Proceedings of The 2nd International Conference on Operations and Supply Chain Management

Regional and Global Logistics and Supply Chain Management

18 – 20 May, 2007 Novotel Bangkok on Siam Square, Bangkok, THAILAND

Organized by

School of Engineering

University of the Thai Chamber of Commerce

In Cooperation with

Thai Researchers' Consortium

of Value Chain Management and Logistics

Editor: U. Laptaned

Contents

ing icultural and other sectors	Agricultural	and	Other	Sectors
---------------------------------	--------------	-----	-------	---------

0013	THE PLANNING AND FORECASTING PROBLEMS FOR BANKNOTE MANAGEMENT	
0023	A CONCEPTUAL THOUGHT FOR GLOBAL SUPPLY NETWORKS (GSN) ARCHITECTURE: CASE STUDIES IN FOOD INDUSTRY Pichawadee Kittipanya-ngam, Yongjiang Shi, Mike J. Gregory	11
0050	MANAGING OPERATIONAL RISKS: A CONCEPTUAL FRAMEWORK FOR OPRATIONAL RISK MANAGEMENT Thitima Pitinanondha, Hasan Akpolat	23
0081	RANKING OPERATIONS MANAGEMENT CONFERENCES Harm-Jan Steenhuis, Erik J. de Bruijn, and Sushil Gupta	
0095	OPTIMZED TECHNOLOGY FOR MUNCIPALWASTE WATER TREATMENT AND REUSE FOR AGRICULTURE Nasser Mehrdadi, Behnam Hooshyari	
0104	A COST REDUCED SOLUTIONS OF DRAGON FRUITS SUPPLY CHAIN TO INCREASE BUSINESS COMPETITIVE ADVANTAGE Tanongsak Khumpal, Varin Vongmanee, Wanchai Rattanawong	45
0116	CRITICAL SUCCESS FACTORS FOR PRODUCT DESIGN AND DEVELOPMENT IN THE THAI ELECTRONICS AND COMPUTER INDUSTRY Montalee Sasananan, Jirawut Ketwarophart	55
0128	FACILITY DESIGN FOR MANGO DISTRIBUTION CENTER AND LOGISTICS IN CHACHOENGSAO PROVINCE Chatchawarn Mongkhon, Pong Horadal, Somporn Chaiya, and Chatchalee Ruktanonchai	63
0149	AN EXPLORATORY STUDY OF ACROSS-CULTURE EFFECTS: CASE STUDY OF JAPANESE-OWNED AND WESTERN-OWNED FIRMS IN THAILAND Runchana Sinthavalai, Napisporn Meemongkol and Srisit Chianrabutra	69
0158	GREEN LOGISTICS AFFECTING THE INVOLVEMENT OF HOUSEHOLDS IN RECYCLING AN REUSE OF PLASTICS, PHNOM PENH, CAMBODIA Navy Heng, Ungul Laptaned	79
	Inventory	
0016	AN ESPC ALGORITHM BASED APPROACH TO SOLVE INVENTORY DEPLOYMENT PROBLEM	
0061	AN EMPIRICAL ANALYSIS OF SUPPLY CHAIN RISK MANAGEMENT- A THEORETICAL AND APPLICATION-ORIENTED APPROACH Wolfgang Kersten, Mareike Böger, Philipp Hohrath & Kirsten Schröder	
0072	DYNAMIC INVENTORY CONTROL SYSTEM WITH LEAD-TIME UNCERTAINTY: ANALYSIS AND EMPIRICAL INVESTIGATION M. Zied Babai and Aris A. Syntetos	
0088	THE SENSITIVITY ANALYSIS OF THE BULLWHIP EFFECT IN A THREE-LEVEL SUPPLY CHAIN WITH STOCHASTIC DEMANDS AND LEAD TIMES Natnicha Khumwan, Juta Pichitlamken	
0091	A SLOW-MOVING DEMAND MODEL FOR A FIXED-LIFE PERISHABLE PRODUCT IN A TWO-ECHELON INVENTORY SYSTEM Kanchana Kanchanasuntorn	
0105	SUPPLY CHAIN MANAGEMENT PROBLEMS: A REVIEW Kripunyapong R., E Shayan, and F. Ghotb	147
0114	OPTIMAL INVENTORY REDISTRIBUTION INTEGRATED WITH LATERAL TRANSSHIPMENTS AND EMERGENCY ORDERS Siradej Chartniyom, Lee Luong, Romeo Marian, and Moon-Kyu Lee	

0140	REDUNDANCY IN WAREHOUSES: TECHNICAL CONSTRUCTIONS, OPERATION STRATEGIES AND THEIR IMPACT ON THROUGHPUT Lothar Schulze	167
0160	IMPROVING EFFICIENCY OF MATERIAL REQUIREMENT PLANNING AND SAFETY STOCK: A CASE STUDY OF CREATIVE MACHATRONICS CO., LTD Chantana Thongma, Ungul Laptaned	175
	IT in Logistics and Supply Chain	
0004	THE USE OF INFORMATION TECHNOLOGY IN SUPPLY CHAIN MANAGEMENT AND ITS IMPLICATIONS Duangpun Kritchanchai, Albert Tan	187
0010	AN EMPIRICAL INVESTIGATION OF THE IMPACT OF SUPPLY CHAIN UNCERTAINTY ON STRATEGY, STRUCTURE, AND PERFORMANCE (SSP) Mohammad Asif Salam and Pongsit Taechathayanon	193
0052	AN APPLICATION OF INTERNET TECHNOLOGIES FOR LOGISTICS' ANALYSIS	217
0055	INNOVATION AND CONTRACTS IN BUSINESS-TO-BUSINESS SERVICES Sukhvir Singh Panesar, Rajesh Kumar and Tore Markeset	225
0065	A STUDY ON ERP SYSTEM ACCEPTANCE BASED ON TECHNOLOGY ACCEPTANCE MODEL Rajesri Govindaraju, Nenny Indriany	235
0066	ENTERPRISE SYSTEMS IMPLEMENTATION: MANAGING PROJECT AND POST PROJECT STAGE - CASE STUDY IN AN INDONESIAN COMPANY Rajesri Govindaraju, Erik-Joost de Bruijn, and Olaf M. Fisscher	247
0130	OPTIMIZING THE REPAIR AND REFURBISH NETWORKS FOR REVERSE LOGISTICS	265
0150	THE RELATIONSHIPS BETWEEN SUPPLY CHAIN MANAGEMENT INFORMATION SYSTEM (SCM IS) CAPABILITIES WITH SUPPLY CHAIN PERFORMANCE FOR ELECTRONIC FIRMS IN MALAYSIA: A CONCEPTUAL FRAMEWORK	273
	Operations Research & Operations Management	
0008	IMPROVEMENT OF CONSTRUCTION OPERATIONS USING SIMULATION	
0029	EVOLUTIONARY ALGORITHM TO DETERMINE ECONOMIC ORDER QUANTITY FOR DETERIORATING ITEMS UNDER TRADE CREDITS Widyadana G.A, H.M. Wee, and Bisono I. N.	293
0030	A MATHEMATICAL MODEL TO DETERMINE THE PROCESS PARAMETERS OF A DETERIORATING PROCESS FOR OPTIMUM PRODUCTION COST Tahera, K, Ibrahim, R. N., and Lochert, P. B.	301
0031	LOGISTIC NETWORK ANALYSIS FOR STOCHASTIC SUPPLY AND DEMAND OF USED PRODUCTS	311
0057	OR PRACTICE ON LOGISTICS MANAGEMENT IN TAIWAN: AN INDUSTRY VIEW Yen Chun Wu, I. Chin Huang	321
0119	SUCCESS FACTORS IN A FORMING STRATEGIC POSITIONING OF MANUFACTURING OPERATIONS WITHIN GLOBAL SUPPLY CHAINS	333
0142	A COMPARATIVE STUDY OF DYNAMIC MULTI ZONE DISPATCHING VIA DYNAMIC PROGRAMMING AND SIMULATED ANNEALING ALGORITHMS P. Luangpaiboon and P. Suwanwatin	341
0151	HEURISTIC MODELING FOR SOLVING INVENTORY ROUTING PROBLEM WITH SIMULTANEOUS DELIVERY AND PICKUP Ahmad Rusdiansyah, De-bi Cao	349
0153	ECONOMY-WIDE MODELLING METHODS FOR LOGISTICS AND SUPPLY CHAIN SYSTEMS	359

