated in the "Dutch famine study". In this retrospective study,
children born during a war-inflicted famine between December 1944 and April 1945 were
analyzed [10, 11]. During the famine, the daily caloric intake for the general population was
restricted to 400 - 800 kcal per day, about half as much as before and after this period. The
comparison of individuals that were in utero during this time with individuals born a year
before or after the famine showed that gestational caloric restriction was associated with
a decreased birth weight and an increased prevalence of impaired glucose tolerance at an
age of 50 years [10]. Moreover, twin studies were able to confirm the Thrifty Phenotype
Hypothesis. A Danish study examined mono- and dizygotic twins which were discordant
for the occurrence of type 2 diabetes. Results of the study revealed that the diabetic
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twin was born with a significantly lower birth weight compared to the euglycemic twin
sibling [12]. Other twin studies, especially studies on monozygotic twins, highlighted the
importance of the intrauterine environment and developmental plasticity, regardless of the
underlying genotype [13]. In addition to the connection between a sub-optimal intrauterine
environment, disturbed fetal growth patterns and disease predisposition in adulthood,
several more recent studies showed that postnatal nutrition is to be regarded as another
critical component of the thrifty phenotype hypothesis. Crowther et al. investigated the
impact of postnatal weight gain in a cohort of 7-year-old South African children [14]. Results
of this study showed that children born with a reduced birth weight and rapid postnatal
weight gain, displayed an impaired glucose tolerance already at an age of 7 years [14].
Further studies in Finland and India replicated these findings [15-17]. Various studies have
demonstrated that rapid postnatal weight gain in newborns with an initial low birth weight
is mainly due to fat accumulation and not due to an increase in muscle mass [18-20]. This
specific phenotype was observed in several cohorts of small for gestational age newborns
[21, 22]. In addition it was demonstrated that fat accumulation is more prominent in visceral
than in subcutaneous fat depots [23, 24].

Parallel to the epidemiological studies outlined above, various animal studies have been
conducted over the years in order to investigate the underlying mechanisms of developmental
programming more thoroughly. Preclinical results substantiated findings from observational
studies and gave more insight into involved mechanisms, also substantiating the thrifty
phenotype hypothesis [25, 26]. [t was demonstrated that restricting the maternal diet during
gestation does not just result in low birth weight but induces disproportional growth. At the
expense of organs such asliver, kidney, pancreas, lung and skeletal muscle, the development of
brain, heart and adrenal gland is prioritized [25, 27]. Caloric restriction during gestation was
shown to reduce pancreatic beta cell mass formation in the offspring, leading to a decreased
production of insulin [28]. In a postnatal calorie-rich life, this lack of insulin production can
predispose for the development of diabetes [29].

Overnutrition

As worldwide obesity rates are constantly rising, the focus of research has moved from
maternal undernutrition as a predisposing factor for reduced birth weight and adult disease
susceptibility, to the impact of maternal overnutrition on offspring health. Interestingly,
it was shown that maternal overnutrition and an increased birth weight of the newborn
elicits similar effects on offspring health as observed in low birth weight offspring [30, 31].
Being born small for gestational age (SGA) usually is associated with deficits in placental
function, placental blood flow and adverse environmental influences, such as maternal
undernutrition, particularly if the diet lacks sufficient protein levels [32-35]. Furthermore,
literature suggests a complex genetic association, as SGA offspring more commonly occurs
in women themselves born SGA [32, 36]. Increases in birth weight are typically associated
with maternal obesity and gestational or pre-gestational diabetes [37-39]. Moreover, a very
recent study provided genetic evidence for a causal relationship between maternal obesity-
related traits and offspring birth weight [37]. Large for gestational age (LGA) offspring
usually displays an increased body fat mass and an increased risk for metabolic disease in
later life [37, 40, 41]. Current evidence suggests that either being born with a reduced or
an increased birth weight increases disease risk in later life. Meta-analysis have underlined
this by demonstrating an U-shaped relationship between later life metabolic diseases and
birth weight [42-44]. The overlap of the adult phenotype in SGA and LGA offspring raises
the important question which mechanisms are affected in these conditions, and vice versa
howthese mechanisms can be triggered by conditions producing extremely disparate early
life phenotypes [32]. Interestingly, specific overnutrition by feeding an isocaloric high-
protein diet to rats, was shown to elicit no effects on birth weight but cause an impaired
phenotype in adult animals [45]. Furthermore, it was demonstrated in animal and human
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models that the simultaneous presence of two gestational insults, maternal obesity and
maternal stress, are associated with increased rates of both, SGA and LGA offspring [31, 32,
46]. Literature on this subject suggests that the variability in the observed outcomes is likely
due to different dosage, timing and downstream effects of a maternal insult. Maternal obesity
and pre-pregnancy high-fat intake was on one hand shown to increase the risk for SGA and
preeclampsia. On the other hand, this combination of maternal insults was associated with
maternal gestational overeating which is associated with gestational diabetes and LGA
[30, 32, 47]. Animal stress models revealed that the timing of the maternal stressor during
gestation is a key factor for the offspring to be born SGA or LGA [48]. Furthermore, placental
development and function, especially an impairment of the placental barrier which normally
limits fetal exposure to maternal stress hormones, is thought to play a central role in the
severity of maternal stress effects [49, 50]. Taken together, both over and undernutrition are
associated with developmental programming. Future studies will give a more precise picture
of the complex interaction between nutrition and developmental programming. More recent
studies already aimed to discern the role of micronutrient deficiency or excess in regards to
developmental origins of disease [51-55]. Furthermore there are also novel approaches to
integrate the role of the microbiome and its interaction with nutrition into developmental
programming studies [56].

Critical Periods for Nutritional Programming

Experimental and epidemiological data show that effects of developmental programming
canbetriggered throughout gestation. However, the nature of adult disease can vary according
to the timing of a gestational insult [57]. Analysis of the "Dutch Hunger Winter" cohort
demonstrated that offspring exposed to famine during early periods of gestation displayed an
increased risk for coronary heart disease in later life, which could not be observed if famine
exposure happened during later stages of pregnancy [58]. Interestingly, caloric restriction
during late gestation was associated with disturbances in glucose-insulin homeostasis,
clinically reflected by an increased risk of type 2 diabetes [58]. This finding could be replicated
in animal models [59, 60]. Gardner et al. showed that maternal undernutrition in sheep in late
gestation also led to impaired glucose-insulin homeostasis, highlighting the importance of
late gestational periods in regards to programming effects on intermediary metabolism [60].
According to developmental processes in respective gestational periods, current literature
suggests that nutritional insults during early gestation may influence organ development,
altering fetal physiology in late gestation, and postnatal function, yet often without a
measurable effect on birth weight [59, 61-64]. This was demonstrated by various studies
investigating nutritional alteration in the periconceptual period, which is characterized by
fertilisation, blastocystogenesis and the implantation process [61-65]. Nutritional insults set
in later embryonic and early fetal life, a period which comprises intense organogenesis and
placental development, display similar patterns of developmental programming [66-70].
Dietary modifications in later stages of gestation, characterized by very pronounced fetal
growth and placental maturation, were shown to have a strong impact on birth weight and
organ maturation with pronounced programming effects on intermediary metabolism and
hormonal systems [71-75]. Furthermore, also postnatal nutrition plays an important role
in developmental programming. A large body of studies have demonstrated that postnatal
catch-up growth in low birth weight newborns is a crucial factor for increasing the risk of
adult metabolic disturbances [20, 22, 76]. Intriguingly, also in postnatal developmental
programming timing is of importance. It was shown that catch-up growth restricted to the
first postnatal year did not have an effect on insulin levels, but sustained catch-up growth
was associated with higher insulin levels in seven year old- and insulin resistance in
eight year old children [77-79]. Next to postnatal periods, newer evidence highlights the
importance of preconceptual nutrition of both the mother and the father on offspring health.
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There is a growing amount of evidence, demonstrating that dietary challenges during oozyte
development or spermatogenesis can induce permanent phenotypic changes in the offspring
[80-84]. Taken together, available evidence highlights the importance of different time
frames before, during and after gestation in regards to developmental origins of health and
disease. However, given species differences in physiology, metabolism, placental structure
and function, cautious interpretation of the available studies is warranted, especially when
extrapolating to human situations [72].

