

ISSN- 0975-7058

Vol 13, Issue 1, 2021

Original Article

EXPERIMENTAL DEVELOPMENT AND MOLECULAR DOCKING: NANOSTRUCTURED LIPID CARRIERS (NLCs) OF COENZYME Q10 USING STEARIC ACID AND DIFFERENT LIQUID LIPIDS AS LIPID MATRIX

NI LUH DEWI ARYANI^{1,3}, SISWANDONO², WIDJI SOERATRI^{1*}, FANNY PUTRI RAHMASARI³, DIAN RIZKI KARTIKA SARI³

¹Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia, ²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia, ³Department of Pharmaceutics, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia

Email: widji-s@ff.unair.ac.id

Received: 30 Sep 2020, Revised and Accepted: 20 Nov 2020

ABSTRACT

Objective: To develop coenzyme Q10 (co-Q10) nanostructured lipid carriers (NLCs) using stearic acid (SA) and various liquid lipids with different lipophilicity as well as highlights the use of *in silico* studies for predicting and elucidating the interaction of drug-lipid used as carries in NLCs, at the molecular level.

Methods: The co-Q10 NLCs were prepared using SA as solid lipid and oleic acid (OA), isopropyl myristate (IPM), as well as isopropyl palmitate (IPP) as liquid lipids by the high shear homogenization method. Firstly, the formulas were optimized by the appropriate required HLB (rHLB). The optimized NLCs were characterized in the particle size, distribution of particle size, zeta potential, crystallinity behavior, Fourier transform infrared (FT-IR) spectra, morphology, entrapment efficiency (EE), drug loading (DL), and pH value. The interaction of drug-lipids *in silico* was studied using the AutoDock Vina program.

Results: The co-Q10 NLCs using SA and the various liquid lipid possessed the mean particle size, polydispersity index (PDI), zeta potential, EE, DL, and pH values were 180 to 350 nm,<0.5,<-30 mV, 83 to 88%, 10 to 11%, and 5.0 to 5.6, respectively. The EE and DL of co-Q10 NLCs increased with decreasing in binding energy (Δ G) in silico.

Conclusion: The co-Q10 NLCs using SA as solid lipid and OA, IPM, as well as IPP as liquid lipids were developed successfully. Furthermore, *in silico* study by molecular docking is a potential approach in predicting and elucidating the interaction of drug-lipid in the development of NLCs formulation.

Keywords: Coenzyme Q10, Nanostructured lipid carriers, Stearic acid, Molecular docking

 $@ 2021 \ The \ Authors. \ Published \ by Innovare \ Academic \ Sciences \ Pvt \ Ltd. \ This \ is \ an open \ access \ article \ under \ the \ CC \ BY \ license \ (http://creativecommons.org/licenses/by/4.0/) \ DOI: \ http://dx.doi.org/10.22159/ijap.2021v13i1.39890. \ Journal \ homepage: \ https://innovareacademics.in/journals/index.php/ijap$

INTRODUCTION

Co-Q10 is an antioxidant that can be used as a skin anti-aging. Co-Q10 is lipophilic because it has 10 isoprene side chains. The chemical structure of co-Q10 is shown in fig. 1. Due to its lipophilic properties, the penetration of co-Q10 through the skin is low [1, 2]. This problem can be overcome using NLC.

NLC is the second generation of the lipid nanoparticle delivery system. NLCs have lipid carriers consisting of a mixture of solid lipids and liquid lipids [3, 4]. The main components of NLC are lipids, surfactants, and water [5]. These components determine emulsion stability during the NLC production process. The required hydrophilic-lipophilic balance (rHLB) value of the lipid matrix should be matched to the HLB value of the surfactants to obtain stable emulsion [6, 7].

SA
OA
IPM

IPP

Fig. 1: Chemical structure of co-Q10, SA, OA, IPM, IPP

In the present study, Tween 80 (HLB=15) and Span 80 (HLB=4.3) [8] were used as a combination of surfactants, SA as a solid lipid, OA, IPM, and IPP as liquid lipids. The liquid lipids have different lipophilicity. The chemical structure of SA, OA, IPM, and IPP is shown in fig. 1. The co-Q10 NLCs were characterized in particle size, PDI, zeta potential, morphological, differential scanning calorimetry (DSC) thermogram, FT-IR spectra, EE, DL, and pH values. Evaluation in silico was also performed by molecular docking to predict and elucidate the interaction between co-Q10 and the liquid lipids used. The interaction between co-Q10 and liquid lipids was analyzed through ΔG . Low ΔG shows stable interactions between molecules [9] and it can affect EE and DL [10].

MATERIALS AND METHODS

Materials

Co-Q10 was purchased from Kangcare Bioindustry Co., Ltd. (Nanjing, China). SA, IPP, IPM, propylene glycol, Tween 80 were purchased from Bratachem (Surabaya, Indonesia). OA, Span 80, phenoxyethanol were purchased from Universal Pharma Chemical (Surabaya, Indonesia). Sodium dihydrogen phosphate p. a., disodium

hydrogen phosphate p. a., ethanol 96% p. a. were purchased from E. Merck (Darmstadt, Germany). All materials used in the study have a pharmaceutical-grade unless otherwise stated.

