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Bioelectrochemical systems (BESs) are ruled by a complex combination of biological
and abiotic factors. The interplay of these factors determines the overall efficiency of BES
in generating electricity and treating waste. The recent progress in bioelectrochemistry
of BESs and electrobiotechnology exposed an important group of compounds, which
have a significant contribution to operation and efficiency: surface-active agents, also
termed surfactants. Implementation of the interfacial science led to determining several
effects of synthetic and natural surfactants on BESs operation. In high pH, these
amphiphilic compounds prevent the cathode electrodes from biodeterioration. Through
solubilization, their presence leads to increased catabolism of hydrophobic compounds.
They interfere with the surface of the electrodes leading to improved biofim formation,
while affecting its microarchitecture and composition. Furthermore, they may act as
quorum sensing activators and induce the synthesis of electron shuttles produced
by electroactive bacteria. On the other hand, the bioelectrochemical activity can be
tailored for new, improved biosurfactant production processes. Herein, the most recent
knowledge on the effects of these promising compounds in BESs is discussed.

Keywords: biosurfactant, surfactant, microbial fuel cell, bioelectrochemistry, anode, cathode, BES

INTRODUCTION

In recent decades, bioelectrochemical systems (BESs) have undergone dynamic development and
raised increasing interest of the scientific community. The term BESs applies to several types of
devices, where microorganisms play the crucial role of carrying out various types of electrochemical
reactions. In a microbial fuel cell (MFC), organic matter is oxidized by heterotrophic, electroactive
anodic bacteria and converted into electric current (Bennetto et al., 1983). Microbial electrolysis
cells (MECs) are based on a similar principle but require additional, small portion of electrical
energy input to form hydrogen at the cathode (Liu et al., 2005). The potential difference between
anode and cathode electrodes is also used for separation of the ionic species in microbial
desalination cells (Cao et al., 2009). Finally, the BESs may be also used for producing valuable
chemicals. The processes in which the organic and inorganic compounds are produced with the
support of electroactive bacteria are referred to as bioelectrosynthesis and electrofermentation
(Rabaey and Rozendal, 2010; Moscoviz et al., 2016).
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With these potentials, BESs are in transition to a wide variety
of applications. The MFC and MEC technology has already
been successfully investigated in scale up experiments and pilot
scale studies to treat wastewater (Cusick et al., 2011; Ieropoulos
et al., 2016; Hiegemann et al., 2019; Rossi et al., 2019a). A great
effort has been made to utilize BES as a biosensing devices (Cui
et al., 2019) and even MFC-driven autonomous, self-powered
biosensor (Pasternak et al., 2017), or robots (Ieropoulos et al.,
2010) have been reported. BES can be also used for biological
remediation (Li and Yu, 2015; Ramirez-Vargas et al., 2019) and,
as previously noted, as water desalination devices. In lab scale,
several organic compounds were synthesized as final products of
bioelectrochemical reactions such as alcohols (Mayr et al., 2019),
acetate, or acetoin (Patil et al., 2015; Forster et al., 2017).

The BESs are based on microorganisms, which are
the principal catalysts in these systems. Very often, the
microbial biocatalyst is incorporated in a biofilm in BES. The
biofilm carrying out the central reactions requires different
functionalities and architectures whether the electron transfer
is dominated by direct electron transfer via membrane-bound
c-type cytochromes (Holmes et al., 2004; Lovley et al., 2011)
or if it is dependent on indirect diffusion-limited electron
transfer with soluble redox mediators (Rabaey et al, 2005;
Venkataraman et al., 2011). Bioelectrochemical techniques
provide a rich interplay of submolecular, molecular, cellular
and, community-based mechanisms, which determine the
final efficiency of BES-based processes (Yasri et al, 2019).
Therefore, multiple elements affecting BES efficiency are being
continuously developed and include engineering of membranes
(Dizge et al.,, 2019; Pasternak et al., 2019), electrodes (Chong
et al., 2019), microorganisms (Askitosari et al., 2019), design
and modeling approaches as well as development of peripheral
systems (Gadkari et al., 2018; de Ramon-Ferndndez et al., 2019;
Tsompanas et al., 2019).