Prematurity

More recent data showed that fetal adaptation causing persistent functional and
structural changes of the fetal organism can be induced by factors that go beyond gestational
nutrition and do not necessarily have to impact on anthropometric measures at birth [85].
A very important factor in this regard is preterm birth. As outlined before, initial studies on
fetal programming focused on a ‘deprived’ intrauterine environment as a cause for low birth
weight or SGA [10, 86]. Such anthropometric measurements were then used as surrogate
parameters for association analyses with later life disease [10, 86]. However, many of these
epidemiologic studies based their investigations on old birth records, sometimes assessing
birth weight without considering gestational age at birth [87, 88]. Thus, it is possible
that a considerable amount of individuals included in these epidemiologic studies, were
preterm individuals and not small for gestational age [87]. De Jong et al. demonstrated in
a systematic literature review followed by a meta-analysis, that preterm birth is associated
with higher blood pressure in adulthood, suggesting a relevant role of gestational age in fetal
programming [89]. There is an increasing body of evidence that prematurity is associated
with an increased risk for various disease in adult life [53, 87, 89-91]. It is known that
preterm birth causes an interruption of normal organogenesis, especially in organ systems
that display a branching morphogenesis like kidney, lung, pancreas, and the vascular
system [87, 92-94]. The developing kidney is particularly vulnerable to preterm birth
which causes considerable deficits in organ structure and function [93]. Prematurity was
shown to be associated with a lower nephron endowment [95, 96] potentially increasing
the risk of hypertension, proteinuria and kidney disease in later life [97, 98]. Although
underlying mechanisms of increasing adult disease susceptibility by prematurity on first
glance seem to be more direct, there are similarities between being born SGA and preterm.
Preterm birth cannot be simply seen as an abrupt termination of gestation, but rather as a
pathologic, stressful and inflammatory event, influenced by numerous factors, ranging from
ethnicity and socioeconomic status to dysfunctions in hormonal systems and gestational
micronutrient deficiencies [53, 88, 99-101]. Similar to SGA infants preterm infants suffer
from an adverse intrauterine environment and, by being born prematurely, are additionally
exposed to an adverse neonatal environment [102]. Both, SGA and preterm born infants
display similar postnatal growth patterns with about 80% of both groups exhibiting catch
up growth [102]. Resembling observations in SGA newborns, prematurity predisposes
to childhood adiposity, with data indicating a shift in adipose tissue distribution towards
visceral fat depots [102]. Furthermore, similar to observations in SGA cohorts, a more rapid
postnatal catch-up growth was shown to be associated with greater reductions in insulin
sensitivity [103, 104]. A recent systematic review and meta-analysis showed that there is
also an association between preterm birth and insulin sensitivity throughout life. However,
the data in this regard are conflicting and observed associations might be affected by the
overall heterogeneity of the study designs and analyzed populations [105]. Albeit conflicting
findings, prematurity putatively increases the risk for insulin resistance which, at least in
part, appears to be regulated by postnatal growth. This highlights the importance of an
optimal nutritional strategy for preterm infants which yet remains to be determined [104,
106].
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The Role of Insulin in Fetal Development and Adult Diseases

The developmental origins theory can be applied to all early life events including low
birth weight and/or prematurity [107-109]. Adverse environmental exposures during fetal
and neonatal life are thought to trigger compensatory persistent physiological responses.
Such adaptations may modify set points of physiological systems involved in sustaining
homeostasis. This can become maladaptive if a mismatch between anticipated and actual
environment occurs. In this regard, a lot of research was focused on insulin resistance as the
main culprit for both, altered anthropometric measurements at birth, and later life disease
susceptibility. Divergent to the developmental origins theory first postulated by Barker
et al., Hattersley and Tooke proposed in their "fetal insulin hypothesis" that genetically
determined insulin resistance results in impaired insulin-mediated growth in the fetus as
well as in an insulin resistant phenotype in adult life [110]. It is known that type 2 diabetes
has a strong genetic component. Furthermore, insulin acts as key factor in fetal growth. Thus,
any genetic variant that impairs insulin secretion and/or insulin sensitivity may reduce
birth weight and concomitantly result in adult life type 2 diabetes. Put differently, the "fetal
insulin hypothesis" postulated that the genotype, not low birth weight, increases the risk
of adult diabetes [110, 111]. The hypothesis is supported by genetic evidence showing that
single nucleotide polymorphisms associated with an increased risk for type 2 diabetes were
associated with low birth weight [112]. Moreover, a study in Caucasian mothers revealed
that there is a negative correlation between total glycated hemoglobin in cord blood (fetal)
and birth weight [113]. The relationship between cord blood glycemia and birth weight is
diametrically opposed to the well described positive correlation between maternal glycemia
and birth weight which was also observed in this study [113]. When subjected to similar
degrees of maternal glycemia (reflected by maternal total glycated hemoglobin), lighter
fetuses appear incapable of lowering their blood glucose concentrations (reflected by the
newborn’s total glycated hemoglobin), as do heavier fetuses. Meanwhile, the findings of an
inverse relationship between cord blood glycemia and birth weight were replicated in an
Asian cohort, highlighting their validity [114]. Until now, fetal blood glucose concentrations
were regarded as a passive reflection of maternal glycemia. However, the observed inverse
correlation between cord blood and birth weight showed that the fetal response to similar
maternal glucose levels might not behave as uniform as previously thought [113, 114]. From
a hypothetical point of view such findings can be explained by both, genetics and the fetal
environment, underlining that future research, integratively applying genetic and epigenetic
methodology, is still needed to better characterize the association between early life and
adult disease susceptibility.

Epigenetics

Although the underlying molecular mechanisms are incompletely understood so
far, there is convincing evidence that developmental plasticity is mediated by epigenetic
modifications of the DNA. Important epigenetic mechanisms are histone modifications, non
coding RNAs and DNA methylation [115, 116]. These tools generally affect how accessible
DNA is to transcription factor complexes, how efficiently transcription proceeds, and
how stable already transcribed mRNA is [104]. Histone modifications consist of chemical
alterations such as acetylation, phosphorylation and methylation [116] which can modulate
chromatin structure, thus influencing the accessibility of the transcription machinery to the
gene [117]. Non coding RNAs can trigger RNAse activity by RNA interference eliminating
mRNA transcribed by target genes [38, 118]. The currently best studied epigenetic
mechanism is DNA methylation [119]. DNA methylation is the addition of a methyl group
at the C5 position of the cytosine pyrimidine ring via DNA methyl transferase activity [120].
Methylated cytosines are generally located in cytosine-phosphate-guanine (CpG) sequences
[121, 122]. Although about 70% of all genomic CpGs are methylated, there are clusters of
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CpGs, termed CpG islands, that remain unmethylated [102, 120, 123]. Such unmethylated CpG
islands are associated with about 60% of all human genomic promoters [124]. Methylating
a CpG site attracts methyl-binding proteins that trigger chromatin remodeling, leading to
a more condensed chromatin, thus restricting access for the transcription machine [125].
Therefore, promoter regions of translated genes usually display low methylated CpG islands,
whereas un-translated genes are heavily methylated.

In mammalian development, there are two main periods characterized by extensive
epigenetic modifications. During the course of gametogenesis, genome-wide demethylation
takes place followed by remethylation before fertilization. In early phases of embryogenesis,
extensive epigenetic modifications occur, with phases of total demethylation alternating
with phases of remethylation, ensuring the totipotency of the developing embryo [126].
Additionally, de- and remethylation processes after fertilization are thought to play a
role in the removal of acquired epigenetic modifications, especially those acquired during
gametogenesis [127-129]. However, some parental epigenetic modifications seem to
escape the second wave of demethylation, underlining a potential inheritance of epigenetic
modifications set during gametogenesis [102, 130].