0154	EVOLUTIONARY OPTIMIZATION FOR PRODUCT FAMILY DESIGN WITH MULTI-LEVEL COMMONAIITY George Q. Huang, L. Li1 and X. Chen	365
0155	PRINCIPLES OF SIMULATION MODELLING FOR INTERNATIONAL SUPPLY NETWORKS	377
0156	A MODEL FOR PROACTIVE SUPPLY CHAIN RISK MANAGEMENT I Nyoman Pujawan and Laudine H. Geraldin	387
	Procurement, Supply, and Delivery	
0024	ERGONOMICS SCHEDULING OF DELIVERY CREW FOR THE VEHICLE ROUTING PROBLEM WITH MANUAL MATERIALS HANDLING Suebsak Nanthavanij and Junalux Chalidabhongse	399
0027	SERVICE DELIVERY PERFORMANCE MEASUREMENT SYSTEM: A CONCEPTUAL FRAMEWORK Tore Markeset, Rajesh Kumar and Jacques-Etienne Michel	407
0058	IMPACT OF PRODUCT SUBSTITUTION ON THE OPTIMAL CAPACITY OF THE FLEXIBLE RESOURCE UNDER DIFFERENT DEMAND MODELS Rawee Suwandechochai and Ebru K. Bish	415
0063	A TWO LEVEL MAKE/BUY AND SUBCONTRACTOR SELECTION MODEL Andi Cakravastia, Ita Attisa, Aldrian Yulisar, and KatsuhikoTakahashi	427
0064	A MODEL FOR EVALUATING SUPPLY CONTRACT WITH MINIMUM QUANTITY COMMITMENT AND FLEXIBILITY Verani Hartati, Andi Cakravastia, Senator Nur Bahagia, and Alibasyah Siregar	435
0071	PROCESS-BASED RELATIONAL VIEW: A FRAMEWORK FOR BUYER-SUPPLIER INTERFACESJunyang Shao and Inga-Lena Darkow	445
0084	SUPPLIER INVOLVEMENT IN COLLABORATIVE PRODUCT DEVELOPMENT PROCESS	457
0097	ALTERNATIVE OPTIMIZATION METHOD FOR THE RELATIONSHIP BETWEEN MOBILE CARRIER REQUIREMENTS AND TEST CASES Song-Kyoo Kim	463
0145	STRATEGIC ELEMENTS AFFECTING ELECTRONIC BUSINESS ADOPTION AMONG SMALL AND MEDIUM SIZED ENTERPRISES IN THAILAND: A CASE STUDY OF AUTO PART MANUFACTURING, ELECTRIC, AND ELECTRONIC INDUSTRIES	469
	Production	
0022	A HEURISTIC APPROACH TO THE MULTIPLE FACILITY LOCATION OR CIRCUITIZATION PROBLEM	481
0034	PREDICTION OF PRODUCT DESIGN AND DEVELOPMENT SUCCESS USING ARTIFICIAL NEURAL NETWORK Prathana Buranajun, Montalee Sasananan, and Setta Sasananan	495
0037	MAX-MIN ANT SYSTEM FOR ASSEMBLY LINE BALANCING PROBLEM Nuchsara Kriengkorakot, Nalin Pianthong and Rapeepan Pitakaso	505
0038	BALANCING OF U-SHAPED ASSEMBLY LINE Nuchsara Kriengkorakot, Nalin Pianthong and Rapeepan Pitakaso	513
0040	A SCHEDULING HEURISTIC FOR ENHANCING EFFECTIVENESS OF MACHINING-CENTERS WITH A MULTIPLE APC: CASE STUDY Camilla Duh, Carsten Daub, Imad Alsyouf, and Omar Al-Araidah	521
0074	THE USE OF DMAIC PROCESS IN PRINTED CIRCUIT BOARD ASSEMBLY INDUSTRY	531
0075	A COMPARISON OF JOHNSON'S RULE AND TOC BASED SCHEDULING METHODOLOGIES	541
0076	ORDER ASSIGNEMENTS FOR A GLOBAL APPAREL PRODUCTION NETWORK	549

Quality & Production

0002	THE LINK BETWEEN QUALITY FACTORS AND CUSTOMER SATISFACTION FOR THE TRIPLE-A SUPPLY AND DEMAND-CHAIN MANAGEMENT Wakhid Slamet Ciptono	
0041	A MODEL FOR ASSESSING COST EFFECTIVENESS OF FACILITY LAYOUTS - A CASE STUDY Mikael Tates, Renato Ciganovic, Imad Alsyouf, Omar Al-Araidah	
0044	AN ECONOMIC EFFECTIVENESS ANALYSIS MODEL ON SUPPLY CHAIN MANAGEMENT SYSTEMS FOR THE ASSEMBLE TO ORDER PRODUCTION PATTERN Earl-Juei Wang and Yen-Chun Chen	
0045	INCREASING CUSTOMER SATISFACTION THROUGH THE INTEGRATION OF CUSTOMER & COMMERCIAL LOGISTICS PROCESSES	595
0067	IMPROVING EFFICIENCY AND MANAGING CONGESTION: A CASE STUDY EMPLOYING DATA ENVELOPMENT ANALYSIS Trishit Bandyopadhyay	
0087	REENGINEERING OF SALES DOCUMENTATION FOR A RESPONSIVE CUSTOMER SATISFACTION	615
0109	Ellora 1. Lucero IMPROVING SUPPLIER AND CUSTOMER RELATIONSHIP THROUGH SUPPLY CHAIN QUALITY ORIENTATION: A MALAYSIAN CONTEXT Roaimah Omar, Suhaiza Zailani, and Mohamed Sulaiman	621
0129	KEY SERVICE QUALITY DIMENSIONS FOR LOGISTIC SERVICES	633
0139	TOTAL QUALITY MANAGEMENT (TQM) - THE PRACTICAL IMPLICATIONS FOR SMALL AND MEDIUM ENTERPRISES (SMEs) Sudha Dhamodaran and M.I. Saifil Ali	641
0148	A COMPARATIVE SURVEY OF PERFORMANCE MEASUREMENT TECHNIQUES FOR SERVICE PROVIDERS Araya Sakburanapech, Richard Greenough, Watcharavee Chandraprakaikul	649
	Supply Chain Management	
0006	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	659
0006	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	
0006 0007 0011	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	
00006 0007 0011 0018	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	
0006 0007 0011 0018 0021	BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS Richard Oloruntoba DESIGNING A CLOSED-LOOP SUPPLY CHAIN FOR ALUMINUM ENGINE MANUFACTURING R.S. Lashkari and Yi Duan CAPACITY RESERVATION POLICY FOR PRIORITY ORDERS IN MULTIPLE SUPPLY PLANTS Pao-Tiao Chuang THE DEVELOPMENT OF SUPPLY CHAIN MANAGEMENT IN THAILAND TEXTILE INDUSTRY Veeris Ammarapala PERFORMANCE EVALUATION OF A STOCHASTIC SUPPLY CHAIN Yi-Kuei Lin and Chin-Yu Yang	
00006 0007 0011 0018 0021 0025	BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	
00006 0007 0011 0018 0021 0025 0032	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	
00006 0007 0011 0018 0021 0025 0032 0033	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	
00006 0007 0011 0018 0021 0025 0032 0033 0035	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	
00006 0007 0011 0018 0021 0025 0032 0033 0035 0043	Supply Chain Management BRINGING ORDER OUT OF DISORDER: EXPLORING COMPLEXITY IN RELIEF SUPPLY CHAINS	