The interface between biotic and abiotic elements in such a
complex environment is a matter of a particular importance.
Therefore, in this mini-review, we will focus on a group of
compounds, which can act at the interface of liquid, solid and
gas phases, namely surfactants. Surfactants represent a wide
group of amphiphilic compounds, which are widely used in the
industry. Examples of widely used surfactant groups include
alkyl sulfates (anionic), alkyl ammonium chlorides (cationic),
betaines (amphoteric), and ethoxylates (non-ionic). Recently,
significant scientific attention has been paid to substitute the
chemically synthesized surfactants with biosurfactants, which
can be produced by microorganisms in situ in various types
of bioreactors. Biosurfactant functionalities in living systems
have still not been fully understood (Chrzanowski et al., 2012).
Examples of the natural roles of biosurfactants include: increasing
the surface area and bioavailability of hydrophobic substrates,
regulating the attachment, detachment of microorganisms to the
surfaces, participating in quorum sensing mechanisms, binding
of heavy metals, and antimicrobial activity (Ron and Rosenberg,
2001). The above-mentioned functions may therefore have a
crucial impact on the BES performance.

Although synthetic surfactants may have their biological
analogs, their functions and applications in biotic and abiotic

components of BES may be entirely different. Several types
of emerging interactions and applications of synthetic and
biosynthesized surfactants in BES were described so far. In
high pH, surfactants may prevent the biodeterioration of MFC
cathodes (Pasternak et al., 2016). Their presence enhance the
bioavailability of hydrophobic substrates (Hwang et al., 2019).
They interfere with the surface of the electrodes, which leads to
improved biofilm formation (Zhang et al., 2017). Furthermore,
they may have synergistic effect with electron shuttles on
MEFC power performance (Pham et al., 2008). These and other
interactions of biosurfactants (Figure 1 and Table 1) along with
the possibility of applying BESs for synthesis of these promising
and valuable compounds are discussed in this mini-review.

EFFECTS OF SURFACTANTS AND
BIOSURFACTANTS ON BES
COMPONENTS

Influence on Electron Transfer

Mechanisms

One of the main obstacles for efficient mediated extracellular
electron transfer is the barrier function of the bacterial cell
walls and membranes, which might not allow the mediators
to pass (Lovley, 2006). Surfactants may affect the membrane
permeability (Sotirova et al., 2008), which is essential for electron
shuttling in the mediated electron transfer (MET), and can lead
to enhanced electricity generation (Yong et al, 2013). In that
light, a handful of experiments showed that the external addition
of surfactants like rhamnolipids (Wen et al., 2010), Tween 80
(Ren et al, 2012), SDS (Song et al., 2015), or Triton X-100
(Oluwaseun, 2015) is efficiently increasing the current generation
in MFCs (Figure 1C). Notably, Wen et al. (2011) reported that
the addition of the non-ionic surfactant Tween 80 in an air-
cathode MFC significantly increased the power generation from
21.5 W/m? (without surfactant) to 187 W/m? (with surfactant).
Many studies also showed that the enhancement of membrane
permeability efficiently reduced the internal resistance of the BES,
and thus increased the electron transfer efficiency (Yu et al,
2011). An experiment conducted by Shen et al. (2014) proved
that the addition of sophorolipid effectively reduced the internal
resistance (Rin) by up to ~ 40%, whereas Cheng et al. (2018)
reported the addition of trehalose lipid decreased the Rin about
43% in MFC. The same conclusion has also been obtained from a
study conducted by Zheng et al. (2015), in which this parameter
decreased by ~30% for a P. aeruginosa PAO1 strain, which
endogenously overexpressed rhamnolipid, when compared to the
wildtype strain. These mentioned studies indicate the beneficial
influence of surfactants on the acceleration of mediated anodic
electron transfer and the reduction of energy consumption due
to internal resistances in MFCs (Zhang et al., 2017).

The positive effect has been related mainly to the role
of surfactants to form transmembrane channels in the cell
membrane. The presence of surfactants enables the reduction of
membrane’s resistance, increasing its permeability, accelerating
the transport of substances, and enhancing the substrate
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FIGURE 1 | Structures and effects of various synthetic and biological surfactants on bioelectrochemical systems. (A) the effect of hexadecyltrimethylammonium
bromide (CTAB) carbon felt surface modification on current output (Guo et al., 2014). (B) Regeneration of power performance by washing biofouled graphite
cathodes [adapted from Pasternak et al. (2016) under CCBY4.0 license]. (C) improved power performance (Wen et al., 2010) and (D) biofilm structure (Zhang et al.,
2017) and composition (Li et al., 2018) by increasing rhamnolipid concentration. (E) improved pyocyanin yield and cell membrane permeability through addition of
sophorolipid (Shen et al., 2014). (F) solubilization of petroleum compounds for bioelectrochemical remediation (Li et al., 2018).
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TABLE 1 | Summary of key effects of surfactants in bioelectrochemical systems.