Epigenetic mechanisms are not only important in early phases of pregnancy but
throughout gestation [131, 132]. Current literature suggests that epigenetic modifications
acquired during early developmental phases can be permanent [133]. [t was demonstrated in
avariety ofexperimental models and clinical studies of fetal programming that environmental
conditions during gestation or shortly after birth can induce epigenetic alterations,
stably changing the degree of promoter methylation and thereby permanently altering
gene expression [54, 133]. Rat offspring of dams fed a low-protein diet during pregnancy
exhibit decreases in promoter methylation of the glucuronid receptor and the peroxisome
proliferator-activated receptor o (PPAR-a) gene in the liver [134]. Similar epigenetic changes
were shown for p53 in the kidney [135], the suprarenal angiotensin Il type-1b receptor [136],
and for the hypothalamic glucocorticoid receptor [137]. More recent data underlined that an
alteration of DNA methylation triggered by maternal undernutrition is not tissue specific
but a global phenomenon, associated with widespread changes of gene expression [138].
It is not exactly known yet for how long the time window for stable epigenetic changes is
opened, but current evidence suggests that the timeframe spans from conceptional to early
postnatal stages [137, 139]. It has also been demonstrated that DNA methylation patterns
can be transmitted from one generation to the following [140]. Moreover, it was shown that
a gestational low-protein diet fed to FO dams can still alter promoter methylation and gene
expression of the F2 generation without any nutrient restriction in the F1 generation [141].
Another study even described a significant impact of a gestational/lactational low protein
diet administered only to the FO generation on the phenotype of F3 generation offspring
[142].

Paternal Programming

Until now, the focus regarding fetal programming was mostly set on maternal
programming. However, there is accumulating evidence that the father also plays a relevant
role in epigenetic modifications of the offspring's phenotype [143, 144]. Epidemiological
data showed that the grandchildren of men, who were exposed to a restricted caloric intake
during the slow growth phase just before reaching puberty, lived significantly longer than
grandchildren of men, who experienced overnutrition during this phase [82]. In a more
detailed analysis of these data, it was demonstrated that an excess caloric intake of the
paternal grandfather was associated with a fourfold increased risk of dying from diabetes
associated disease in the grandchildren's generation [83]. There is also data from animal
experiments confirming an influence in terms of fetal programming on the offspring. In a
study by Anderson et al. it was shown that paternal fasting before mating was associated with
reduced serum glucose levels in the F1 generation [145]. Ng et al. were able to demonstrate

KARGER

925



Cellular Physiology Cell Physiol Biochem 2016;39:919-938

DOI: 10.1159/000447801 © 2016 The Author(s). Published by S. Karger AG, Basel

and Biochemistry Published online: August 12, 2016 | www.karger.com/cpb

Reichetzeder et al.: Developmental Origins of Disease

that a preconceptional high fat diet of the father causes beta cell dysfunction of the pancreas
in the F1 generation [146]. Apart from dietary influences, Bakke et al. demonstrated in
a pioneer study that hypothyroidism of male rats before mating resulted in significant
phenotypic changes of the F1 generation [147]. Paternal hypothyroidism was induced
either by radiothyroidectomy or by large doses of neonatally injected thyroxine. Offspring of
hypothyroid fathers displayed a slower postnatal development, reduced weaning weights and
increased final body weights, and had enlarged pituitary and thyroid glands. Furthermore,
female offspring from thyroidectomized fathers developed significantly smaller uteri and
enlarged ovaries, whereas testes of male offspring were significantly smaller [147].

Sex Differences in Developmental Origins of Disease

The existence of sex specific differences in animal models of developmental
programming is well described in currently available literature. The vast majority of non
communicable diseases, which in many cases have developmental origins, often display
some degree of sex bias [148]. Most developmental programming studies have shown
that the same stimulus can elicit different long term effects, depending on the sex of the
offspring. The underlying mechanism of this sexual dimorphism is not well understood
[149]. It was demonstrated that gene expression shows sex specific differences, which
are already detectable in the preimplanted embryo, long before any gonadal development
and sex hormone production [150-152]. Thus, such early phenotypic differences can only
be attributed to transcriptional differences resulting from different sex chromosomes,
i.e. to Y-chromosomal genes and X-chromosomal genes that to a smaller or bigger extent
escape X-chromosome inactivation [150]. Moreover, it was shown that sex chromosomal
differences in gene expression can influence the transcription of autosomal genes, resulting
in prominent sex specific transcriptional differences [150]. Analysis of bovine blastocysts
demonstrated that one third of genes, most of them of autosomal origin, displays sex specific
differences in expression [153]. Mechanistically, the imprinting of X-linked genes may be
involved in sex specific expression differences. In females specific imprinting ensures that
the paternal allele is uniquely or preferentially expressed. As male embryos are missing the
paternally inherited X-chromosome, synergistic effects of double X dosage plus imprinting
mechanisms may be responsible for sex specific transcriptional differences [150]. Early
gestational sexual dimorphism in protein expression may influence several molecular
pathways, including glucose and protein metabolism and impact on epigenetic mechanisms,
particularly DNA methylation. This might be one underlying reason for a sex specific
different susceptibility to environmental stressors, leading to distinct long-term effects in
the offspring [150]. Furthermore, there is evidence in literature that the fetal sex as a major
genetic variant of the fetal genome may influence maternal physiology during gestation
in genetically susceptible pregnant women. It was demonstrated that depending on fetal
sex certain maternal genetic variants (ACE I/D; PPARGZ2 Pro 12 Ala; PROGINS progesteron
receptor polymorphism) are associated with different outcomes in regards to maternal
glycemia and blood pressure regulation, both very influential factors in fetal development
[154-156]. Another crucial factor for sexual dimorphism in developmental programming is
the placenta [148, 149, 151]. Being the functional link between the maternal environment
and the fetus, the placenta plays a central role as a buffer for environmental effects and
is capable of modulating effects of adverse intrauterine conditions [151]. As this organ
derives from embryonic trophoblast cells, it bears the same sex as the embryo/fetus [151].
Depending on the sex of the fetus, the placenta displays sexual dimorphism, with different
growth rates and a varying responsiveness to fetal hormones [157]. In many species
male placentas usually are larger or distinctively shaped, an observation that, at least in
mice, seems to be independent of androgen effects [151, 158]. More importantly, current
literature suggests that female and male placentas are characterized by different molecular
mechanisms to optimize the outcome of the offspring, with distinct transcriptomes, perfectly
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shaped for a proper development of the given sex [151, 159]. Concomitantly, this results in
a different susceptibility to perturbations in the intrauterine environment and the ability
to cope with them. The molecular mechanisms underlying this sexually distinct adaptive
responses are largely unknown, however, current data indicates that the sex specific genome
and epigenome are key factors [150, 151]. Finally, regarding disease susceptibility in later
life, the impact of sex hormones during development and over the course of life has to be
taken into account. However, only a few studies so far have examined the contribution of sex
hormones in later life disease susceptibility due to developmental programming. Ojeda et al.
demonstrated in a rat model of placental insufficiency that intrauterine growth retardation
(IUGR) was associated with hypertension in male offspring [160, 161]. Furthermore, serum
testosterone levels were twofold higher in [UGR males than in healthy controls, indicating a
connection to the observed hypertension in male IUGR offspring. Castration at an age of 10
weeks abolished hypertension in male IUGR offspring with intrauterine growth retardation.
No effects of castration on blood pressure were observed in healthy controls [161]. Female
growth retarded offspring also developed hypertension, however this increase in blood
pressure returned to normotensive values once the animals reached puberty and displayed
increasinglevels of estradiol [162]. Ovariectomy atan age of 10 weeks blunted this decrease in
blood pressure compared to intact IUGR females. In a third group that received 173-estradiol
replacement, ovariectomy induced increases in blood pressure were attenuated [162].
Results from these and similar studies indicate that sex hormones can influence the long term
consequences of developmental programming [161-163]. However, until now there is a lack
of studies that evaluated this matter in different animal models with other outcomes than
hypertension in a similar extensive fashion as Ojeda et al. Taken together, sexual dimorphism
is tightly connected to developmental programming. The influence of sex hormones and
differences in placental function are important factors in this regard. Moreover, disparities
in the sex specific genome and epigenome, leading to a transcriptional sexual dimorphism
which is already present in the preimplanting embryo, may play a relevant role in the varying
susceptibility to environmental stressors among the sexes.