Methods

Molecular docking

The chemical structure and International Union of Pure and Applied Chemistry (IUPAC) name of co-Q10, OA, IPM, and IPP were confirmed using PubChem®. The three dimensional (3D) chemical structure of co-Q10 and liquid lipids were obtained using ChemOffice Pro 2016, and the energy minimization process was carried out using the same program. The files were saved in the cdx file format. Files with the cdx format were converted to file. pdb using the Discovery Studio Visualizer (DSV). File. pdb from DSV becomes file. pdbqt on AutoDock Tools (ADT). Molecular docking of co-Q10 and various lipids were run using AutoDock Tools 1.5.6 and AutoDock Vina. Spasing (Armstrong) was selected 1, the position and size of the grid box were arranged so that all the structure of co-Q10 and liquid lipids were in the grid box, as shown in table 1. The number of molecular docking processes was 10 times. Visualization of docking results used DSV and ADT.

Table 1: Position and size of the grid box in the molecular docking process

Molecule	Grid box	Grid box		
	Parameter	Center	Size	
Co-Q10 and OA	X	-1.54	126	
	Y	-2.404	126	
	Z	-0.489	124	
Co-Q10 and IPM	X	-1.54	126	
	Y	-2.404	104	
	Z	-0.489	110	
Co-Q10 and IPP	X	-1.54	98	
	Y	-2.404	126	
	Z	-0.489	106	

Formulation of co-Q10 NLCs

SA was put into liquid lipids then it was melted at $80\,^{\circ}\text{C}$ and stirred until homogeneous for about 1 min at 3400 rpm with ultra turrax. Co-Q10 was added to the lipid mixture and stirred until it dissolved for about 2 min. Separately, Span 80 and tween 80 were heated to $80\,^{\circ}\text{C}$, added sequentially, and stirred until homogeneous for about 1 min. The phosphate buffer and propylene glycol were heated to $80\,^{\circ}\text{C}$ separately from the lipid phase. The mixture was added slowly to the lipid phase and stirred until it was homogeneous for about 1 min. After that, the mixture was stirred at 24 000 rpm for 3 min. After 3 min the stirring speed was changed to 3400 rpm.

Phenoxyethanol was added to the mixture at 40 $\,^{\circ}\text{C}$ and stirred continuously until room temperature.

Optimization of co-Q10 NLCs formula

Several formulas with different rHLB and different concentrations of the lipid matrix were evaluated to obtain physically stable NLCs. The physical stability of the NLCs was evaluated for 10 d at room temperature by visual examination. The stable NLCs did not show phase separation or breaking. The formulations to determine the rHLB and the concentrations of the lipid matrix of the co-Q10 NLCs were presented in table 2.

Table 2: The Formulations for rHLB determination of the co-Q10 NLC (concentration of materials given in %)

Material	Surfacta	ant (10%)			Surfact	ant (20%)	
	Lipid (8%)		Lipid (10%)		Lipid (8%)			
	rHLB 13	3	rHLB 14	rHLB 14	rHLB 13	rHLB 1	4	
	F1	F2	F3	F4	F5	F6	F7	F8
Co-Q10	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
SA	5.6	5.6	5.6	7	7	5.6	5.6	5.6
OA	-	-	-	-	-	2.4		-
IPM	2.4	-	-	-	-	-	2.4	-
IPP	-	2.4	2.4	3	3	2.4	2.4	2.4
Tween 80	8.1	8.1	9.0	9.0	16.2	18	18	18
Span 80	1.9	1.9	1.0	1.0	3.8	2	2	2
Propylene glycol	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Phenoxyethanol	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Phosphate buffer pH 5.5 up to	100	100	100	100	100	100	100	100

Physicochemical characterization of the co-Q10 NLCs

Particle size, polydispersity index, and zeta potential

The particle size, polydispersity index, and zeta potential were measured by the dynamic light scattering (DLS) method using the nanoparticle analyzer (Nanotrac Wave, Microtrac W3717).

Morphology of the co-Q10 NLCs

The morphology of the co-Q10 NLCs was performed using scanning electron microscopy (SEM, ZEISS). The samples were applied to an object-glass and dried at 40-50 $^{\circ}$ C using a hot plate. After that, the samples were coated with gold and observed by SEM with magnifications of 10 000x and 25 000x.

Differential scanning calorimetry (DSC)

DSC was used to determine the melting temperature and crystallinity of co-Q10, SA, and co-Q10 NLCs. The weighted sample (4 mg) was put into an aluminum pan and heated from 30 to $100 \,^{\circ}\text{C}$ in a calorimeter (DSC model 1/500, Mettler Toledo). The heating rate of the calorimeter was $10 \,^{\circ}\text{C/min}$. The percentage of crystallinity index (CI) is measured by the following equation [6]:

CI (%) =
$$\frac{\Delta H \text{ NLC coenzyme Q10}}{\Delta H \text{ lipid matrix X concentration lipid phase}} x100----(1)$$

Where ΔH co-Q10 NLC and ΔH lipid matrix are the melting enthalpy (J/g) of the co-Q10 NLC and solid lipid (SA), respectively.

Fourier transform infrared (FT-IR)

FT-IR spectra of the samples were obtained using an FT-IR spectrophotometer (Jasco FT-IR 5300). The samples were added to KBr powder and compressed with a hydraulic press to obtain a transparent plate. The plate was scanned at wavelengths of $400\text{-}4000~\text{cm}^{-1}$.

Entrapment efficiency (EE) and drug loading (DL)

The EE of co-Q10 NLC was obtained by indirect methods. The untrapped Co-Q10 in NLC was obtained through the centrifugation method. The co-Q10 NLC was diluted with aqua dem quantitatively and put into Amicon® Ultra-15 tubes with 30 kDa molecular weight cut-offs (Merck Millipore) then centrifuged at 10 000 rpm for 30 min. The absorbance of the filtrate was measured using a UV spectrophotometer at a wavelength of 275 nm [11].