Parameters Compounds Type of Positive impact when Possible considerations References
application compared to the control
Current Rhamnolipid (RL), Addition to anolyte Synergistic effect led to Inhibitory effect above Pham et al., 2008
PCN reaching EET for >1 mg/L
Brevibacillus strain
Trehalose Addition to anolyte 1.83-fold higher Current decrease above Cheng et al., 2018
>40 mg/L
Sophorolipid Addition to anolyte 2.6-fold higher NI Shen et al., 2014
Power Tween 80 Addition to anolyte 88% higher NI Wen et al., 2011
Trehalose Addition to anolyte 5.93-fold higher Power decrease >40 mg/L Cheng et al., 2018
Sophorolipid Addition to anolyte 4-fold higher NI Shen et al., 2014
SDS Anode modification 20% higher Power decrease >10 mmol Song et al., 2015
Internal resistance Trehalose Addition to anolyte 43% lower NI Cheng et al., 2018
Sophorolipid Addition to anolyte 40% lower NI Shen et al., 2014
Rhamnolipid Endogenous 30% lower NI Zheng et al., 2015
overexpression
Phenazine production Sophorolipid Addition to anolyte 1.7-fold lower NI Shen et al., 2014
Biofilm density and Rhamnolipid Addition to anolyte 2-fold higher thickness, Irreversible, potentially Zhang et al., 2017
diversity increased coverage and negative changes of the
increase of electroactive biofilm properties when
community by 24.6% >80 mg/L
Cathodic Triton X-100 Washing of the 100% power recovery Careful handling of Iytic Pasternak et al., 2016
performance recovery cathode solution required
Biodegradation Tween-80 Addition to 43.5% higher PCB NI, possible toxicity of Yuetal, 2017
catholyte transformation by-products

Hydrogen production Rhamnolipid (RL),

SDS, SDBS

Addition to anolyte

4-fold higher (for RL)

Type and dose-dependent Zhou et al., 2017

effect

NI, not investigated.

degradation (Singh et al, 2007). However, the addition of
synthetic surfactants to the MFC can also be toxic for the bacteria
(Shen et al., 2014). Therefore, a careful study to understand the
optimal concentration in the MFC is required. Several studies
reported that the effect of surfactants, which were originally
produced by bacteria, i.e., biosurfactants such as rhamnolipids,
sophorolipids, and trehalose lipids impose less toxicity to
the bacteria upon addition. However, while the addition of
20 mg/L trehalose lipid surfactant in an acetate-fed Rhodococcus
pyridinivorans-inoculated air cathode-MFC resulted in 1.83 times
higher currents density and 5.93 times higher power density
than the control, the presence of trehalose lipid above this
concentration reduced the bacterial metabolism and integrity,
which caused a lower electroactivity than in the control (Cheng
et al., 2018). The same trend was also found in the experiment
conducted by Shen et al. (2014) when sophorolipids have been
added to acetate-fed P. aeruginosa-inoculated air cathode-MFC.
Thus, also in case of biosurfactants, a proper concentration to be
applied in MFCs needs to be determined beforehand.

The Synergistic Interaction Between
Phenazines and Surfactants

An important group of redox compounds studied for natural
MET are microbial phenazines, which are produced by
Pseudomonas species, in particular by Pseudomonas aeruginosa.
Phenazines are synthesized from chorismic acid through

phenazine-1-carboxylic acid (PCA) formation, which is further
converted into pyocyanin (PYO), 1-hydroxyphenazine (1-HP),
and phenazine-carboxyamide (PCN). The synthesis of phenazine
is encoded by two homologous operons called operon one
and operon two. In P. aeruginosa PAO1 and PA1l4, operon
two showed higher activity when compared to operon one in
the phenazine synthesis and current production in oxygen-
limited BES (Askitosari et al., 2019). In the environment,
phenazines act as a virulence factor of P. aeruginosa by
reducing molecular oxygen into reactive oxygen species, which
are toxic for other microbial species (Mentel et al., 2009).
On the other hand, in co-culture between P. aeruginosa and
Enterobacter aerogenes, phenazines can promote synergistic
interaction between species and be utilized further for electron
discharge (Venkataraman et al., 2011; Schmitz and Rosenbaum,
2018). Concerning the interaction between phenazines and
surfactants, in P. aeruginosa, both the endogenous rhamnolipid
surfactant and phenazine synthesis are tightly controlled by
a complex genetic regulatory network and they are often co-
regulated (Abisado et al., 2018).