Interaction of Parental Genes, Parental Environment and Fetal Programming

As outlined before, maternal and paternal environmental factors can influence the
phenotype of the offspring by inducing epigenetic adaptive mechanisms. Another factor
responsible for developmental programming during intrauterine life might be related to
parental genes that impact on the fetal phenotype independent of their presence in the
fetal genome [164, 165]. About 25 years ago, Parkhurst et al. described a wimp mutation in
Drosophila that resulted in a lethal phenotype, although the mutation was not transmitted to
the offspring [166]. Hocher et al. translated this finding to mammalian/human development.
They showed that a single nucleotide polymorphism (SNP) in the maternal G protein beta3-
subunit gene, which is involved in regulation of blood supply to the uterus, is associated
with a substantial reduction in birth weight without actually being transmitted to the
offspring (Fig. 1) [167]. Other studies later demonstrated similar independent associations
between specific maternal genes and offspring phenotype without any transmission of the
particular gene [168-179]. It was shown that maternal mutations of relevant genes involved
in folate metabolism are associated with an increased risk for neural tube or congenital
heart defects [170-172]. Similar findings were demonstrated for maternal polymorphisms
involved in glucose metabolism [173]. Such drastic teratogenic consequences highlight the
possible impact maternal genetic deficiencies can have, regardless of any transmission to the
offspring. Not as drastic alterations on the offspring phenotype, that better fit to the concept
of the developmental origins hypothesis were observed for maternal polymorphisms in
the monoamine oxidase A, the peroxisome proliferator activated receptor gamma and
cytochrome P enzyme genes controlling sex steroid biosynthesis and metabolism [174-
176]. Additionally, it was demonstrated that the maternal genotype plays an important role

KARGER

927



Cellular Physiology Cell Physiol Biochem 2016;39:919-938

DOI: 10.1159/000447801 © 2016 The Author(s). Published by S. Karger AG, Basel

and Biochemistry Published online: August 12, 2016 | www.karger.com/cpb

Reichetzeder et al.: Developmental Origins of Disease

Fig. 1. The Advanced Fetal Programming
Hypothesis. (A) Maternal gene dysfunction
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of epigenetic patterns could potentially be [ A ] [ B ] ( C ]
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impact on the placenta and the embryonic/ | Alterations of the fetal and postnatal environment |
fetal environment by altering decidual {}

function [181, 182, 197-199]. (C) Maternal
gene dysfunction may alter weaning behavior
and lactation performance and thus influence
the early postnatal environment [200-203].
(D) The impact of maternal gene dysfunction
on embryonal/fetal/neonatal environmental
factors listed in A-C may trigger stable, long
lasting epigenetic adaptation in the offspring
or result in developmental toxicity [204-206].

Developmental Adaptation
*Independent of the inheritance of maternal genes
*Altered organ structure and function
*Modification of homeostasis maintaining physiological
systems
+Putative mechanisms: epigenetics, developmental toxicity

Regardless of the underlying mechanism, the Increased Potentially
phenotype of the offspring may be modified sur\rivall in n?aladapt_ive
by altered maternal gene function without any LI in later life

transmission of the affected maternal gene.

in modifying adverse intrauterine conditions [180]. Studies showed that polymorphisms of
genes encoding for xenobiotic metabolizing enzymes, such as GSTT1, and GSTM1 gene or
phase I/phase Il enzymes such as CYP1Alor EPHX1 can elicit a modifying effect on birth
weight among actively or passively smoking mothers [177-179]. Taken together, there is
an increasing amount of evidence indicating that parental genes may influence offspring
physiology independent of the inheritance of these genes.

In a very recent study, Hocher et al. aimed to better characterize this biological
phenomenon in an animal experiment. Therefore, female heterozygous endothelial nitric
oxide synthase (eNOS) knockout mice were mated with male wildtype mice and their
wildtype offspring was compared to wildtype offspring from wildtype mice. A heterozygous
knock out in the eNOS gene was chosen because of the central role eNOS plays in controlling
vascular and placental function, negatively affecting the interuterine environment [181,
182]. The partial lack of the maternal eNOS gene resulted in a reduced birth weight and
a steatotic liver phenotype of wildtype offspring. Sex specific differences regarding the
phenotype were observed [183]. Using a similar study design, Costantine etal. had previously
also demonstrated a sex specific transgenerational effect of a maternal heterozygous eNOS
deficiency on the vascular phenotype of wildtype offspring [184]. Results of both studies
suggest a non-environmentally mediated mechanism of developmental programming driven
by altered parental gene function. Without any transmittance of the specific gene, maternal
and putatively also paternal gene dysfunction might influence oocyte or sperm maturation
and later embryonic and fetal development by the induction of epigenetic modifications
or developmental toxicity, finally resulting in an altered phenotype ("The Advanced Fetal
Programming Hypothesis"; see Fig. 1) [165, 183]. Next to the general implications of
these findings for the field of developmental programming, they also suggest to reassess
murine knock out or transgenic animal models, one of the most important tools currently
used in studying gene function. The presumed causality between a genetic manipulation
and a resulting phenotype should be reconsidered in regards to potential confounding by
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an induction of epigenetic changes due to parental gene dysfunction that is absent in the
offspring [183].

Interventional Approaches

Some studies already investigated if it is possible to ameliorate deleterious effects of
fetal programming by interventional approaches. Lillycrop et al. showed in a rat model of
fetal programming that a high-protein diet of pregnant dams lead to a hypomethylation of
different genes in the offspring. However, if folate was supplemented simultaneous to the low
protein diet, the previously observed epigenetic modifications were absent [134]. Until now
these or similar results were observed by other studies [138, 185]. It was demonstrated that
the DNA methylation machinery relies on ingested methyl group donors and other essential
micronutrients [185]. A restriction of these factors may have far-reaching consequences on
the phenotype of offspring [139, 185].

An interesting explanation model of epigenetic modifications due to environmental
influences provides the "Free Radical Theory of Developement” [186, 187]. This theory is
based on the biochemical link between redox buffer systems, such as glutathione, and the
methyl group metabolism. It was demonstrated that unfavorable intrauterine conditions,
triggered for example by gestational protein restriction, can impact on the capacity of
redox buffer systems and expose the organism to increased oxidative stress [186]. As an
opposing measure, the production of glutathione can be increased which requires methyl
group metabolites. This increased demand for methyl group donors can result in a reduced
availability of the essential methyl group donator S-adenosylmethionine (SAM), thus
affecting epigenetic mechanisms including DNA and histone methylation [186]. Camboine
et al. were able to show in a protein restriction model that the simultaneous feeding of a
lipidperoxidation inhibitor during pregnancy and lactation is able to prevent the effects
of the low protein diet on blood pressure regulation, vascular function and microvascular
rarefaction and counteracts a reduction of glutathione [188]. Similar results were generated
employing other antioxidants [189-192]. In summary, nutritional interventions during
pregnancy affecting the methyl group metabolism might be able to prevent or alter a
developmentally programmed phenotype. Future studies are needed to assess, whether
such approaches could be translatable therapeutic options targeting the developmental
origins of diseases.
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Abstract

The concept of developmental origins of diseases has gained a huge interest in recent
years and is a constantly emerging scientific field. First observations hereof originated from
epidemiological studies, linking impaired birth outcomes to adult chronic, noncommunicable
disease. By now there is a considerable amount of both epidemiological and experimental
evidence highlighting the impact of early life events on later life disease susceptibility. Albeit
far from being completely understood, more recent studies managed to elucidate underlying
mechanisms, with epigenetics having become almost synonymous with developmental
programming. The aim of this review was to give a comprehensive overview of various aspects
and mechanisms of developmental origins of diseases. Starting from initial research foci
mainly centered on a nutritionally impaired intrauterine environment, more recent findings
such as postnatal nutrition, preterm birth, paternal programming and putative interventional
approaches are summarized. The review outlines general underlying mechanisms and
particularly discusses mechanistic explanations for sexual dimorphism in developmental
programming. Furthermore, novel hypotheses are presented emphasizing a non-mendelian
impact of parental genes on the offspring’s phenotype.

@ 2016 The Auther(s)
Published by 5. Karger AG, Basel

Introduction

Throughout the entire life of an individual, environmental factors play an important role
for its state of health. However, at no stage in life the surrounding environment has a bigger
impact than during embryonic and fetal life. Growth and development in utero are complex
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and dynamic processes which require an orchestration of a variety of maternal, paternal
and fetal factors for an optimal outcome. This complex interaction between mother; father,
placenta and embryo/fetus ensures an optimal supply of nutrients, oxygen and endocrine
signals, all fundamental elements for normal development. Disruptions in this supply
system may not only have a direct impact on altering fetal growth patterns, but, as evidence
suggests, can be associated with the occurrence of diseases in the later life of the offspring.
In the current review, we will discuss exogenous (environmental) as well as endogenous
factors (both parental and offspring genes) contributing to the complex interaction between
mother, father, placenta and embryo /fetus.