EE is calculated using the following equation:

EE (%) =
$$\frac{(Ca-Cb)}{Ca}$$
 x 100----(2)

DL is calculated using the following equation

DL (%) =
$$\frac{Da-Db}{DL}$$
x 100----(3)

Where Ca is the initial concentration of co-Q10 in NLC, Cb is the concentration of free co-Q10 in the filtrate, Da is the initial amount of co-Q10 in NLC, Db is the amount of free co-Q10 in the filtrate, DL is the amount of lipid in co-Q10 NLC.

The pH value

The pH values of the co-Q10 NLCs were evaluated using a calibrated pH meter.

Data analysis

Differences in the particle size, EE, DL, and pH value of the co-Q10 NLCs were analyzed using one-way ANOVA statistical methods,

which were followed by Tuckey Honestly test to see different data pairs. The results were considered to be a statistically significant difference at p-value<0.05. The correlation between *in silico* and *in vitro* study was analyzed by regression analysis. There is a significant relationship if the correlation coefficient (r)>0.9877.

RESULTS AND DISCUSSION

Molecular docking

The results of molecular docking between co-Q10 and liquid lipids showed that th\$\Delta\$G in silico of co-Q10-IPP was the lowest. This shows that IPP had the highest affinity for co-Q10. IPP has the longest hydrocarbon chain so that the lipophilicity is highest [12]. Due to the highest lipophilicity leads to the affinity of IPP to co-Q10 is highest. The \$\Delta\$G in silico of co-Q10-OA, co-Q10-IPM, and co-Q10-IPP were-4.9,-5.7, and-6.5 kcal/mol, respectively, as presented in table 5.2. A negative \$\Delta\$G value indicates that the interaction between fatty acid molecules and the co-Q10 can occur spontaneously [13, 14].

The 3D visualization of molecular docking using DSV showed that there were the hydrophobic bonds in co-Q10-OA, co-Q10-IPM, and co-Q10-IPP, as shown in fig. 2. The C18 atom of OA forms hydrophobic bonds with the C58 and C59 atoms of co-Q10 with a distance of 3.72 and 4.09 Å, respectively. The C14 atom and C15 atom of IPM form hydrophobic bonds with the C56 atom and the C51 atom of co-Q10 with a distance of 4.01 Å and 4.48 Å, respectively. The C18 atom of IPP forms a hydrophobic bond with the C51 atom of co-Q10 with a distance of 3.96 Å. The results of molecular docking in the previous study also showed the hydrophobic bond in co-Q10-docosahexaenoic acid (DHA) and co-Q10-eicosapentaenoic acid (EPA). Docosahexaenoic acid and eicosapentaenoic acid are chemical content of fish oil, which was used as a carrier of the oleogel formulation [15].

Intermolecular interactions can be in the form of ionic, ion-dipole, and dipole-dipole bonds, hydrogen bonds, van der Waals bonds, and hydrophobic bonds [9]. The 3D visualization of co-Q10-OA, co-Q10-IPM, and co-Q10-IPP using the DSV only show hydrophobic interactions. The van der Waals interaction could not be shown in the interaction of these molecules because of the limitations of the software used. The van der Waals interactions can occur in non-polar molecules [14]. It is attractive forces between molecules or atoms that are not charged and are located close to a distance of±4-6 Å. The van der Waals interaction occurs due to the polarity of the induced atoms. It is a weak interaction, but if a large amount can produce significant Δ G in the interactions between molecules [9]. Co-Q10, OA, IPM, and IPP are non-polar [12]. These molecules showed van der Waals interactions using ADT, as shown in fig. 3.

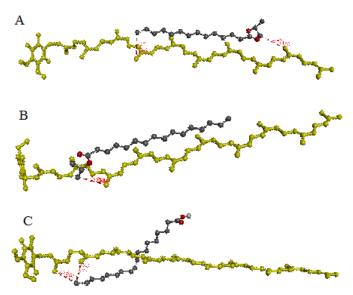


Fig. 2: Docking of co-Q10 with OA (A), IPM (B), and IPP (C) using DSV show hydrophobic bonds

Table 3: The binding energies of co-Q10 with various liquid lipids by molecular docking

Liquid lipids	IUPAC name	ΔG (kcal/mol)
OA (C ₁₈ H ₃₄ O ₂)	(~{Z})-octadec-9-enoic acid	-4.9
IPM $(C_{17}H_{34}O_2)$	Propan-2-yl tetradecanoate	-5.7
IPP (C ₁₉ H ₃₈ O ₂)	Propan-2-yl hexadecanoate	-6.5

Optimization of co-Q10 NLCs formula

The main components of NLC are solid lipids, liquid lipids, surfactants, and water [16]. These components are the factors that

determine the formation of a stable emulsion during the NLC manufacturing process. The required HLB (rHLB) of matrix lipid and amount of surfactants are the factors that determining emulsion stability [6, 7, 17-19].

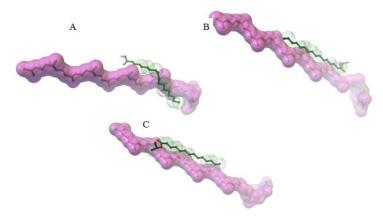


Fig. 3 Docking co-Q10 with OA (A), IPM (B), and IPP (C) using ADT show van der Waals interactions

In this study, the surfactants were a combination of Tween 80 and span 80. The optimization of the formula used 10 and 20% surfactants, with rHLB values of 13 and 14. The lipid matrix concentrations were 8 and 10%. The stability of the co-Q10 NLCs was evaluated for 10 d at room temperature to select the optimal formula.