According to a study conducted by Pham et al. (2008), the
non-electrochemically active bacterium Brevibacillus sp. PTH1
was able to generate currents with a combined addition of
rhamnolipids up to a concentration of 1 mg/L and phenazine
carboxyamide (PCN) produced by Pseudomonas sp. CMR12a
in the acetate-fed MFC system. The provision of the phenazine
alone did not promote electroactivity. It is likely that the
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surfactant promoted PCN solubility, which enabled the PCN
to cross the peptidoglycan layer of gram-positive Brevibacillus
sp. PTHI. Hence, this bacterium was able to employ PCN
as electron shuttle through a synergistic interaction with
rhamnolipids, eventually enabling these bacteria to discharge
electrons to the anode. In another study, reported by Shen
et al. (2014), the addition of 40 mg/L sophorolipids led to the
increase of pyocyanin production, current density, and power
density (1.7 times, ~2.6 times, and 4 times, respectively, higher
than control) in a P. aeruginosa-inoculated air cathode-MFC
(Figure 1E). Despite these beneficial effects, the addition of
exogenous synthetic or biosurfactants results in higher costs
of MFC operation. Therefore, ideally, the biosurfactant should
be endogenously produced by the bacteria within the MFC.
This should provide physiological and economic advantages
for MFC performance. Heterologous production of phenazines
to enable electroactivity in Pseudomonas putida KT2440 has
recently been achieved (Schmitz et al., 2015; Askitosari et al.,
2019). This biotechnologically relevant bacterium has also
successfully been engineered for rhamnolipid production in the
past (Wittgens et al., 2011; Tiso et al., 2017). A next consequential
step would now be the combined tailored production of
phenazines and surfactants to evaluate the natural synergism in
a controlled manner. One of the studies already showed that an
endogenously stimulated surfactant production led to increased
cell permeability and enhanced biofilm formation, which are
both beneficial to trigger enhanced phenazine production, which
in turn increases electroactivity (Zheng et al., 2015). More
work is to be expected in this cutting-edge field of microbial
electrophysiology.

Influence on Biofilm Formation and
Stability

In BESs, the biofilm plays an essential role in electron transfer
between the bacterial cells, as well as in cell-electrode interactions.
The microbial ability to form the biofilm is essential in
harsh, BES conditions, which are dominated by unfavorable
environmental conditions, such as low aeration, substrate
limitation, and incidental desiccation. The biofilm formation
may be induced by the presence of biosurfactants in MFCs.
Such effect was observed by several authors so far. A 96-
well plate test revealed that overproduction of rhamnolipids
resulted in induced biofilm formation by P. aeruginosa PAO1-
the same strain that authors utilized to determine the effect of
biosurfactants on MFC performance (Zheng et al., 2015). This
may be explained by the amphiphilic nature of biosurfactants,
which facilitate the attachment of the hydrophilic bacterial cell
to the hydrophobic substratum. The same effect may thus occur
at the electrode surface, in particular carbon-based materials,
which are hydrophobic. Overall, the positive effect of microbially
produced surfactants in initial colonization of surfaces has been
long recognized in other fields of microbiology (e.g., tissue
infections, agriculture, or microbial corrosion processes). In
contrast, larger amounts of biosurfactants will also destabilize
biofilms or cell aggregates and promote more planktonic growth.
A more recent study stays in line with this hypotheses and

revealed some interesting insights into an effect of rhamnolipids
on biofilm adhesion and structure (Zhang et al., 2017). The
authors have estimated the biofilm thickness on various levels
of rhamnolipid present in the anolyte. The addition of 40,
80, and 120 mg/L of rhamnolipid resulted in the biofilm
thickness of 2.03, 6.14, and 4.14 pwm, respectively, while only
weak attachment was observed when the biosurfactant was not
present (Figure 1D). A similar trend was observed, when the
biomass of the electroactive community was quantified ranging
from 0.42 + 0.06 mg/m3 (control) up to 0.86 £ 0.06 mg/m3.
Lastly, the microbial community composition of the biofilm
was also affected by the presence of rhamnolipid. The MFC
supplemented with 40 mg/L had an increased ratio of potential
electroactive species such as Geobacter, Desulfovibrio, Tolumonas,
and Aeromonas, reaching 81% when compared to the control
(65%). These shifts in microbial community composition may
also be related to either tolerance of some groups of bacteria to
specific types of surfactants or activation of the quorum sensing
mechanisms caused by surfactants which could give a competitive
advantages to some of the species.