0056	SUPPLY CHAIN RISK MANAGEMENT (SCRM) IN THE INDONESIAN MANUFACTURING COMPANIES: SURVEY FROM MANAGER'S PERSPECTIVES Iwan Vanany, Suhaiza Zailani, and Ahmad Rusdiansyah	763
0059	SUPPLY CHAIN STRATEGIES FOR E-COMMERCE RETAILERS: EXAMPLE OF THE ONLINE GROCERY INDUSTRY Uday M Apte	773
0068	SUPPLY CHAIN DEVELOPMENT THROUGH PROJECT MANAGEMENT Yiannis E. Polychronakis and Aris A. Syntetos	793
0090	THE INFLUENCE OF NEW PRODUCT CHARACTERISTICS: COMPETITIVE STRATEGY AND DEVELOPMENT PROCESS TO NEW PRODUCT PERFORMANCE	805
0098	A HUMAN CAPITAL MANAGEMENT MODEL TO OPTIMIZE RESOURCE EFFICIENCY OF LOGISTICS & SUPPLY CHAIN MANAGEMENT Nafisa Habilbhai Kattarwala	819
0108	MAXIMIZE VALUE OF MOBILE TELEPHONE PARTS FROM REVERSE LOGISTIC	833
0110	OPTIMALITY IN A COLLABORATIVE SERIAL MULTI-ECHELON SUPPLY CHAIN P.C. Yang, H. M. Wee and S.L. Chung	839
0115	APPLICATION OF THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ) IN SUPPLY CHAIN MANAGEMENT Reza Movarrei and Sara Rezaee Vessal	847
0117	CONFLICT-PERFORMANCE CONUNDRUM: PERSPECTIVES FROM TWO SUPPLY CHAIN DESIGNS	855
0118	RE-OCCURRENCE IN PLANNING: FOUNDATIONAL PRINCIPLES AND LESSONS LEARNED FROM IT	871
0132	DEVELOPMENT OF A PERFORMANCE MEASUREMENT FRAMEWORK FOR ADAPTIVE SUPPLY CHAIN Roland LIM Laura XU, Bib MA, Chandraprakaikul, Watcharavee	879
0134	DEVELOPMENT AND EVALUATION OF A RESOURCE-BASED SUPPLY CHAIN POSITIONING METHODOLOGY FOR SMEs Roland LIM and Watcharavee Chandraprakaikul, and Baines Tim	887
0135	RESPONSIVENESS IN MASS CUSTOMISED APPAREL SUPPLY CHAIN Duangpun Kritchanchai and Ronnachai Sirovetnukul	905
0136	SUFFICIENCY ECONOMY: THE SOLUTION FOR KEY SUCCESS IN SUPPLY CHAIN MANAGEMENT	915
0137	DEVELOPING A SUSTAINABLE SUPPLY CHAIN MANAGEMENT FRAMEWORK Ruth Banomyong, Paitoon Varadejsatitwong, and Pruchya Prakorbkij	921
0138	TECHNICAL TRAINING AND SUPPLY CHAIN MANAGEMENT A. Azad and K. Narashiman	933
0146	THE IMPLEMENTATION OF GREEN SUPPLY CHAIN MANAGEMENT PRACTICES: A CONCEPTUAL FRAMEWORK Tarig Eltayeb and Suhaiza Zailani	941
0147	SUPPLY CHAIN RISK MANAGEMENT: LITERATURE REVIEW AND FUTURE RESEARCH Iwan Vanany, Suhaiza Zailani, and Nyoman Pujawan	953
0159	EVALUATION OF THE LOGISTICS COST AND PERFORMANCE MEASUREMENT FOR THAI PROPERTY SERVICE INDUSTRY: A CASE STUDY OF OAKWOOD SERVICE APARTMENT Sirintip Sutthiwongsaard, Ungul Laptaned, Navy Heng	965
	Transportation & Distribution	
0001	DEVELOPING INLAND CONTAINER DEPOT (ICD) FOR THE INDO-CHINA INTERSECTION LOGISTICS CENTER: CASE STUDY OF PHITSANULOK PROVINCE Ungul Laptaned	973
0026	INTEGRATION OF JOB SCHEDULING WITH JOB DELIVERIES TO TWO CUSTOMER AREAS	983