The results of the stability test visually of co-Q10 NLC at room temperature for 10 d are shown in table 4. The co-Q10 NLC (F6), (F7), and (F8) were not breaking. The co-Q10 NLC (F6), (F7), and (F8) used an 8% lipid matrix with rHLB value 14, 20% surfactants as well as OA, IPM, and IPP as liquid lipids, respectively. Then the optimized NLCs were characterized physicochemically.

Table 4: The physical stability by visual evaluation

Formula	Physical stability	
Co-Q10 NLC (F1)	Breaking	
Co-Q10 NLC (F2)	Breaking after 7 d	
Co-Q10 NLC (F3)	Breaking after 10 d	
Co-Q10 NLC (F4)	Breaking after 4 d	
Co-Q10 NLC (F5)	Breaking after 10 d	
Co-Q10 NLC (F6)	Not breaking	
Co-Q10 NLC (F7)	Not breaking	
Co-Q10 NLC (F8)	Not breaking	

Physicochemical characterization of the co-Q10 NLCs

Particle size, polydispersity index, and zeta potential

The particle size of the co-Q10 NLCs (F6) was largest, while the particle sizes of the co-Q10 NLCs (F7) and (F8) were not different, as shown in table 5. The particle size of transdermal delivery systems is smaller than 600 nm and the particle size of drug<300 nm is optimal for penetration through the skin [20].

The PDI of co-Q10 NLCs (F6), (F7), and (F8) were<0.5, as shown in table 5. This indicates that the particle size distribution of the co-Q10 NLCs (F6), (F7), and (F8) were homogenous [21, 22].

The zeta potential of co-Q10 NLCs (F6), (F7), and (F8) were<-30 mV, as shown in table 5, that indicated the formulas have good stability. The negative zeta potential values of co-Q10 NLC (F6), (F7), and (F8) were caused by the carboxyl group of SA. The negative zeta potential of the nano lipid particle delivery system using SA as a lipid matrix was also obtained in the earlier studies [23-25].

Table 5: Particle size, PDI, and zeta potential of co-Q10 NLCs

Formula	Parameter			
	Particle size (nm)	PDI	Zeta potential (mV)	
Co-Q10 NLC (F6)	356.0±28.8	0.3100±0.1000	-41.4±5.6	
Co-Q10 NLC (F7)	236.4±48.8	0.3167±0.0900	-46.8±12.3	
Co-Q10 NLC (F8)	184.2±16.3	0.1838±0.1110	-54.6±1.0	

mean±SD (n=3)

Morphology of the co-Q10 NLCs

To obtain information about the morphology of the co-Q10 NLCs, SEM analysis was performed. The micrograph of the co-Q10 NLCs $\,$

(F6), (F7), and (F8) illustrated spherical particles and relatively smooth surface as shown in fig. 4, 5, and 6. The sticky nature of the lipid and sample preparation process for SEM analysis were probably the causes of the presence of some aggregates [26].

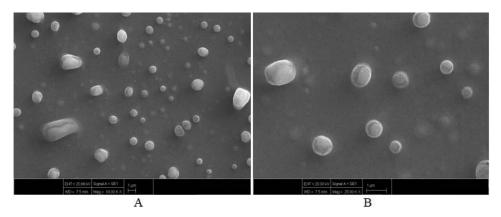


Fig. 4: SEM image of co-Q10 NLC (F6) with magnification of (A) $10\,000x$ and (B) $25\,000x$

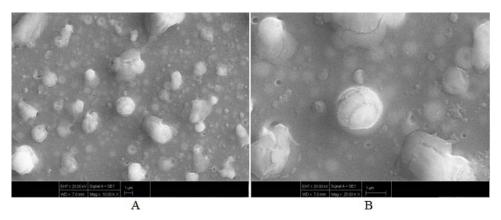


Fig. 5: SEM image of co-Q10 NLC (F7) with magnification of (A) 10 000x and (B) 25 000x

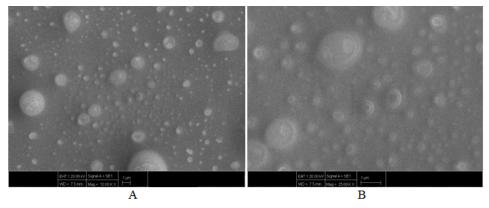


Fig. 6: SEM image of co-Q10 NLC (F8) with magnification of (A) 10 000x and (B) 25 000x

Table 6: Melting point, melting enthalpy	(AH)	and	(CI)	١
Table 0. Methig point, include chinalpy	1411	, and		

Material	Melting point (°C)	ΔH (J/g)	CI (%)	
Co-Q10	51.63	-153.2	-	
SA	58.01	-190.12	100	
Co-Q10 NLC (F6)	46.44	-4.32	28.40	
Co-Q10 NLC (F7)	45.30	-5.47	35.96	
Co-Q10 NLC (F8)	45.16	-5.01	32.94	

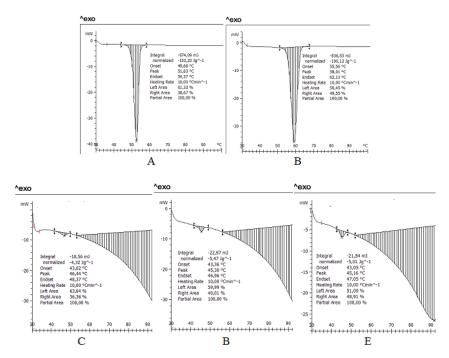


Fig. 7: DSC thermogram of co-Q10 (A), SA (B), co-Q10 NLC (F6) (C), co-Q10 NLC (F7) (D), and co-Q10 NLC (F8) (E)

Differential scanning calorimetry (DSC)

The crystalline or amorphous nature of the co-Q10 NLCs (F6), (F7), and (F8) were analyzed by DSC. The DSC thermograms, melting point, and enthalpy of coenzyme Q10, SA, co-Q10 NLC (F6), co-Q10 NLC (F7), and co-Q10 NLC (F8) are presented in fig. 7 and table 6.