Improving the Performance of Anode

Electrode

The synthetic surfactants have been recently highlighted as
compounds, which can react with the surface of both cathode
and anode electrodes in MFCs. Guo et al. (2014) have
demonstrated a facile method of increasing the hydrophilic
properties of carbon felt electrodes by soaking the electrodes a
few minutes in 2 mM cetyltrimethylammonium bromide (CTAB)
solution (Figure 1A). Such a strategy resulted in improved
bioelectrochemical performance of the anodes (Guo et al., 2014).
Similar results were demonstrated by Song et al. (2015) who
investigated the surface modification with the use of sodium
dodecyl sulfate (SDS). They used a chemically pretreated (with
sulfuric and chromic acids) and exofoliated graphite powder
treated with surfactant and further with nitric acid. Although
the authors have used several treatment steps that could lead
to an improved hydrophilicity of the anodic surface (such as
acid treatment), the only variable was a surfactant concentration.
Modulating the quantity of surfactant between 0 and 20 mM
resulted in improving the power production by 20% observed
for 5 mM SDS and a decreased lag time, while decreased power
output was recorded for 10 and 20 mM concentrations of SDS.

Improving the Performance of Cathode

Electrode

At high concentrations and pH, the surfactants presence may lead
to the death of the bacterial cell through disruption of the cell
membrane. This process is known as the alkaline lysis and was
used by Pasternak et al. (2016) for improving the performance
of deteriorated cathodes (Figure 1B). The biofouling problem
of cathodes in BES has been widely reported and leads to
the significant decrease of MFC performance (Al Lawati et al.,
2019; Noori et al., 2019; Rossi et al., 2019b). In the above
mentioned study, the authors recorded nearly 91% drop of power,
which clearly resulted from the growth of the biofilm at the
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graphite-based cathode of the ceramic MFCs. The application
of a non-ionic surfactant (Triton X-100) in 0.1% concentration
along with 0.2 M NaOH heated to 60°C resulted in immediate
recovery of the cathodic performance to the levels exceeding
100% and removing the biofilm from the electrode surface, while
NaOH heated to the same temperature had no-effect on power
regeneration. Such an approach may be an alternative for more
commonly proposed mechanical cleaning methods (Rossi et al.,
2018) and help to prevent the biofilm recolonization.

SURFACTANTS AND BIOSURFACTANTS
IN BES-BIOTECHNOLOGICAL
PROCESSES

Biosynthesis

Biosurfactants are currently being produced in industrial scale
by several commercial companies. Some examples include BASF
Cognis (Germany) producing glycolipids, cellobiose lipids and
mannosylerythritol lipids, Boruta-Zachem (Poland) producing
surfactin, and Ecover (Belgium) producing sophorolipids.
However, their synthesis in aerobic microbial processes is often
hampered by energy demand of the bioprocess as well as
extensive foaming and resulting problems with biomass retention
and product recovery leading to losses of efficiency (Marchant
and Banat, 2012). Applying oxygen-limited BESs for synthesis of
biosurfactants may overcome some of these challenges. The first
report, where the rhamnolipid synthesis was observed in MFCs
was published in 2008 and their presence allowed Brevibacillus sp.
to achieve extracellular electron transfer, as discussed previously
(Pham et al, 2008). In another study, Schmitz et al. (2015)
have discussed the possibility of using BES along with an
engineered P. putida strain to synthesize detergents in oxygen-
free or oxygen-limiting conditions. This process is enabled
through the engineered production of phenazines as redox
mediators in non-electroactive P. putida to enable anaerobic
metabolic reactions. Such an oxygen limitation approach could
not only lead to developing foaming-limited biotechnological
process based on BESs, but potentially can also result in a
higher carbon yield of the products (Schmitz et al, 2015).
Furthermore, an engineered strain of P. aeruginosa has been used
for inducing rhamnolipid production through overexpression
of the rhamnosyltransferase gene (rhlA) in a MFC system
(Zheng et al.,, 2015). More recently, the addition of metallic
nanoparticles to the cathode electrode resulted in improved
power performance and production of biosurfactant (Liu and
Vipulanandan, 2017). The authors have recorded significant drop
of the surface tension during growth of the biofilm at the anodic
potential of —0.3 V and recorded up to 3.14 g/L of crude
extracellular lipid products when the Fe-nanoparticles were used.
These examples suggest that sustainable, BES-based production
of biosurfactants is possible.