Jen-Shiang Chen, Ming-Cheng Lo, Hsu-San Liu, and Hsiao-Yu Nien

0046	AN INTERVAL PIVOTING HEURISTICS FOR FINDING QUALITY SOLUTIONS TO VARIABLE-BOUND INTERVAL-FLOW TRANSPORTATION PROBLEM Aruna Apte	991
0051	GIS-BASED FOR TRANSPORTATION PLANNING A CASE STUDY OF THE LUBRICANT OIL IN KHONKHAN PROVINCE Supprasert P. and Adsavakulchai S.	1009
0060	INTRODUCING ALGORITHM PORTFOLIOS TO A CLASS OF VEHICLE ROUTING AND SCHEDULING PROBLEM Nagesh Shukla, Yogesh Dashora, M K Tiwari, F T S Chan, and T C Wong	1015
0062	AN ALGORITHM TO SOLVE FUZZY TRANSPORTATION PROBLEM Ali Basyah Siregar, Suprayogi, Titah Yudhistira, and Andi Cakravastia	1027
0077	INTEGRATED PRODUCTION-DISTRIBUTION PLANNING WITH TIME DEPENDENT DEMAND IN MULTI-ECHELON SUPPLY CHAIN	<mark>1037</mark>
0078	INTEGRATED MODEL OF DISTRIBUTION REGIONALIZATION SYSTEM AND SUBSIDIZED COST IN ORDER TO REACH UREA FERTILIZER'S MAXIMUM PRICE IN INDONESIA Yosi Agustina, Senator Nur Bahagia	1047
0086	TRAVELING SALESMAN PROBLEM WITH TRAFFIC CONDITIONS Supat Patvichaichod and Poranat Visuwan	1065
0089	AN ANALYSIS AND EVALAUTION OF TRANSPORTATION SERVICES: CASE STUDY IN LOGISTICS MANAGEMENT Ungul Laptaned, Rotchanart Kripunyapong	1075
0093	MODELING AND CONTROLLING DISTRIBUTION SUPPLY CHAIN NETWORK: CONCEPTUAL SCOR SIMULATION APPROACH Aldarrat, Hatem, Noche, Bernd	1085
0094	LDNST: A PROTOTYPE SUPPLY CHAIN SIMULATION TOOL FOR EVALUATING THE SUPPLY CHAIN DISTRIBUTING STRATEGIES	1095
0099	REDUCING TRANSPORTATION COST IN RAW MILK COLLECTION USING GIS APPLICATION Apichai Ritvirool and Po-ngarm Ratanachote	1111
0101	A LOCAL SEARCH TECHNIQUE FOR SOLVING A DELIVERY PROBLEM OF FUEL PRODUCTS Suprayogi, Setiawan Komara, Hiroyuki Yamato	1117
0102	DEVELOPING A SOFTWARE PROTOTYPE OF VEHICLE ROUTING PROBLEM WITH LOADING CONSTRAINTS USING GENETIC ALGORITHMS Ahmad Rusdiansyah, Ira Prasetyaningrum, Budi Santosa, De-bi Cao	1127
0122	AN ANALYSIS OF MISSING SHIPMENT PROBLEM: A CASE STUDY AT THAILAND'S SUVARNABHUMI AIRPORT Chayakrit Charoensiriwath and Kulchalee Hongdalud	1137
0127	THE SERVICE EXPANSION POTENTIAL OF RAILWAY SYSTEM FOR FREIGHT TRANSPORTATION IN THAILAND Pongtana Vanichkobchinda	1147
0143	IMPROVING RAILWAY FREIGHT TRANSPORTATION SYSTEM: A KEY STEP IN REALISING NATIONAL INTERMODAL DEVELOPMENT POLICY Pongtana Vanichkobchinda	1155
0152	A MAX MIN ANT SYSTEM FOR MULTI-DEPOT ROUTING PROBLEM Suphan Sodsoon and Sombat Sindhuchao	1165
0161 0107	STUDYING PROBLEMS AND DEFINING STRATEGIES FOR SOLVING PROBLEMS OF DELIVERING SUPPLIER'S PRODUCTS Karuna Hongthai, Ungul Laptaned and Adisorn Leelasantitham MANAGING A COST REDUCTION OF THE COMPUTER NETWORK FOR RETAIL'S BUSINESS BY USING THE OSPF PROTOCAL	1175 1185
AUTH	Varin Vongmanee and Vatin Vongmanee IOR INDEX	1195
LIST	OF PARTICIPANTS	1198

0077

INTEGRATED PRODUCTION-DISTRIBUTION PLANNING WITH TIME DEPENDENT DEMAND IN MULTI-ECHELON SUPPLY CHAIN

Amelia Santoso^{1,3}, Senator Nur Bahagia¹, Suprayogi¹, and Dwiwahju Sasongko²

¹Department of Industrial Engineering ²Department of Chemical Engineering Institut Teknologi Bandung – Indonesia Jalan Ganecha 10 Bandung 40132, Indonesia ³Department of Industrial Engineering, University of Surabaya – Indonesia Jalan Raya Kalirungkut Surabaya 60292, Indonesia Email: amelia@ubaya.ac.id, senator@mail.ti.itb.ac.id, yogi@mail.ti.itb.ac.id, sasongko@che.itb.ac.id

Proceedings of The $2^{\rm nd}$ International Conference on Operations and Supply Chain Management 18-20 May, 2007, Novotel Bangkok on Siam Square, Bangkok, THAILAND

INTEGRATED PRODUCTION-DISTRIBUTION PLANNING WITH TIME DEPENDENT DEMAND IN MULTI-ECHELON SUPPLY CHAIN

Amelia Santoso^{1,3}, Senator Nur Bahagia¹, Suprayogi¹, and Dwiwahju Sasongko² ¹Department of Industrial Engineering ²Department of Chemical Engineering Institut Teknologi Bandung – Indonesia Jalan Ganecha 10 Bandung 40132, Indonesia ³Department of Industrial Engineering, University of Surabaya – Indonesia Jalan Raya Kalirungkut Surabaya 60292, Indonesia Email: <u>amelia@ubaya.ac.id</u>, <u>senator@mail.ti.itb.ac.id</u>, yogi@mail.ti.itb.ac.id, sasongko@che.itb.ac.id

ABSTRACT

This paper discusses an integrated production-distribution planning for a 4-echelons supply chain system which consists of a manufacturer with a continuous production process, a distribution center, a number of distributors and a number of retailers. This situation can be found, for example, in a fertilizer production and distribution systems. Considering a time-dependent demand pattern which is approximated by a polynomial function at retailers that fluctuates by time and may not be identical for each retailer, and all entities of the entire echelon in the supply chain are allowed to hold inventory, the integrated production-distribution planning model is developed using the following approaches, i.e.: coordinated policy, echelon inventory concept and single cycle time policy. The periodic review inventory system is used as a basic model for developing the model. The model determines a production policy for the manufacturer and replenishment policies for all entities involved in the distribution system in order to minimize a total system cost. The total system cost consists of setup/ordering costs, holding costs, backorder costs and transportation costs of all entities of the supply chain system. A heuristics solution procedure is developed to find the solution. Since the demand depends on the time, the level of maximum inventory is not equal for each period at the manufacturer, the distribution center, the distributors and the retailers.

KEY WORDS

Production-Distribution Planning, Echelon Inventory, Continuous Production, Time Dependent Demand

1. Introduction

Researches in the integrated production-distribution planning mainly address the discrete production process, such as [1], [2], [3], [4], [5] and [6]. In fact, some manufacturers use a continuous production process and a discrete distribution system, such as in the fertilizer and paper manufacturers. This paper proposes an integrated production-distribution model for the 4-echelons supply chain system. The system consists of a manufacturer with a continuous production process, a distribution center, a number of distributors and a number of retailers.

Most of the previous models assume that the pattern of the customer demand is deterministic, such as [1], [7] and [8] or probabilistic, such as [2], [3], [4], [5] and [6]. In fact, there are several kinds of product that have seasonal (time-dependent) demand pattern, for example in fertilizer industry. Research by [9] and [10] have considered the time-dependent demand but only determine an inventory policy for one echelon of a supply chain system. The time-dependent demand pattern has not been widely discussed in the previous integrated productiondistribution planning.

The customer's demand that fluctuates with time occurs only at the retailers and may not be identical for each retailer. All entities in the entire echelon of the supply chain are allowed to hold inventory. Based on these conditions, the model is developed. The model determines a production cycle at the manufacturer and the replenishment cycles of distribution center, distributors and retailers in order to minimize the total system cost per year. The total system cost consists of the total costs per year at the manufacturer, distributors and retailers.

2. Framework

The framework of this research is depicted in Figure 1. Four entities are considered in, i.e.: a manufacturer with a continuous production process, a distribution center, a number of distributors and a number of retailers with a time-dependent demand. In this framework, a coordinated production and replenishment policies are decided by the manufacturer, the distribution center, the distributors and the retailers in order to minimize the total system cost.

System

In developing the integrated production-distribution model, three approaches are used, i.e.: coordinated policy, echelon inventory concept, and single cycle time policy. The coordinated policy approach leads the manufacturer, the distribution center, the distributors and the retailers to perform coordination for determining the production and the replenishment policies. The production and the replenishment policies that have been decided must be obeyed by all entities in the supply chain systems.