The melting points of co-Q10, SA, co-Q10 NLC (F6), (7), and (8) showed endothermic peaks at 51.63, 58.01, 46.44, 45.30, and 45.16 °C, respectively.

The melting enthalpies of co-Q10, SA, co-Q10 NLCs (F6), (F7), and (F8) were-153.2,-190.12,-4.32,-5.47, and-5.01 J/g, respectively. The melting point and melting enthalpy of co-Q10 NLC (F6), (F7), and (F8) were decreased compared with the melting point and the melting enthalpy of co-Q10 and SA. It is due to co-Q10 that was presented in the amorphous phase and dispersed homogeneously into the lipid matrix.

The CI was calculated by comparing the enthalpy of co-Q10 NLC with the enthalpy of SA (equation 1). Lipid crystallinity affects EE and DL [7, 27]. The CI of co-Q10 NLC (F6), (F7), and (F8) are presented in table 6. The CI of SA was 100%. The addition of liquid lipids in the formula causes the enthalpy of co-Q10 NLC (F6), (F7), and (F8) was decreased compared with the enthalpy of SA. So, the CI of co-Q10 NLC (F6), (F7), and (F8) were smaller than the CI of SA. A

similar result was also obtained from an earlier study, that the CI of NLC was decreased compared with the CI of the lipid used (carnauba wax, Compritol 888 ATO, and beeswax with certain liquid lipids) [28]. This is due to liquid lipids decreases the orderedness of the solid lipid crystal structures [4].

Fourier transform infrared (FT-IR)

The FT-IR spectra of co-Q10, co-Q10 NLCs, and the lipids in the region of 4000-400 cm⁻¹ is shown in fig. 8 to fig 10. The FT-IR spectra of co-Q10 exhibit peaks at 2962.13, 1732.73, 1645.95, and 1200.47 cm⁻¹ for C-H stretching, C=O stretching, C=C stretching and C-O stretching, respectively. The FT-IR spectra of co-Q10 NLCs did not present new peaks if compared with the FT-IR spectra of co-Q10, and the lipids. It was due to there were no chemical interactions that lead to forming new functional groups in the co-Q10 NLC. Co-Q10 is only entrapped in the lipid matrix [29, 30]. This was also proved by DSC thermograms that indicated co-Q10 was entrapped in the lipid matrix. Due to nonpolar molecules, the possible interactions between co-Q10 and matrix lipids are hydrophobic and van der Waals [14]. The molecular docking studies of co-Q10 and the lipids used showed hydrophobic and van der Waals interactions. The hydrophobic and van der Waals interactions did not lead to forming new functional groups.

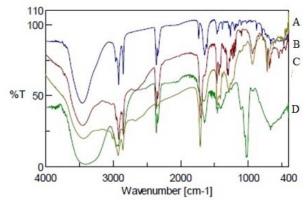


Fig. 8: FT-IR Spectra of co-Q10 (A), OA (B), SA (C), and co-Q10 NLC (F6) (D)

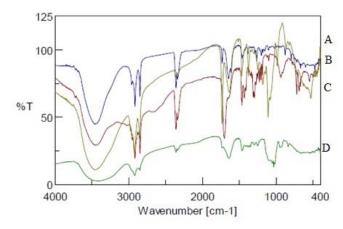


Fig. 9: FT-IR spectra of co-Q10 (A), IPM (B), SA (C), and co-Q10 NLC (F7) (D)

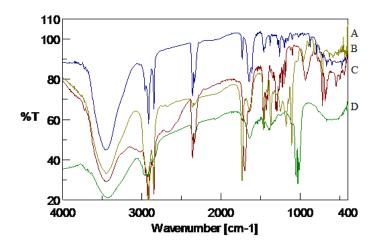


Fig. 10: FT-IR spectra of co-Q10 (A), IPP (B), SA (C), and co-Q10 NLC (F8) (D)

Entrapment efficiency (EE) and drug loading (DL)

The EE of the co-Q10 NLC (F6, (7) and (F8) were>80%, as shown in table 7. These were due to the addition of liquid lipids into the

SA lead to order crystal structure became disordered. Disorders of the crystal structure leave enough space for the incorporation of drug molecules [27]. The EE and DL of co-Q10 NLC (F8) were the highest.

Table 7: EE and DL of co-Q10 NLCs

Formula	EE (%)	DL (%)	
Co-Q10 NLC (F6)	82.840±0.791	10.355±0.099	
Co-Q10 NLC (F7)	84.225±2.119	10.528±0.265	
Co-O10 NLC (F8)	87.799±2.181	10.975±0.273	

mean±SD (n=3)

Table 8: The pH values of co-Q10 NLC (F6), (F7), and (F8)

Formula	рН	
Co-Q10 NLC (F6)	5.55±0.01	
Co-Q10 NLC (F7)	5.67±0.04	
Co-O10 NLC (F8)	5.50±0.07	

mean±SD (n=3)

The co-Q10 NLCs pH value

The co-Q10 NLC (F6), (F7), and (F8) possessed pH values similar to the pH value of the skin. The skin pH value is 4-6.5 [31]. The pH values of co-Q10 NLC (F6), (F7), and (F8) were about 5. The pH values co-Q10 NLC (F6), (F7), and (F8) are presented in table 8.