Biodegradation
Surfactants are often used to increase bioavailability of
recalcitrant compounds during biodegradation processes

(Figure 1F). The study described by Li et al. (2018) showed
that the use of surfactants to stimulate the biodegradation of
petroleum hydrocarbons in MFCs may affect the taxonomical
composition of electroactive biofilms. The authors studied
five types of surfactants among which the lecithos - ampholytic
surfactant (mainly lecithin) was responsible for the highest power
and biodegradation performance. The SDS and B-cyclodextrin
(biosurfactant) caused the most selective shifts in bacterial
communities. In another study, the presence of Tween 80
resulted in improving the PCB transformation in sediment
MFC by 43.5% (Yu et al, 2017). The amphiphilic nature
of surfactants was also exploited recently by Hwang et al.
(2019), who investigated the biodegradation of bilge water
in MFCs. The addition of 100 ppm of anionic SDS resulted
in improved power output, which reached 2253 mW/m?,
while the use of non-ionic Triton X-100, resulted in two
orders of magnitude lower power performance. The use
of surfactants may therefore cause several effects (also
negative) in  biodegradation-oriented  bioelectrochemical
techniques and the appropriate studies should always precede
their utilization.

Hydrogen Production

Surfactants have also been recognized as methanogenesis
inhibiting agents (Jiang et al., 2007). Such a feature may be
therefore implemented to improve the hydrogen evolution in
MECs. In a recent study, Zhou et al. (2017) have tested SDS,
sodium dodecyl benzene sulfonate (SDBS) and rhamnolipids
for their influence on hydrogen production. The rhamnolipid
addition has boosted the hydrogen yield to 12.90 mg H/g VSS
(volatile suspended solids), which was the maximum value when
compared to the other surfactants and several times larger when
compared to the controls. The authors claimed that rhamnolipids
led to the highest acidification of the activated sludge, which was
the fuel and possibly improved membrane permeability of the
electroactive biofilm cells, leading to improved electrochemical
parameters. Contrary results were described by Ren et al. (2012),
who investigated the effect of Tween-80 on power performance
of MECs, showing that surfactant concentrations up to 20 mg/L
had no significant effect on current generation. Furthermore,
an adverse effect was observed when its concentration reached
80 mg/L (Ren et al., 2012).

CONCLUDING REMARKS

Surfactants, either synthetic or biological, appear to be
a highly reactive group of compounds in terms of their
influence on several parameters, which are determining BES
performance. Although a relatively rich number of surfactants
were examined, only rhamnolipids and sophorolipid were
included as representatives of biological surfactants. The recently
emerged studies indicate that bio/surfactants may interfere
with electron transfer mechanisms, especially electron shuttles
such as phenazines, biofilm attachment and survival at the
electrodes, as well as biofilm architecture and composition.
These advantages make them an ideal target for a novel circular
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economy approaches in biotechnology, where the waste is being
converted into value-added product. The in-situ production
of surfactants in BESs would offer a great advantage of
ensuring an energy-neutral bioprocess modification, which
positively affects the BES performance in substrate utilization and
energy production through various mechanisms. Considering
the range of the effects when different types of surfactants and
biosurfactants were investigated in BES, such process, however,
would require careful and accurate control in order to avoid
the occurrence of negative phenomena such as toxic effects on
the electroactive community. Since contrary effects of different
surfactants were observed on similar processes, identifying these
effects for specific types of surfactants and comparative studies,
as well as focus on the potential negative effects will be the
main challenge to make use of their advantages in the future.
The application of bio/surfactants in BES could finally lead to
extended lifetime of the functional MFC elements affected by
biofouling, thus leading to their increased utilization toward
waste and wastewater treatment.
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