In the echelon inventory concepts [11], total inventory at an entity in one echelon is the sum of on-hand and intransit inventories and all inventories at its downstream echelons. This concept is very different with the normal calculation of holding cost that uses average inventory at each entity.

Using the single cycle time policy [12] means that all entities start to produce or order product in the same time. As a result, the production cycle (T_o) would be an integer multiplied by the replenishment cycle of distribution center (T_g) , i.e., $T_o=N_gT_g$, where N_g is an integer. By the same token, the replenishment cycle of distribution center (T_g) is an integer multiplied by the replenishment cycle of distribution center (T_g) is an integer multiplied by the replenishment cycle of distribution center (T_g) is an integer multiplied by the replenishment cycle of distributor k (Td_k) and the replenishment cycle of distributor k (Td_k) is also an integer multiplied by the

replenishment cycle of retailer *j*; $j \in k$ (Tr_{kj}). Generally, the single cycle time policy can be formulated as follow:

$$T_{o} = N_{g}T_{g} = N_{g}N_{d_{k}}T_{d_{k}} = N_{g}N_{d_{k}}N_{r_{kj}}T_{r_{kj}}$$
(1)

In addition to the three approaches explained above, an integrated production-distribution model is developed with periodic review based on models that are developed by [5] and [6].

3. Model Development

3.1. Mathematical Notation

The mathematical notations used in the model are defined as follows:

Indexes

- k distributor index
- j retailer index

Variables

- *To* production cycle
- *Tg* replenishment cycle of distribution center
- Td_k replenishment cycle of distributor k
- Tr_{kj} replenishment cycle of retailer *j* supplied by distributor *k*
- N_g an integer of a multiplication of the replenishment cycle of the distribution center in a production cycle
- Nd_k an integer of a multiplication of the replenishment cycle of distributor k in a replenishment cycle of the distribution center
- Nr_{kj} an integer of a multiplication of the replenishment cycle of retailer *j* in a replenishment cycle of distributor *k*; *j* \in *k*
- R_o level of maximum inventory at the manufacturer
- R_g level of maximum inventory at the distribution center
- Rd_k level of maximum inventory at distributor k
- Rr_{kj} level of maximum inventory at retailer $j; j \in k$
- Zr_{kj} demand function at retailer *j*; $j \in k$ (a polynomial function of time)
- Zd_k demand function at distributor k (a polynomial function of time)
- Z_g demand function at the distribution center (a polynomial function of time)
- Z_o demand function at the manufacturer (a polynomial function of time)
- *C* total system cost per year

Parameters

 Ar_{kj} cost of each product replenishment at retailer *j* that is supplied by distributor *k*

- Hr_{kj} product holding cost per ton per year at retailer *j* that is supplied by distributor *k*
- Ad_k cost of each product replenishment at distributor k
- Hd_k product holding cost per ton per year at distributor k
- A_g cost of each product replenishment at the distribution center
- H_g product holding cost per ton per year at the distribution center
- A_p cost of production facility maintenance
- *A_o* production facility start-up cost
- H_o product holding cost per ton per year at the manufacturer
- ψ production rate
- w_t technical production facility age
- C_g^o transportation cost of product from manufacturer to distribution center
- $C_{d_k}^g$ transportation cost of product from distribution center to distributor k
- $C_{r_j}^{d_k}$ transportation cost of product from distributor k to retailer $j; \forall j \in k$

3.2. Model Formulation

The production cycle, the integer of a multiplication of the replenishment cycle of the distribution center in a production cycle, the integer of a multiplication of the replenishment cycle of distributor k in a replenishment cycle of the distribution center integer of a multiplication of the replenishment cycle of retailer j in a replenishment cycle of distributor k; $j \in k$ will be determined so that the total system cost per year is minimum. The total system cost per year (C) consists of total cost per year at manufacturer (C_o), distribution centers (C_g), distributors (C_d) and retailers (C_r).

The assumptions used in developing the model are:

- 1. The customer's demand at all retailers depend on time and are deterministic
- 2. No stock-outs are permitted at all echelons
- 3. The entire replenishment lot size is added to inventory at the same time (for distribution center, all distributors and all retailers)
- 4. Products at a distributor can be transferred to other distributors; similarly at a retailer.
- 5. Production capacity is large enough to supply all customer demands.
- 6. Production cost per unit; ordering cost at distribution centers, distributors and retailers; and transportation cost per unit are constant

Due to the pattern of the customer demand occurred at retailer is deterministic time-dependent, inventory at the end of cycle is zero and safety stock is not necessary. Therefore the level of maximum inventory per period is equal to total demand per period. The time-dependent demand cause the level of maximum inventory is not equal for each period. In this model, a polynomial function is used as an approximation for the time-dependent pattern of the customer demand. According to the above analysis, total cost of retailer per year that consisted of replenishment cost and holding cost per year at all retailer *j*, $j \in k$ is given as follows:

$$C_{r} = \sum_{\forall k} \sum_{\forall j \in k} \left\{ \frac{A_{r_{kj}}}{T_{r_{kj}}} + \frac{H_{r_{kj}} T_{r_{kj}}}{2} \int_{0}^{1} z_{r_{kj}}(t) dt \right\}$$
(2)

The total cost of distributor per year can be obtained from replenishment cost, holding cost and transportation cost per year at all distributor k. As result of using echelon inventory concept, total inventory at distributor k is the total inventory at distributor k itself and total inventory at all retailer j that are supplied by distributor k. By using this method, total cost of distributor per year can be formulated as follows:

$$=\sum_{k=1}^{K}\left\{\frac{A_{d_{k}}}{T_{d_{k}}}+\frac{H_{d_{k}}T_{d_{k}}}{2}\left(\int_{0}^{1}z_{d_{k}}(t)dt+\sum_{\forall j\in k}\int_{0}^{N_{T_{i}}T_{d_{k}}}\int_{0}^{1}z_{r_{i_{j}}}(t)dt\right)+\sum_{\forall j\in k}C_{r_{j}}^{d_{k}}\int_{0}^{1}z_{r_{i_{j}}}(t)dt\right\}$$
(3)

Total inventory at the distribution center is total inventory at distribution center itself, all distributors and all retailers. By the same token, the total cost of distribution center per year is formulated as shown:

$$C_{g} = \frac{A_{g}}{T_{g}} + \frac{H_{g}T_{g}}{2} \left[\int_{0}^{1} z_{g}(t) dt + \sum_{\forall k} \int_{0}^{\frac{Nd_{k}T_{d_{k}}}{T_{g}}} z_{d_{k}}(t) dt + \sum_{\forall k \forall j \in k} \int_{0}^{\frac{Nd_{k}Nr_{ij}T_{ij}}{T_{g}}} \int_{0}^{1} z_{r_{ij}}(t) dt \right] + \sum_{\forall k} C_{d_{k}}^{g} \int_{0}^{1} z_{d_{k}}(t) dt \qquad (4)$$

With a production rate (ψ), the average of operational inventory per cycle at the manufacturer can be obtained using this equation:

$$=\frac{1}{2}\int_{0}^{T_{o}} z_{o}(t)dt \left(1 - \frac{1}{\psi}\int_{0}^{1} z_{o}(t)dt\right)$$
(5)