Undernutrition

Epidemiological data unequivocally indicate that there is a connection between early
life conditions, anthropometric measures at birth and disease susceptibility in later life [1,
2] BB e “Barker Hypothesis”, also called the “Fetal Programming Hypothesis” or the theory
of the “Developmental Origins of Health and Diseases (DOHaD)", has become the foundation
for this increasingly popular scientific field [2]. Barker et al. were not the first investigating
this subject, but it was their groundbreaking epidemiological studies in England and Wales
in the late 1980ies that inspired research worldwide. Barker et al. initially demonstrated a
geographical relationship between cases of ischemic heart disease in the years 1968-1978
and child mortality rates between 1921-1925 [3]. A follow-up study showed that individuals
born with a reduced birth weight had an increased risk for coronary heart {f#ase in
their adult life [4, 5]. Hales et al. demonstrated in another follow-up study that there is a
similar inverse correlation between birth weight and later life glucose tolerance or insulin
resistance [6]. In addition, they revealed that individuals with the lowest birth weight, in
comparison to heavier newborns, displayed a six fold increased risk for impaired glucose
tolerance or diabetes mellitus type 2 in late adulthood [6]. Until now, these findings have been
replicated in several different study populations and in different ethnic groups [7]. Based
on their observations, Hales and Barker formulated the "Thrifty Phenotype Hypothesis",
a more detailed hypothesis trying to outline a putative mechanism of fetal programming.
According to this explanation model, gestational under nutrition induces a series of adaptive
processes in the fetus, trying to maximize the chances of survival in the given nutrient-poor
environment. However, if a mismatch between pre- and postnatal nutrient supply exists fetal
adaptation can be deleterious, increasing the risk for diseases later in life [7, 8].

The Thrifty Phenotype Hypothesis

Research stimulated by the thrifty phenotype hypothesis has improved the
understanding of the plasticity of early human development, emphasizing an important role
of developmental plasticity as a possible contributing factor to later human disease [9]. Until
now, the thrifty phenotype hypothesis was confirmed by a number of human studies. The
link between a poor intrauterine environment, restricted fetal growth and increased adult
disease risk was well demonstrated in the "Dutch famine study”. In this retrospective study,
children born during a war-inflicted famine between December 1944 and April 1945 were
analyzed [10, 11]. During the famine, the daily caloric intake for the general population was
restricted to 400 - 800 kcal per day, about half as much as before and after this period. The
comparison of individuals that were in utero during this time with individuals born a year
before or after the famine showed that gestational caloric restriction was associated with
a decreased birth weight and an increased prevalence of impaired glucose tolerance at an
age of 50 years [10]. Moreover, twin studies were able to confirm the Thrifty Phenotype
Hypothesis. A Danish study examined mono- and dizygotic twins which were discordant
for the occurrence of type 2 diabetes. Results of the study revealed that the diabetic
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twin was born with a significantly lower birth weight compared to the euglycemic twin
sibling [12]. Other twin studies, especially studies on monozygotic twins, highlighted the
importance of the intrauterine environment and developmental plasticity, regardless of the
underlying genotype [13]. In addition to the connection between a sub-optimal intrauterine
environment, disturbed fetal growth patterns and disease predisposition in adulthood,
several more recent studies showed that postnatal nutrition is to be regarded as another
critical component of the thrifty phenotype hypothesis. Crowther et al. investigated the
impact of pos@¥8tal weight gain in a cohort of 7-year-old South African children [14]. Results
of this study showed that children born with a reduced birth weight and rapid postnatal
weight gain, displayed an impaired glucose tolerance already at an age of 7 years [14].
Further studies in Finland and India replicated these findings [15-17]. Various studies have
demonstrated that rapid postnatal weight gain in newborns with an initial low birth weight
is mainly due to fat accumulation and not due to an increase in muscle mass [18-20]. This
specific phenotype was observed in several cohorts of small for gestational age newborns
[21,22]. In addition it was demonstrated that fat accumulation is more prominent in visceral
than in subcutaneous fat depots [23, 24].

Parallel to the epidemiological studies outlined above, various animal studies have been
conducted overthe yearsinorder toinvestigate the underlying mechanisms of developmental
programming more thoroughly. Preclinical results substantiated findings from observational
studies and gave more insight into involved mechanisms, also substantiating the thrifty
phenotype hypothesis [25, 26]. [t was demonstrated that restricting the maternal diet during
gestation does not just result in low birth weight but induces disproportional growth. At the
expenseoforganssuchasliver, kidney, pancreas, lung and skeletal muscle, the development of
brain, heart and adrenal gland is prioritized [25, 27]. Caloric restriction during gestation was
shown to reduce pancreatic beta cell mass formation in the offspring, leading to a decreased
production of insulin [28]. In a postnatal calorie-rich life, this lack of insulin production can
predispose for the development of diabetes [29].

Overnutrition

As worldwide obesity rates are constantly rising, the focus of research has moved from
maternal underniEltion as a predisposing factor for reduced birth weight and adult disease
susceptibility, to tlgEimpact of maternal overnutrition on offspring health. Interestingly,
it was shown that maternal overnutrition and an increased birth weight of the newborn
elicits simil{{fRffects on offspring health as observed in low birth weight offspring [30, 31].
Being born small for gestational age (SGA) usually is associated with deficits in placental
function, placental blood flow and adverse environmental influences, such as maternal
undernutrition, particularly if the diet lacks sufficient protein levels [32-35]. Furthermore,
literature suggests a complex genetic association, as SGA offspring more commonly occurs
in women themselves born SGA [32, 36]. Increases in birth weight are typically associated
with maternal obesity [l gestational or pre-gestational diabetes [37-39]. Moreover, a very
recent study provided genetic evidence for a causal relationship between maternal obesity-
related traits and offspring birth weight [37]. Large for gestational age (LGA) offspring
usually displays an increased body fat mass and an increased risk for metabolic disease in
later life [37, 40, 41]. Current evidence suggests that either being born with a reduced or
an increased birth weight increases disease risk in later life. Meta-analysis have underlined
this by demonstrating an U-shaped relationship between later life metabolic diseases and
birth weight [42-44]. The overlap of the adult phenotype in SGA and LGA offspring raises
the important question which mechanisms are affected in these conditions, and vice versa
howthese mechanisms can be triggered by conditions producing extremely disparate early
life phenotypes [32]. Interestingly, specific overnutrition by feeding an isocaloric high-
protein diet to rats, was shown to elicit no effects on birth weight but cause an impaired
phenotype in adult animals [45]. Furthermore, it was demonstrated in animal and human
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models that the simultaneous presence of two gestational insults, maternal obesity and
maternal stress, are associated with increased rates of both, SGA and LGA offspring [31, 32,
46]. Literature on this subject suggests that the variability in the observed outcomes is likely
due to different dosage, timing and downstream effects of a maternal insult. Maternal obesity
and pre-pregnancy high-fat intake was on one hand shown to increase the risk for SGA and
preeclampsia. On the other hand, this combination of maternal insults was associated with
maternal gestational overeating which is associated with gestational diabetes and LGA
[30, 32, 47]. Animal stress models revealed that the timing of the maternal stressor during
gestation is a key factor for the offspring to be born SGA or LGA [48]. Furthermore, placental
development and function, especially an impairment of the placfi#al barrier which normally
limits fetal exposure to maternal stress hormones, is thought to play a central role in the
severity of maternal stress effects [49, 50]. Taken together, both over and undernutrition are
associated with developmental programming. Future studies will give a more precise picture
of the complex interaction between nutrition and developmental programming. More recent
studies already aimed to discern the role of micronutrient deficiency or excess in regards to
developmental origins of disease [51-55]. Furthermore there are also novel approaches to
integrate the role of the microbiome and its interaction with nutrition into developmental
programming studies [56].