The correlation of the EE or DL in vitro and the ΔG in silico

Besides the crystallinity of lipids, the EE and DL in NLC also depend on the nature of the drug and lipids. The nature of the drug and lipids affect the interaction between them. Co-Q10 is a lipophilic substance (log P=21) [1], so it has good interaction with lipids.

To evaluate the influencing of interactions drug-lipid on EE and DL, the regression analysis between EE or DL and ΔG in silico was

performed. The correlation curve between EE or DL and the ΔG in *silico* is presented in fig. 11.

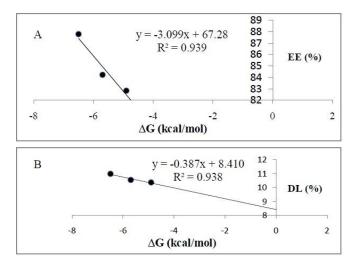


Fig. 11: Correlation of ΔG in silico and EE (A) and DL (B) of co-Q10 NLCs

Although the non-fitting correlations were observed between EE or DL of co-Q10 NLCs in vitro and ΔG in silico, the EE and DL of co-Q10 NLCs increased with decreasing in ΔG in silico. Similar results were also obtained from a previous study, that studied the interactions between amorphous chitin nanoparticles with three different types of anti-cancer drugs such as curcumin, docetaxel, and 5-fluorouracil by the integration of in silico and in vitro studies [32].

CONCLUSION

The development of co-Q10 NLCs using SA as solid lipid and OA, IPM, and IPP as liquid lipids were prepared successfully using the appropriate rHLB. The NLCs possessed the mean particle size, PDI, zeta potential were about 180-350 nm,<0.5,<-0.3 mV, respectively. The NLCs particles were spherical. The pH values of the co-Q10 NLCs met the skin pH. Co-Q10 was entrapped and dissolved in the lipid matrix, it was indicated from the FT-IR spectra and supported by in silico studies. The molecular docking exhibited hydrophobic bonds and van der Waals interaction between molecule co-Q10 and the lipids. The DSC studies showed that the crystallinity index of co-Q10 NLCs was smaller than SA, so it influenced the EE and DL of the co-Q10 NLCs. The EE of the co-Q10 NLCs 83 to 88% and DL10 to 11%. The EE and DL of the co-Q10 NLCs increased with a decrease in ΔG in silico. So in silico study is a potential approach in predicting and elucidating the interaction of drug-lipid in the development of NLCs.

FUNDING

This research was funded by Surabaya University.

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

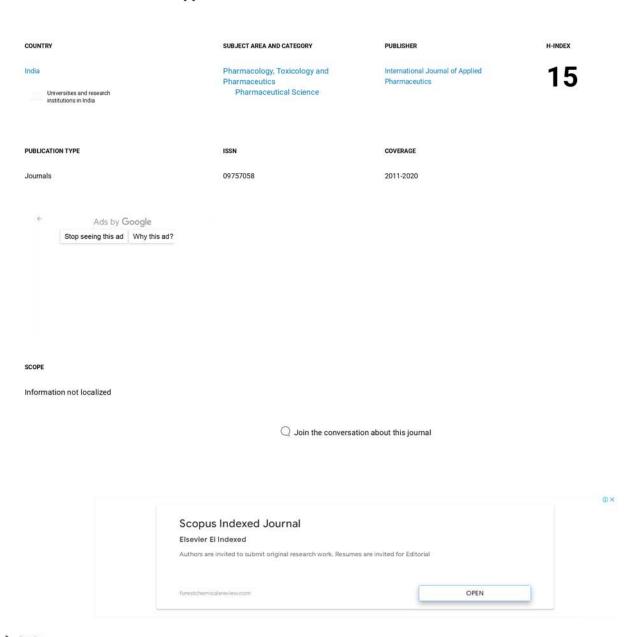
The authors declare no conflict of interest among themselves.