According to the echelon inventory approach used, the formulation of total cost of the manufacturer per year is:

Finally, we can derive the objective function. The objective function is total system cost per year that comprises of the set-up or replenishment cost, holding cost and transportation cost at manufacturer, distribution center, distributors and retailers, as in the following formula:

N T

Minimize the total system cost

$$C = \frac{A_{o} + A_{p}}{T_{o}} + \frac{H_{o}T_{o}}{2} \left(\int_{0}^{1} z_{o}(t) dt \left(1 - \frac{1}{\psi} \int_{0}^{1} z_{o}(t) dt \right) + \int_{0}^{\frac{N_{g} \cdot s_{g}}{T_{g}}} z_{g}(t) dt + \sum_{v_{k} \in V_{j \in k}} \int_{0}^{\frac{N_{g} \cdot Nd_{k} \cdot Nr_{0} \cdot Tr_{j}}{T_{o}}} \int_{0}^{1} z_{r_{ij}}(t) dt + \sum_{v_{k} \in V_{j \in k}} \int_{0}^{\frac{N_{g} \cdot Nd_{k} \cdot Nr_{0} \cdot Tr_{j}}{T_{o}}} z_{r_{ij}}(t) dt \right) + C_{g}^{o} \int_{0}^{1} z_{g}(t) dt + \frac{A_{g}}{T_{g}} + \frac{H_{g} T_{g}}{2} \left(\int_{0}^{1} z_{g}(t) dt + \sum_{v_{k} \in V_{j}} \int_{0}^{\frac{Nd_{k} \cdot Td_{k}}{T_{o}}} z_{d_{k}}(t) dt + \sum_{v_{k} \in V_{j}} \int_{0}^{\frac{Nd_{k} \cdot Td_{k}}{T_{o}}} z_{r_{ij}}(t) dt + \sum_{v_{k} \in V_{j}} \int_{0}^{\frac{Nd_{k} \cdot Nr_{0} \cdot Tr_{ij}}{T_{o}}} z_{r_{ij}}(t) dt \right) + \frac{\sum_{v_{k} \in V_{j}} C_{d_{k}}^{s}}{2} \left(\int_{0}^{1} z_{d_{k}}(t) dt + \sum_{v_{k} \in V_{j}} \int_{0}^{\frac{Nd_{k} \cdot Td_{k}}{T_{d_{k}}}} z_{ij}(t) dt + \sum_{v_{j} \in k} C_{r_{j}}^{d_{k}} \int_{0}^{1} z_{r_{ij}}(t) dt \right) + \sum_{v_{k} \in V_{j}} \sum_{i \neq k} C_{r_{j}}^{d_{k}} \int_{0}^{1} z_{r_{ij}}(t) dt \right) + \sum_{v_{k} \in V_{j}} \sum_{i \neq k} C_{r_{j}}^{d_{k}} \int_{0}^{1} z_{r_{ij}}(t) dt \right) + \sum_{v_{k} \in V_{j}} \sum_{i \neq k} \sum_{i \neq k} \sum_{i \neq k} \left\{ \frac{A_{d_{k}}}{T_{d_{k}}} + \frac{H_{d_{k}} \cdot T_{d_{k}}}{T_{i_{k}}} + \frac{H_{r_{ij}} \cdot T_{r_{ij}}}{2} \int_{0}^{1} z_{r_{ij}}(t) dt \right\} \right\}$$

$$(7)$$

Subject to the following constraints:

$$T_{o} = N_{g}T_{g} = N_{g}N_{d_{k}}T_{d_{k}} = N_{g}N_{d_{k}}N_{r_{kj}}T_{r_{kj}}$$
(8)

$$\int_{0}^{1} z_{o}(t) dt = \int_{0}^{1} z_{g}(t) dt = \sum_{\forall k} \int_{0}^{1} z_{d_{k}}(t) dt = \sum_{\forall k} \sum_{\forall j \in k} \int_{0}^{1} z_{r_{kj}}(t) dt \quad (9)$$

$$T_o \le w_t \tag{10}$$

Constraint (8) pertains to use the single cycle time policy approach explained in the framework. Constraint (9) ensure that the total annual demand at manufacturer is the same as the total annual demand at distribution center, and also is the same as the total annual demand at all distributors and is the same as the total annual demand at all retailers. The last constraint (10) ensures that there is enough time to maintain the production facility and the production cycle is less than the technical production facility age (w_t) .

Constraints (8) and (9) are substituted to equation (7) and thus the objective function will become:

$$\begin{aligned} \text{Minimize the total system cost} \\ C &= \frac{A_o + A_p}{T_o} + \frac{H_o T_o}{2} \int_0^1 z_o(t) dt \left(4 - \frac{1}{\psi} \int_0^1 z_o(t) dt \right) + \frac{A_g N_g}{T_o} + \\ &= \frac{3H_g T_o}{2N_g} \int_0^1 z_g(t) dt \\ &= \frac{2N_g}{2N_g} + \sum_{\forall k} \left(\frac{A_{d_k} N_g N_{d_k}}{T_o} + \frac{H_{d_k} T_o}{N_g N_{d_k}} \right) + \\ &= \sum_{\forall k} \sum_{j \in k} \left\{ \frac{A_{r_{ij}} N_g N_{d_k} N r_{kj}}{T_o} + \frac{H_{r_{ij}} T_o}{2N_g N_{d_k} N r_{kj}} \right\} + \\ &= \sum_{\forall k} \sum_{\forall i \in k} \int_0^1 z_{r_{kj}}(t) dt \left(C_{r_j}^{d_k} + C_{d_k}^g + C_g^o \right) \end{aligned}$$
(11)

Subject to the following constraint: $T_o \le w_t$

4. Solution Procedure

The optimal solution can not be obtained analytically. Therefore, the solution is found through the following heuristic procedure.

(12)

Step 1. Find the optimal Ng^* that satisfies the following condition.

$$N_{g}^{*}\left(N_{g}^{*}-1\right) \leq \frac{\left(A_{g}+A_{o}+A_{p}\right)\left(2\sum_{\forall k}H_{d_{k}}\int_{0}^{1}z_{d_{k}}(t)\,dt+3H_{g}\int_{0}^{1}z_{g}(t)\,dd\right)}{\sum_{\forall k}2A_{d_{k}}H_{o}\int_{0}^{1}z_{o}(t)\,dt\left(4-\frac{1}{\psi}\int_{0}^{1}z_{o}(t)\,dt\right)} \leq N_{g}^{*}\left(N_{g}^{*}+1\right)$$
(13)

Step 2. Find out the optimal Nd_k^* for every *k* that satisfy the following condition

$$N_{d_{k}}^{*}\left(N_{d_{k}}^{*}-1\right) \leq \frac{\left(A_{g}+A_{o}+A_{p}\right)H_{d_{k}}\int_{0}^{} z_{d_{k}}(t)dt}{A_{d_{k}}N_{g}\left[3H_{g}\int_{0}^{1} z_{g}(t)dt+H_{o}N_{g}\int_{0}^{1} z_{o}(t)dt\left(4-\frac{1}{\psi}\int_{0}^{1} z_{o}(t)dt\right)\right]} \leq N_{d_{k}}^{*}\left(N_{d_{k}}^{*}+1\right)$$
(14)

Step 3. Find out the optimal Nr_{kj} for every (j, k) that satisfy the following condition.