Critical Periods for Nutritional Programming

Experimentalandepidemiological data show that effects ofdevelopmental programming
canbetriggered throughout gestation. However, thenature ofadult disease can vary according
to the timing of a gestational insult [57]. Analysis of the "Dutch Hunger Winter" cohort
demonstrated that offspring exposed to famine during early periods of gestation displayed an
increased risk for coronary heart disease in later life, which could not be observed if famine
exposure happened during later stages of pregnancy [58]. Interestingly, caloric restriction
during late gestation was assocd with disturbances in glucose-insulin homeostasis,
clinically reflected by an increased risk of type 2 diabetes [58]. This finding could be replicated
in animal models [59, 60]. Gardner et al. showed that maternal undernutrition in sheep in late
gestation also led to impaired glucose-insulin homeostasis, highlighting the importance of
late gestational periods in regards to programming effects on intermediary metabolism [60].
According to developmental processes in respective gestational periods, current literature
suggests that nutritional insults during early gestation may influence organ development,
altering fetal physiology in late gestation, and postnatal function, yet often without a
measurable effect on birth weight [59, 61-64]. This was demonstrated by various studies
investigating nutritional alteration in the periconceptual period, which is characterized by
fertilisation, blastocystogenesis and the implantation process [61-65]. Nutritional insults set
in later embryonic and early fetal life, a period which comprises intense organogenesis and
placental development, display similar patterns of developmental programming [66-70].
Dietary modifications in later stages of gestation, characterized by very pronounced fetal
growth and placental maturation, were shown to have a strong impact on birth weight and
organ maturation with pronounced programming effects on intermediary metabolism and
hormonal systems [71-75]. Furthermore, also postnatal nutrition plays an important role
in developmental programming. A large body of studies have demonstrated that postnatal
catch-up growth in low birth weight newborns is a crucial factor for increasing the risk of
adult metabolic disturbances [20, 22, 76]. Intriguingly, also in postnatal developmental
programming timing is of importance. It was shown that catch-up growth restricted to the
first postnatal year did not have an effect on insulin levels, but sustained catch-up growth
was associated with higher insulin levels in seven year old- and insulin resistance in
eight year old children [77-79]. Next to postnatal periods, newer evidence highlights the
importance of preconceptual nutrition of both the mother and the father on offspring health.
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There is a growing amount of evidence, demonstrating that dietary challenges during oozyte
development or spermatogenesis can induce permanent phenotypic changes in the offspring
[80-84]. Taken together, available evidence highlights the importance of different time
frames before, during and after gestation in regards to developmental origins of health and
disease. However, given species differences in physiology, metabolism, placental structure
and function, cautious interpretation of the available studies is warranted, especially when
extrapolating to human situations [72].

Prematurity

More recent data showed that fetal adaptation causing persistent functional and
structural changes of the fetal organism can be induced by factors that go beyond gestational
nutrition and do not necessarily have to impact on anthropometric measures at birth [85].
A very important factor in this regard is preterm birth. As outlined before, initial studies on
fetal programming focused on a ‘deprived’ intrauterine environment as a cause for low birth
weight or SGA [10, 86]. Such anthropometric measurements were then used as surrogate
parameters for association analyses with later life disease [10, 86]. However, many of these
epidemiologic studies based their investigations on old birth records, sometimes assessing
birth weight without considering gestational age at birth [87, 88]. Thus, it is possible
that a considerable amount of individuals included in these epidemiologic studies, were
preterm individuals and not small for gestational age [87]. De @g et al. demonstrated in
a systematic literature review followed by a meta-analysis, that preterm birth is associated
with higher blood pressure in adulthood, suggesting a relevant role of gestationfilige in fetal
programming [89]. There is an increasing body of evidence that prematurity is associated
with an increased risk for various disease in adult life [53, 87, 89-91]. It is known that
preterm birth causes an interruption of normal organogenesis, especially in organ systems
that display a branching morphogenesis like kidney, lung, pancreas, and the vascular
system [87, 92-94]. The developing kidney is particularly vulnerable to preterm birth
which causes considerable deficits in organ structure and function [93]. Prematurity was
shollito be associated with a lower nephron endowment [95, 96] potentially increasing
the risk of hypertension, proteinuria and kidney disease in later life [97, 98]. Although
underlying mechanisms of increasing adult disease susceptibility by prematurity on first
glance seem to be more direct, there are similarities between being born SGA and preterm.
Preterm birth cannot be simply seen as an abrupt termination of gestation, but rather as a
pathologic, stressful and inflammatory event, influenced by numerous factors, ranging from
ethnicity and socioeconomic status to dysfunctions in hormonal systems and gestational
micronutrient deficiencies [53, 88, 99-101]. Similar to SGA infants preterm infants suffer
from an adverse intrauterine environment and, by being born prematurely, are additionally
exposed to an adverse neonatal environment [102]. Both, SGA and preterm born infants
display similar postnatal growth patterns with about 80% of both groups exhibiting catch
up growth [102]. Resembling observations in SGA newborns, prematurity predisposes
to childhood adiposity, with data indicating a shift in adipose tissue distribution towards
visceral fat depots [102]. Furthermore, similar to observations in SGA cohorts, a more rapid
postnatal catch-up growth was shown to be associated with greater reductions in insulin
sensitivity [103, 104]. A recent systematic review and meta-analysis showed that there is
also an association between preterm birth and insulin sensitivity throughout life. However,
the data in this regard are conflicting and observed associations might be affected by the
overall heterogeneity of the study designs and analyzed populations [105]. Albeit conflicting
findings, prematurity putatively increases the risk for insulin resistance which, at least in
part, appears to be regulated by postnatal growth. This highlights the importance of an
optimal nutritional strategy for preterm infants which yet remains to be determined [104,
106].
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The Role of Insulin in Fetal Development and Adult Diseases

The developmental origins theory can be applied to all early life events including low
birth weight and/or prematurity [107-109]. Adverse environmental exposures during fetal
and neonatal life are thought to trigger compensatory persistent physiological responses.
Such adaptations may modify set points of physiological systems involved in sustaining
homeostasis. This can become maladaptive if a mismatch between anticipated and actual
environment occurs. In this regard, a lot of research was focused on insulin resistance as the
main culprit for both, altered anthropometric measurements at birth, and later life disease
susceptibility. Divergent to the developmental origins theory first postulated by Barker
et al, Hattersley and Tooke proposed in their "fetal insulin hypothesis" that genetically
determined insulin resistance results in impaired insulin-mediated growth in the fetus as
well as in an insulin resistant phenotype in adult life [110]. It is known that type 2 diabetes
has astrong genetic component. Furthermore, insulin acts as key factor in fetal growth. Thus,
any genetic variant that impairs insulin secretion and/or insulin sensitivity may ref§life
birth weight and concomitantly result in adult life type 2 diabetes. Put differently, the "fetal
insulin hypothesis" postulated that the genotype, not low birth weight, increases the risk
of adult diabetes [110, 111]. The EEBothesis is supported by genetic evidence showing that
single nucleotide polymorphisms associated with an increased risk for type 2 diabetes were
associated with low birth weight [112]. Moreover, a study in Caucasian mothers revealed
that there is a negative correlation between total glycated hemoglobin in cord blood (fetal)
and birth weight [113]. The relationship between cord blood glycemia and birth weight is
diametrically opposed to the well described positive correlation between maternal glycemia
and birth weight which was also observed in this study [113]. When subjected to similar
degrees of maternal glycemia (reflected by maternal total glycated hemoglobin), lighter
fetuses appear incapable of lowering their blood glucose concentrations (reflected by the
newborn'’s total glycated hemoglobin), as do heavier fetuses. Meanwhile, the findings of an
inverse relationship between cord blood glycemia and birth weight were replicated in an
Asian cohort, highlighting their validity [114]. Until now, fetal blood glucose concentrations
were regarded as a passive reflection of maternal glycemia. However, the observed inverse
correlation between cord blood and birth weight showed that the fetal response to similar
maternal glucose levels might not behave as uniform as previously thought [113, 114]. From
a hypothetical point of view such findings can be explained by both, genetics and the fetal
environment, underlining that future research, integratively applying genetic and epigenetic
methodology, is still needed to better characterize the association between early life and
adult disease susceptibility.