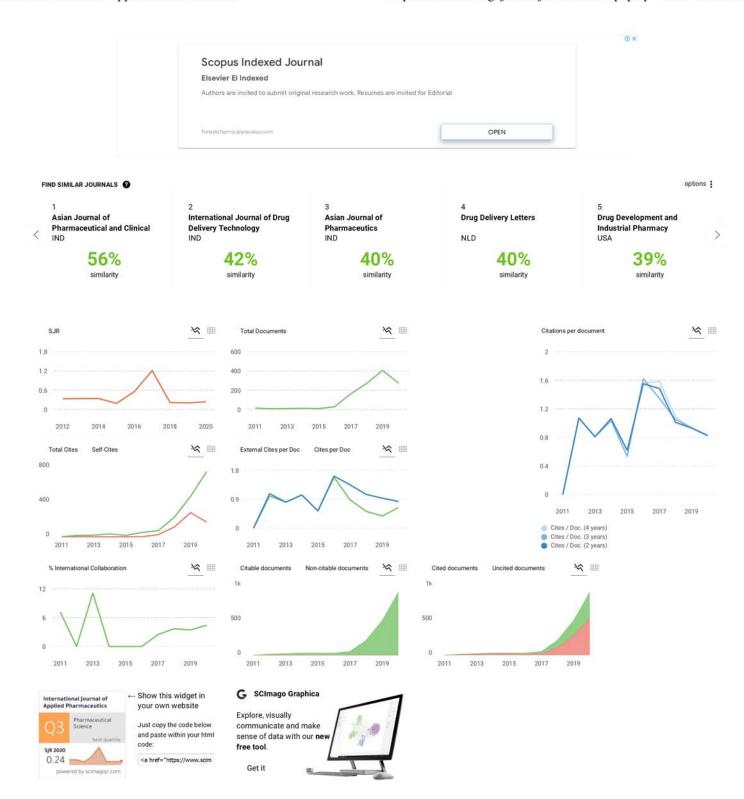
REFERENCES

- ${\it 1.} \quad \hbox{Zaki NM. Strategies for oral delivery and mitochondrial} \\ \quad targeting of CoQ10. Drug Delivery 2016; 23:1868-81.$
- Korkmaz E, Gokce EH, Ozer O. Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery. Acta Pharm 2013;63:517–29.
- Müller RH, Staufenbiel S, Keck C. Lipid nanoparticles (SLN, NLC) for innovative consumer care and household products. Househ Pers Care Today 2014;9:18–25.
- Naseri N, Valizadeh H, Zakeri Milani P. Solid lipid nanoparticles and Nanostructured lipid carriers: Structure preparation and application. Adv Pharm Bull 2015;5:305–13.

- Fang CL, A Al-Suwayeh S, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2012:7:41–55.
- Keck CM, Baisaeng N, Durand P, Prost M, Meinke MC, Müller RH. Oil-enriched, ultra-small Nanostructured lipid carriers (usNLC): a novel delivery system based on flip-flop structure. Int | Pharm 2014;477:227–35.
- Flavia D, Conrado M, Thallysson Carvalho B, Daniele M, Luciana N, Salvana C, et al. Polymorphism, crystallinity and hydrophiliclipophilic balance (HLB) of cetearyl alcohol and cetyl alcohol as raw materials for solid lipid nanoparticles (SLN). ASP Nanotechnol 2018:1:52-60.
- Rowe RC, Sheskey PJ, Quinn ME. editors. Handbook of pharmaceutical excipient. London: The Pharmaceutical Press; 2015.
- Siswandono. editor. Kimia Medisinal 2. 2nd ed. Surabaya: Airlangga University Press; 2016.
- Hathout RM, Metwally AA. Towards better modeling of drugloading in solid lipid nanoparticles: molecular dynamics, docking experiments and gaussian processes machine learning. Eur J Pharm Biopharm 2016;108:262–8.
- Xia Q, Wang H. Preparation and characterization of coenzyme Q10-loaded nanostructured lipid carries as delivery systems for cosmetic component. NSTI-Nanotech 2010;3:498-501.
- 12. Patrick G. Organic chemistry. 2nd ed. Vol. 53. London and New York: Bios Scientific Publishers; 2005.
- Sopyan I, Fudholi A, Muchtaridi M, Sari IP. Co-crystallization: a tool to enhance solubility and dissolution rate of simvastatin. J Young Pharm 2017;9:183–6.
- 14. Sinko PJ. editor. Martin's physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences: 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2011.
- 15. Zulfakar MH, Chan LM, Rehman K, Wai LK, Heard CM. Coenzyme Q10-loaded fish oil-based bigel system: probing the delivery across porcine skin and possible interaction with fish oil fatty acids. AAPS PharmSciTech 2018;19:1116–23.
- Tzachev CT, Svilenov HL. Lipid nanoparticles at the current stage and prospects-a review article. Int J Pharm Sci Rev Res 2013;18:103–15.
- 17. Shah R, Eldridge D, Palombo E, Harding I. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J Phys Sci 2014;25:59–75.
- Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MHA, Silva AM, et al. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Delivery 2012. DOI:10.1155/2012/750891.

- Akbari J, Saeedi M, Morteza Semnani K, Rostamkalaei SS, Asadi M, Asare Addo K, et al. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B 2016;145:626–33.
- 20. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, *et al.* Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018;10:1–17.
- 21. Pornputtapitak W, Pantakitcharoenkul J, Panpakdee R, Teeranachaideekul V, Sinchaipanid N. Development of γ-oryzanol rich extract from leum pua glutinous rice bran loaded NLCs for topical delivery. J Oleo Sci 2018;67:125–33.
- 22. Fernandes AV, Pydi CR, Verma R, Jose J, Kumar L. Design, preparation and *in vitro* characterizations of fluconazole loaded NLCs. Brazilian J Pharm Sci 2020;56:1–14.
- 23. Mahajan A, Kaur S. Design, formulation, and characterization of stearic acid-based solid lipid nanoparticles of candesartan cilexetil to augment its oral bioavailability. Asian J Pharm Clin Res 2018:11:344–50.
- Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characterization of stearic acid NLCs by solvent diffusion method in an aqueous system. Colloids Surf B 2005;45:167–73.
- Abdelmonem R, El Nabarawi MA, Attia AM, Teaimaa M. Ocular delivery of natamycin solid lipid nanoparticle loaded