$$N_{r_{kj}}^{*}\left(N_{r_{kj}}^{*}-1\right) \le val \le N_{r_{kj}}^{*}\left(N_{r_{kj}}^{*}+1\right)$$
(15)

where

$$val = \frac{\left(A_{d_{k}} + A_{g} + A_{o} + A_{p}\right)H_{r_{kj}}\int_{0}^{1} z_{r_{kj}}(t)dt}{A_{r_{kj}}\left[2H_{d_{k}}\int_{0}^{1} z_{d_{k}}(t)dt + 3H_{g}N_{d_{k}}\int_{0}^{1} z_{g}(t)dt + H_{o}N_{g}N_{d_{k}}\int_{0}^{1} z_{o}(t)dt\left(4 - \frac{1}{\psi}\int_{0}^{1} z_{o}(t)dt\right)\right]}$$

Step 4. Find out the optimal To^*

$$T_{o} = \sqrt{\frac{\sum_{\forall k} \sum_{\forall j \in k} 2N_{g} N_{d_{k}} N_{r_{kj}} (A_{r_{kj}} N_{g} N_{d_{k}} N_{r_{kj}} + A_{d_{k}} N_{g} N_{d_{k}} + A_{g} N_{g} + A_{o} + A_{p})}{nl}}$$
(16)

where v_{l-Y+Y}

$$\begin{aligned} m-X+T \\ X &= \sum_{\forall k} \sum_{\forall j \in k} H_{r_{kj}} \int_{0}^{1} z_{r_{kj}}(t) dt + 2H_{d_k} N_{r_{kj}} \int_{0}^{1} z_{d_k}(t) dt + \\ Y &= \sum_{\forall k} \sum_{\forall j \in k} 3H_g N_{d_k} N_{r_{kj}} \int_{0}^{1} z_g(t) dt + H_o N_g N_{d_k} N_{r_{kj}} \int_{0}^{1} z_o(t) dt \left(4 - \frac{1}{\psi} \int_{0}^{1} z_o(t) dt\right) \end{aligned}$$

Step 5. Determine the optimal level of the maximum inventory per period at the manufacturer (Ro_v^*) , the distribution center (Rg_p^*) , distributors (Rd_{kl}^*) and retailers (Rr_{kjs}^*) .

$$R_{o_{v}} = \int_{(v-1)T_{o}}^{vT_{o}} z_{o}(t)dt \quad v = 1,..., 1/T_{o}$$
(17)

At the distribution center:

$$R_{g_{p}} = \int_{\frac{(p-1)T_{o}}{N_{a}}}^{\frac{pT_{o}}{N_{g}}} (t)dt \quad p = 1, \dots, N_{g}/T_{o}$$
(18)

At distributor *k*:

$$R_{d_{kl}} = \int_{\frac{(l-1)T_o}{N_g N_{d_k}}}^{\frac{1}{N_g N_{d_k}}} z_{d_k}(t) dt \qquad l = 1, \dots, N_g N_{d_k} / T_o; \ \forall k$$
(19)

At the retailer *j*:

$$R_{r_{kjs}} = \int_{\frac{(s-1)T_o}{N_g N_{d_k} N_{r_{kj}}}}^{\frac{sT_o}{N_g N_{d_k} N_{r_{kj}}}} z_{r_{kj}}(t)dt \quad s=1,\ldots,N_g N d_k N r_{kj}/T_o; \forall j,k$$

(20)

Step 6. If $T_o \rangle w_t$ then $T_o = w_t$ and repeat step 5.

5. Numerical Example

The model is applied using the following numerical example. The supply chain system consists of a manufacturer with a continuous production process, a distribution center, two distributors and five retailers as shown in Figure 2. Retailer R_1 and R_2 are supplied by distributor D_1 , while retailer R_3 , R_4 and R_5 are supplied by distributor D_2 .

Figure 2: Supply Chain System Structure

Demands at each retailer j are approximated using a polynomial function as follows:

$$z_{r_{kj}}(t) = 82,590t^4 - 144,900t^3 + 79,830t^2 - 16,690t + 2,885$$

Demand at distributor D_1 is a summation of demands at retailer R_1 and R_2 . A Polynomial function of the demand at distributor D_1 is:

$$z_{d_1}(t) = 165,200t^4 - 289,800t^3 + 159,700t^2 - 33,380t + 5,770$$

Demand at distributor D_2 is a summation of demand at retailer R_3 , R_4 and R_5 . Total demand at distributor D_2 has a polynomial function as follows

$$z_{d_2}(t) = 247,800t^4 - 434,700t^3 + 239,500t^2 - 50,070t + 8,655$$

The polynomial function of the demand at the distribution center is a summation of demand at the distributor D_1 and D_2 given by:

$$z_g(t) = 412,900t^4 - 724,500t^3 + 399,100t^2 - 83,450t + 14,420$$

Because there is only one distribution center therefore the demand at the manufacturer is equal to the demand at the distribution center. The polynomial function of the demand at the manufacturer is given by:

$$z_o(t) = 412,900t^4 - 724,500t^3 + 399,100t^2 - 83,450t + 14,420$$

The production rate at the manufacturer is assumed as 7,600 ton per year with technical production facility age is 0.93 years.

Three scenarios that include the setup or replenishment costs and holding costs per ton per year are defined and shown in Table 1. Ratios of each setup or replenishment cost to the holding cost per ton per year are shown in Table 2. Using the proposed solution procedure, the optimal solution for each scenario are given in Table 3.

Table 1: Setup or Replenishment Cost and Holding Cost for	
Each Scenario	

		scenario 1	scenario 2	scenario 3
	Manufacturer: start-up cost (A _o)	6,500,000	6,500,000	6,500,000
	Manufacturer: maintenance cost (A _p)	6,000,000	6,000,000	6,000,000
	Distribution Center (Ag)	4,000,000	4,000,000	4,000,000
Each setup or	Distributor 1 (Ad ₁)	4,500,000	4,500,000	4,500,000
replenishment	Distributor 2 (Ad ₂)	4,000,000	4,000,000	4,000,000
cost (rupians)	Retailer 1 (Ar ₁₁)	100,000	350,000	400,000
	Retailer 2 (Ar ₁₂)	110,000	320,000	450,000
	Retailer 3 (Ar ₂₁)	125,000	340,000	500,000
	Retailer 4 (Ar ₂₂)	120,000	350,000	500,000
	Retailer 5 (Ar ₂₃)	120,000	350,000	550,000
	Manufacturer (H _o)	149,200	149,200	149,200
	Distribution Center (Hg)	165,700	165,700	165,700
F 1 1	Distributor 1 (Hd ₁)	183,600	183,600	183,600
Echelon holding cost	Distributor 2 (Hd ₂)	183,000	183,000	183,000
noiding cost	Retailer 1 (Hr ₁₁)	195,000	195,000	195,000
vear (rupiahs)	Retailer 2 (Hr ₁₂)	195,000	195,000	195,000
Jean (ruphans)	Retailer 3 (Hr ₂₁)	195,500	195,500	195,500
	Retailer 4 (Hr ₂₂)	194,000	194,000	194,000
	Retailer 5 (Hr ₂₃)	195,500	195,500	195,500