Epigenetics

Although the underlying molecular mechanisms are incompletely understood so
far, there is convincing evidence that developmental plasticity is mediated by epigenetic
modifications of the DNA. Important epigenetic mechanisms are histone modifications, non
coding RNAs and DNA methylation [115, 116]. These tools generally affect how accessible
DNA is to transcription factor complexes, how efficiently transcription proceeds, and
how stable already transcribed mRNA is [104]. Histone modifications consist of chemical
alterations such as acetylation, phosphorylation and methylation [116] which can modulate
chromatin structure, thus influencing the accessibility of the transcription machinery to the
gene [117]. Non coding RNAs can trigger RNAse activity by RNA interference eliminating
mRNA transcribed by target genes [38, 118]. The currentlfflbest studied epigenetic
mechanism is DNA methylation [119]. DNA methylation is the addition of a methyl group
at the C5 position of the cytosine pyrimidine ring via DNA methyl transferase activity [120].
Methylated cytosines are generally located in cytosine-phosphate-guanine (CpG) sequences
[121, 122]. Although about 70% of all genomic CpGs are methylated, there are clusters of

KARGER

924




Cellular Physiology Cell Physiol Biochem 2016;39:919-938

. = DOL 10.1159/000447801 i 2016 The Author(s). Published by 5. Karger AG, Basel
and Blochemls‘try Published online: August 12, 2016  |www.kargercom/cpb

Reichetzeder et al . Developmental Origins of Disease

CpGs, termed CpG islands, thatremain unmethylated [102, 120, 123]. Such unmethylated CpG
islands are associated with about 60% of all human genomic promoters [124]. Methylating
a CpG site attracts methyl-binding proteins that trigger chromatin remodeling, leading to
a more condensed chromatin, thus restricting access for the transcription machine [125].
Therefore, promoter regions of translated genes usually display low methylated CpG islands,
whereas un-translated genes are heavily methylated.

In mammalian development, there are two main periods characterized by extensive
epigenetic modifications. During the course of gametogenesis, genome-wide demethylation
takes place followed by remethylation before fertilization. In early phases of embryogenesis,
extensive epigenetic modifications occur, with phases of total demethylation alternating
with phases of remethylation, ensuring the totipotency of the developing embryo [126].
Additionally, de- and remethylation processes after fertilization are thought to play a
role in the removal of acquired epigenetic modifications, especially those acquired during
gametogenesis [127-129]. However, some parental epigenetic modifications seem to
escape the second wave of demethylation, underlining a potential inheritance of epigenetic
modifications set during gametogenesis [102, 130].

Epigenetic mechanisms are not only important in early phases of pregnancy but
throughout gestation [131, 132]. Current literature suggests that epigenetic modifications
acquired during early developmental phases can be permanent [133]. [t was demonstrated in
avariety of experimental modelsand clinical studies of fetal programming that environmental
conditions during gestation or shortly after birth can induce epigenetic alterations,
stably changing the degree of@)moter methylation and thereby permanently altering
gene expression [54, 133]. Rat offspring of dams fed a low-protein diet during pregnancy
exhibit decreases in promoter methylation of the glucuronid receptor and the peroxisome
proliferator-activated receptor o (PPAR-a) gene in the liver [134]. Similar epigeneticchanges
were shown for p53 in the kidney [135], the suprarenal angiotensin Il type-1breceptor [136],
and for the hypothalamic glucocorticoid receptor [137]. More recent data underlined that an
alteration of DNA methylation triggered by maternal undernutrition is not tissue specific
but a global phenomenon, associated with widespread changes of gene expression [138].
It is not exactly known yet for how long the time window for stable epigenetic changes is
opened, but current evidence suggests that the timeframe spans from conceptional to early
postnatal stages [137, 139]. It has also been demonstrated that DNA methylation patterns
can be transmitted from one generation to the following [140]. Moreover, it was shown that
a gestational low-protein diet fed to FO dams can still alter promoter methylation and gene
expression of the F2 generation without any nutrient restriction in the F1 generation [141].
Another study even described a significant impact of a gestational/lactational low protein
diet administered only to the FO generation on the phenotype of F3 generation offspring
[142].

Paternal Programming

Until now, the focus regarding fetal pmramming was mostly set on maternal
programming. However, there is accumulating evidence that the father also plays a relevant
role in epigenetic modifications of the offspring's phenotype [143, 144]. Epidemiological
data showed that the grandchildren of men, who were exposed to a restricted caloric intake
during the slow growth phase just before reaching puberty, lived significantly longer than
grandchildren of men, who experienced overnutrition during this phase [82]. In a more
detailed analysis of @e data, it was demonstrated that an excess caloric intake of the
paternal grandfather was associated with a fourfold increased risk of dying from diabetes
associated disease in the grandchildren's generation [83]. There is also data from animal
experiments confirming an influence in terms of fetal programming on the offspring. In a
study by Anderson et al. it was shown that paternal fasting before mating was associated with
reduced serum glucose levels in the F1 generation [145]. Ng et al. were able to demonstrate
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that a preconceptional high fat diet of the father causes beta cell dysfunction of the pancreas
in the F1 generation [146]. Apart from dietary influences, Bakke et al. demonstrated in
a pioneer study that hypothyroidism of male rats before mating resulted in significant
phenotypic changes of the F1 generation [147]. Paternal hypothyroidism was induced
either by radiothyroidectomy or by large doses of neonatally injected thyroxine. Offspring of
hypothyroid fathersdisplayed aslower postnatal development, reduced weaning weightsand
increased final body weights, and had enlarged pituitary and thyroid glands. Furthermore,
female offspring from thyroidectomized fathers developed significantly smaller uteri and
enlarged ovaries, whereas testes of male offspring were significantly smaller [147].

Sex Differences in Developmental Origins of Disease

The existence of sex specific differences in animal models of developmental
programming is well described in currently available literature. The vast majority of non
communicable diseases, which in many cases have developmental origins, often display
some degree of sex bias [148]. [#st developmental programming studies have shown
that the same stimulus can elicit different long term effects, depending on the sex of the
offspring. The underlying mechanism of this sexual dimorphism is not well understood
[149]. It was demonstrated that gene expression shows sex specific differences, which
are already detectable in the preimplanted embryo, long before any gonadal development
and sex hormone production [150-152]. Thus, such early phenotypic differences can only
be attributed to transcriptional differences resulting from different sex chromosomes,
i.e. to Y-chromosomal genes and X-chromosomal genes that to a smaller or bigger extent
escape X-chromosome inactivation [150]. Moreover, it was shown that sex chromosomal
differences in gene expression can influence the transcription of autosomal genes, resulting
in prominent sex specific transcriptional differences [150]. Analysis of bovine blastocysts
demonstrated that one third of genes, most of them of autosomal origin, displays sex specific
differences in expression [153]. Mechanistically, the imprinting of X-linked genes may be
involved in sex specific expression differences. In females specific imprinting ensures that
the paternal allele is uniquely or preferentially expressed. As male embryos are missing the
paternally inherited X-chromosome, synergistic effects of double X dosage plus imprinting
mechanisms may be responsible for sex specific transcriptional differences [150]. Early
gestational sexual dimorphism in protein expression may influence several molecular
pathways, including glucose and protein metabolism and impact on epigenetic mechanisms,
particularly DNA methylation. This might be one underlying reason for a sex specific
different susceptibility to environmental stressors, leading to distinct long-term effects in
the offspring [150]. Furthermore, there is evidence in literature that the fetal sex as a major
genetic variant of the fetal genome may influence maternal physiology during gestation
in genetically susceptible pregnant women. It was demonstrated that depending on fetal
sex certain maternal genetic variants (ACE I/D; PPARGZ Pro 12 Ala; PROGINS progesteron
receptor polymorphism) are associated with different outcomes in regards to maternal
glycemia and blood pressure regulation, both very influential factors in fetal development
[154-156]. Another crucial factor for sexual dimorphism in developmental programming is
the placenta [148, 149, 151]. Being the functional link between the maternal environment
and the fetus, the placenta plays a central role as a buffer for environmental effects and
is capable of modulating effects of adverse intrauterine conditions [151]. As this organ
derives from embryonic trophoblast cells, it bears the same sex as the embryo/fetus [151].
Depending on the sex of the fetus, the placenta displays sexual dimorphism, with different
growth rates and a varying responsiveness to fetal hormones [157]. In many species
male placentas usually are larger or distinctively shaped, an observation that, at least in
mice, seems to be independent of androgen effects [151, 158]. More importantly, current
literature suggests that female and male placentas are characterized by different molecular
mechanisms to optimize the outcome ofthe offspring, with distinct transcriptomes, perfectly
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shaped for a proper development of the given sex [151, 159]. Concomitantly, this results in
a different susceptibility to perturbations in the intrauterine environment and the ability
to cope with them. The molecular mechanisms underlying this sexually distinct adaptive
responses are largely unknown, however, current data indicates that the sex specific genome
and epigenome are key factors [150, 151]. Finally, regarding disease susceptibility in later
life, the impact of sex hormones during development and over the course of life has to be
taken into account. However, only a few studies so far have examined the contribution of sex
hormones in later life disease susceptibility due to developmental programming. Ojeda et al.
demonstrated in a rat model of placental insufficiency that intrauterine growth retardation
(IUGR) was associated with hypertension in male offspring [160, 161]. Furthermore, serum
testosterone levels were twofold higher in IUGR males than in healthy controls, indicating a
connection to the observed hypertension in male IUGR offspring. Castration at an age of 10
weeks abolished hypertension in male IUGR offspring with intrauterine growth retardation.
No effects of castration on blood pressure were observed in healthy controls [161]. Female
growth retarded offspring also developed hypertension, however this increase in blood
pressure returned to normotensive values once the animals reached puberty and displayed
increasing levelsofestradiol [162]. Ovariectomy atan age of 10 weeksblunted this decrease in
blood pressure compared tointact IUGR females. Ina third group that received 17 3-estradiol
replacement, ovariectomy induced increases in blood pressure were attenuated [162].
Results from these and similar studies indicate that sex hormones can influence the long term
consequences of developmental programming [161-163]. However, until now there is a lack
of studies that evaluated this matter in different animal models with other outcomes than
hypertension in a similar extensive fashion as Ojeda et al. Taken together, sexual dimorphism
is tightly connected to developmental programming. The influence of sex hormones and
differences in placental function are important factors in this regard. Moreover, disparities
in the sex specific genome and epigenome, leading to a transcriptional sexual dimorphism
which is already present in the preimplanting embryo, may play arelevant role in the varying
susceptibility to environmental stressors among the sexes.

Interaction of Parental Genes, Parental Environment and Fetal Programming

As outlined before, maternal and paternal environmental factors can influence the
phenotype of the offspring by inducing epigenetic adaptive mechanisms. Another factor
responsible for developmental programming during intrauterine life might be related to
parental genes that impact on the fetal phenotype independent of their presence in the
fetal genome [164, 165]. About 25 years ago, Parkhurst et al. described a wimp mutation in
Drosophila thatresulted in a lethal phenotype, although the mutation was not transmitted to
the offspring [166]. Hocher et al. translated this finding to mammalian/human development.
They showed that a single nucleotide polymorphism (SNP) in the maternal G pf&3ein beta3-
subunit gene, which is involved in regulation of blood supply to the uterus, is associated
with a substantial reduction in birth weight without actually being transmitted to the
offspring (Fig. 1) [167]. Other studies later demonstrated similar independent associations
between specific maternal genes and offspring phenotype without any transmission of the
particular gene [168-[E]. It was shown that maternal mutations of relevant genes involved
in folate metabolism are associated with an increased risk for neural tube or congenital
heart defects [170-172]. Similar findings were demonstrated for maternal polymorphisms
involved in glucose metabolism [173]. Such drastic teratogenic consequences highlight the
possible impact maternal genetic deficiencies can have, regardless of any transmission to the
offspring. Notas drastic alterations on the offspring phenotype, that better fit to the concept
of the developmental origins hypothesis were observed for maternal polymorphisms in
the monoamine oxidase A, the peroxisome proliferator activated receptor gamma and
cytochrome P enzyme genes controlling sex steroid biosynthesis and metabolism [174-
176]. Additionally, it was demonstrated that the maternal genotype plays an important role
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Fig. 1. The Advanced Fetal Programming
Hypothesis. (A) Maternal gene dysfunction
may influence ovary function. Physiological
ovarian function, oocyte development and
maturation, including the establishment

of epigenetic patterns could potentially be A B c
affected by altered maternal gene function Ovarlan Function Placental and Weaning Behavior and

Maternal Genome

[193-196]. (B) Maternal gene dysfunction can tterine Punction e
impact on the placenta and the embryonic/ | Alterations of the fetal and postnatal environment ]
fetal environment by altering decidual {}

function [181, 182, 197-199]. (C) Maternal

gene dysfunction may alter weaning behavior D

and lactation performance and thus influence Developmental Adaptati

+Independent of the inheritance of maternal genes

the early posmatal environment [200-203]. *Altered organ structure and function

(D) The impact of maternal gene dysfunction *Modification of homeostasis maintaining physiological
on embryonal/fetal /neonatal environmental systems

factors listed in A-C may trigger stable, long *Putative mechanisms: epigenetics, developmental toxicity

lasting epigenetic adaptation in the offspring
or result in developmental toxicity [204-206].

Regardless of the underlying mechanism, the Increased Potentially
phenotype of the offspring may be modified survival in maladaptive
by altered maternal gene function without any Earyite in later life

transmission of the affected maternal gene.

in modifying adverse intrauterine conditions [180]. Studies showed that polymorphisms of
genes encoding for xenobiotic metabolizing enzymes, such as GSTT1, and GSTMI gene or
phase [/phase Il enzymes such as CYPI1Alor EPHX1 can elicit a modifying effect on birth
weight among actively or passively smoking mothers [177-179]. Taken together, there is
an increasing amount of evidence indicating that parental genes may influence offspring
physiology independent of the inheritance of these genes.

In a very recent study, Hocher et al. aimed to better characterize this biological
phenomenon in an animal experiment. Therefore, female heterozygous endothelial nitric
oxide synthase (eNOS) knockout mice were mated with male wildtype mice and their
wildtype offspring was compared to wildtype offspring from wildtype mice. A heterozygous
knock out in the eNOS gene was chosen because of the central role eNOS plays in controlling
vascular and placental function, negatively affecting the interuterine environment [181,
182]. The partial lack of the maternal eNOS gene resulted in a reduced birth weight and
a steatotic liver phenotype of wildtype offspring. Sex specific differences regarding the
phenotype were observed [183]. Using asimilar study design, Costantine et al. had previously
also demonstrated a sex specific transgenerational effect of a maternal heterozygous eNOS
deficiency on the vascular phenotype of wildtype offspring [184]. Results of both studies
suggesta non-environmentally mediated mechanism of developmental programming driven
by altered parental gene function. Without any transmittance of the specific gene, maternal
and putatively also paternal gene dysfunction might influence oocyte or sperm maturation
and later embryonic and fetal development by the induction of epigenetic modifications
or developmental toxicity, finally resulting in an altered phenotype ("The Advanced Fetal
Programming Hypothesis”; see Fig. 1) [165, 183]. Next to the general implications of
these findings for the field of developmental programming, they also suggest to reassess
murine knock out or transgenic animal models, one of the most important tools currently
used in studying gene function. The presumed causality between a genetic manipulation
and a resulting phenotype should be reconsidered in regards to potential confounding by
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an induction of epigenetic changes due to parental gene dysfunction that is absent in the
offspring [183].

Interventional Approaches

Some studies already investigated if it is possible to ameliorate deleterious effects of
fetal programming by interventional approaches. Lillycrop et al. showed in a rat model of
fetal programming that a high-protein diet of pregnant dams lead to a hypomethylation of
different genesin the offspring. However, if folate was supplemented simultaneous to the low
protein diet, the previously observed epigenetic modifications were absent [134]. Until now
these or similar results were observed by other studies [138, 185]. It was demonstrated that
the DNA methylation machinery relies on ingested methyl group donors and other essential
micronutrients [185]. A restriction of these factors may have far-reaching consequences on
the phenotype of offspring [139, 185].

An interesting explanation model of epigenetic modifications due to environmental
influences provides the "Free Radical Theory of Developement” [186, 187]. This theory is
based on the biochemical link between redox buffer systems, such as glutathione, and the
methyl group metabolism. It was demonstrated that unfavorable intrauterine conditions,
triggered for example by gestational protein restriction, can impact on the capacity of
redox buffer systems and expose the organism to increased oxidative stress [186]. As an
opposing measure, the production of glutathione can be increased which requires methyl
group metabolites. This increased demand for methyl group donors can result in a reduced
availability of the essential methyl group donator S-adenosylmethionine (SAM), thus
affecting epigenetic mechanisms including DNA and histone methylation [186]. Camboine
et al. were able to show in a protein restriction model that the simultaneous feeding of a
lipidperoxidation inhibitor during pregnancy and lactation is able to prevent the effects
of the low protein diet on blood pressure regulation, vascular function and microvascular
rarefaction and counteracts a reduction of glutathione [188]. Similar results were generated
employing other antioxidants [189-192]. In summary, nutritional interventions during
pregnancy affecting the methyl group metabolism might be able to prevent or alter a
developmentally programmed phenotype. Future studies are needed to assess, whether
such approaches could be translatable therapeutic options targeting the developmental
origins of diseases.
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