 Table 2: Ratio of Each Replenishment Cost to

 Holding Cost per Ton

	Ratio of each replenishment cost to holding cost per ton			
	scenario 1	scenario 2	scenario 3	
Manufacturer	83.78	83.78	83.78	
Distribution Center	24.14	24.14	24.14	
Distributor 1	24.51	24.51	24.51	
Distributor 2	21.86	21.86	21.86	
Retailer 1	0.51	1.79	2.05	
Retailer 2	0.56	1.64	2.31	
Retailer 3	0.64	1.74	2.56	
Retailer 4	0.62	1.80	2.58	
Retailer 5	0.61	1.79	2.81	

Table 3: The Optimal Result Using Solution Procedure

		scenario 1	scenario 2	scenario 3
	Manufacturer (T _o)	0.071	0.072	0.071
	Distribution Center (Tg)	0.071	0.072	0.071
	Distributor 1 (Td ₁)	0.071	0.072	0.071
	Distributor 2 (Td ₂)	0.071	0.072	0.071
Cycle	Retailer 1 (Tr ₁₁)	0.0237	0.036	0.071
	Retailer 2 (Tr ₁₂)	0.0237	0.036	0.071
	Retailer 3 (Tr ₂₁)	0.0355	0.036	0.071
	Retailer 4 (Tr ₂₂)	0.0355	0.072	0.071
	Retailer 5 (Tr ₂₃)	0.0355	0.072	0.071
	Distribution Center (Ng)	1	1	1
	Distributor 1 (Nd ₁)	1	1	1
	Distributor 2 (Nd ₂)	1	1	1
Integer	Retailer 1 (Nr ₁₁)	3	2	1
multiple	Retailer 2 (Nr ₁₂)	3	2	1
	Retailer 3 (Nr ₂₁)	2	2	1
	Retailer 4 (Nr ₂₂)	2	1	1
	Retailer 5 (Nr ₂₃)	2	1	1
Total system cost		731,500,000	763,900,000	774,500,000

The ratio of each setup or replenishment cost to the holding cost per ton per year in the manufacturer, distribution center and distributor 1 and 2 is made constant. The decreasing of ratio of replenishment cost to the holding cost in retailer decrease will increase replenishment frequency. It means retailers have smaller inventory because the holding cost is higher.

The consequence of considering the deterministic timedependent demand is that the level of maximum inventory is not similar for each replenishment period as shown in Table 4 and Table 5. Table 4 indicates the level of maximum inventory at the manufacturer, distribution center and distributor D_1 and D_2 for each replenishment period. Table 5 indicates the level of maximum inventory per each replenishment policy at retailer R1 and R2 that each has an integer of multiplication is 3, and at retailer R3, R4 and R5 that each has an integer of multiplication is 2.

Period	Manufacturer	Distribution center	Distributor D1	Distributor D2
1	859.02	859.02	343.76	515.63
2	663.35	663.35	265.53	398.26
3	611.02	611.02	244.69	366.92
4	652.26	652.26	261.52	391.91
5	649.21	649.21	260.55	390.28
6	596.27	596.27	239.70	358.79
7	490.56	490.56	197.82	295.71
8	347.36	347.36	141.04	210.26
9	200.16	200.16	82.77	122.52
10	100.59	100.59	43.67	63.51
11	118.46	118.46	51.69	75.136
12	341.77	341.77	142.04	210.23
13	876.67	876.67	357.21	532.52

 Table 4: The Level of Maximum Inventory at Manufacturer, Distribution Center and Distributor

Table 5: The Level of Maximum Inventory at Retailers

Period	Retailer	
	R1 & R2	R3,R4 & R5
1	64.141	93.311
2	56.712	78.565
3	51.024	69.077
4	43.901	61.296
5	42.018	61.002
6	40.981	61.959
7	40.604	63.45
8	40.713	64.871
9	41.153	65.733
10	41.782	65.658
11	42.473	64.383
12	43.115	61.76
13	43.611	57.752
14	43.878	52.438
15	43.85	46.007
16	43.475	38.767
17	42.716	31.135
18	41.551	23.643
19	39.972	16.937
20	37.989	11.777
21	35.623	9.035
22	32.912	9.698
23	29.91	14.866
24	26.683	25.753
25	23.315	43.686
26	19.903	70.107
27	16.56	106.569
28	13.414	
29	10.606	
30	8.294	
31	6.652	
32	5.865	
33	6.137	
34	7.685	
35	10.741	
36	15.553	
37	22.382	
38	31.505	
39	43.216	
40	57.82	
41	75.64	

6. Conclusion

This paper has proposed an integrated productiondistribution model for 4-echelon supply chain systems. In this model, the manufacturer has a continuous production process and the retailers have a time-dependent demands pattern. The effect of considering time-dependent demand is that the level of maximum inventory is not equal for each replenishment period at the manufacturer, distribution center, distributors and retailers.

The proposed model is based on an assumption that no stock-out is permitted and the production capacity is large enough to supply all customer demands. Further research using a probabilistic time-dependent demand would contribute to our understanding of the behavior of this system. A supply rationing policy can be considered in this model as an extended model if the production capacity is less than customer demands.

References

[1] J.M. Chen, and T.H. Chen, The multi-item replenishment problem in a two-echelon supply chain: the effect of centralization versus decentralization, *Computers & Operations Research*, *32*, 2005, 3191-3207.

[2] C. Lin and Y. Lin, The production size and inventory policy for a manufacturer in a two-echelon inventory model, *Computers & Operations Research 32*, 2005, 1181–1196.

[3] Z.K. Weng, Coordinating order quantities between the manufacturer and the buyer: A generalized newsvendor model, *European Journal of Operational Research*, *156*, 2004, 148-161.

[4] S. Routroy, and R. Kodali, Differential evolution algorithm for supply chain inventory planning, *Journal of Manufacturing Technology Management*, *16*(1), 2005, 7-17.

[5] S. Nur Bahagia, and J.L. Toruan, Developing an optimization model of integrated 3-echelon value chain systems (a manufacturer, a depot and n retailers with direct and indirect supply), *Proc.* 5th *Production System Conf.*, ITB-Bandung 2001 (in Indonesian).

[6] S. Nur Bahagia, and M. Sofitra, An integrated 3echelon logistics system model by considering distribution route. *Jurnal Teknik dan Manajemen Industri ITB*, 21(2), 2001, 1-19 (in Indonesian).

[7] J.K. Jolayemi, and F.O. Olorunniwo, A deterministic model for planning production quantities in a multi-plant, multi-warehouse environment with extensible capacities. *International Journal Production Economics*, *87*, 2004, 99-113.

[8] A.N. Haq, P. Vrat, and A. Kanda, An integrated production-inventory-distribution model for manufacture of urea: a case. *International Journal of Production Economics*, *39*, 1991, 39-49.

[9] Y. Gupta, P.S. Sundararaghavan, and M.U. Ahmed, Ordering policies for items with seasonal demand. *International Journal of Physical Distribution & Logistics Management, 33* (6), 2003, 500-518.

[10] P.S. You, Inventory policy for products with price and time-dependent demands. *Journal of the Operational Research Society*, *56*, 2005, 870–873.

[11] D. Simchi-Levi, P. Kaminsky, dan E. Simchi-Levi, *Designing and managing the supply chain: concepts, strategies and case studies* (McGraw-Hill, 2003).

[12] S. Nur Bahagia, An optimization model of integrated 3-echelon value chain systems, *Proc.* 4th *Production System Conf.*, ITB-Bandung, 1999 (in Indonesian).