- mucoadhesive gel: formulation, characterization and *in vivo* study. Int J Appl Pharm 2020;12:173–80.
- Keivani Nahr F, Ghanbarzadeh B, Samadi Kafil H, Hamishehkar H, Hoseini M. The colloidal and release properties of cardamom oil encapsulated NLC. J Dispers Sci Technol 2019;1–9. https://doi.org/10.1080/01932691.2019.1658597
- Chauhan I, Mohd Y, Madhu V, SinghPratap A. NLCs: a groundbreaking approach for transdermal drug delivery. J Cardiovasc Thorac Res 2015;7:113–7.
- Chen PC, Huang JW, Pang J. An investigation of optimum NLCsunscreen formulation using taguchi analysis. J Nanomater 2013:7–12. https://doi.org/10.1155/2013/463732
- Siafaka P, Okur ME, Ayla S, Er S, Caglar ES, Okur NU. Design and characterization of nanocarriers loaded with levofloxacin for enhanced antimicrobial activity; physicochemical properties, *in* vitro release and oral acute toxicity. Brazilian J Pharm Sci 2019:55:1–13.
- Remya PN, Damodharan N. Formulation, development, and characterisation of nimodipine loaded solid lipid nanoparticles. Int J Appl Pharm 2020;12:265–71.
- 31. Korting MSHC. The pH of the skin surface and its impact on the barrier function. Ski Pharmacol Physiol 2006;19:296–302.
- 32. Geetha P, Sivaram AJ, Jayakumar R, Gopi Mohan C. Integration of *in silico* modeling, prediction \(\text{MG} \) Gand experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr Polym 2016;142:240–9.



International Journal of Vacilied Pharmaceutics

International Journal of Applied Pharmaceutics 8

Metrics based on Scopus® data as of April 2021

S sri laksemi 5 months ago

Dear Schimago, Is International Journal of Applied Pharmaceutics still in schimago journal rank? usually there is homepage of the journal in the site of the journal in Schimago, but why there is no

SCImago Team

SCImago Team

homepage or how to publish in this journal site in schimago?

Melanie Ortiz 5 months ago

Thank you for contacting us.

We inform you that all the information referring to the website of this Journal is not available in our website (you'll see "Information not localized") due to the fact that we could not verify that information with absolute reliability.

Best Regards,

SCImago TEAM

Dear Sir/Madam,

Thank you for contacting us.

We inform you that all the information referring to the website of this Journal is not available in our website (you'll see "Information not localized") due to the fact that we could not verify that information with absolute reliability.

Best Regards,

SCImago TEAM

Burhanuddin D Pasiga 10 months ago

How much APC ?

reply

Melanie Ortiz 9 months ago

Dear Burhanuddin,

thank you for contacting us.

Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage or contact the journal's editorial staff, so they could inform you more deeply. Best Regards, SCImago Team

Faridah 1 year ago

I would like to ask. Whether this journal accepts computational chemistry research and how much it costs for publication in this journal.

Thank you

Faridah

Melanie Ortiz 1 year ago

Dear Faridah. thank you for contacting us.

Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage or contact the journal's editorial staff, so they could inform you more deeply. Best Regards, SCImago Team

Julaeha Julaeha 2 years ago

Is this predatory journal? Or every journals in scimagojr database are guaranteed none predatory ioumal

reply

Melanie Ortiz 2 years ago

SCImago Team

SCImago Team

Dear Julaeha, SJR is a portal with scientometric indicators of journals indexed in Scopus. All the data have been provided By Scopus /Elsevier and SCImago doesn't have the authority over this data. For more information about predatory journals you can check the link below

https://beallslist.weebly.com/.

Best regards, SCImago Team

reply

Biswaranjan Paital 3 years ago

Hello there,

Is there any correlation exist between Scimago journal value with that of SCI impact factor provided by Claryvate Analytics.

Best Dr. Paital

reply

Elena Corera 3 years ago

SCImago Team

Dear Biswaranjan, Ttey are two indicators that are calculated differently and with different databases and number of different indexed journals. There is a bibliography on the degree of correlation, which is high, but taking into account the three existing differences. Best Regards,

SCImago Team

D Dr. Amer taqa 3 years ago

Dear sir

Greeting

Have a nice day. Did your journal indexed in Scopus database and if it publish in medical field. Waiting for your reply.

Best regards

reply

Elena Corera 3 years ago

SCImago Team

Dear Dr Amer, all the journals included in the SJR are indexed in Scopus. Elsevier / Scopus is our data provider. We suggest you look at the journal report to see which thematic fields are indexed. Best Regards, SCImago Team

Leave a comment

Name

Email

(will not be published)

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

Developed by: Powered by:

SCImago

SCOPUS

Follow us on @ScimagoJR

Scimago Lab, Copyright 2007-2020. Data Source: Scopus®

EST MODUS IN REBUS

5 of 5 10/13/2021, 11:23 AM

0.656

(i)

View all documents >

CiteScore

Source details

International Journal of Applied Pharmaceutics	CiteScore 2020 1.3	(i)
Scopus coverage years: from 2011 to Present	1.5	
Publisher: International Journal of Applied Pharmaceutics		
ISSN: 0975-7058	SJR 2020	(i)
Subject area: (Pharmacology, Toxicology and Pharmaceutics: Pharmacology, Toxicology and Pharmaceutics (miscellaneous)	0.238	
Source type: Journal		
	SNIP 2020	\circ

Set document alert

■ Save to source list

Scopus content coverage

i Improved CiteScore methodology

CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more >

CiteScore rank & trend

CiteScoreTracker 2021 ①

 $1.4 = \frac{1,635 \text{ Citations to date}}{1,194 \text{ Documents to date}}$ Last updated on 05 October, 2021 • Updated monthly

CiteScore rank 2020 ①

Category	Rank	Percentile
Pharmacology, Toxicology and Pharmaceutics	#10/25	62nd
Pharmacology, Toxicology and Pharmaceutics (miscellaneous)		

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site &

About Scopus

What is Scopus Content coverage Scopus blog Scopus API Privacy matters

Language

日本語に切り替える 切換到简体中文 切換到繁體中文 Русский язык

Customer Service

Help Contact us

ELSEVIER

Terms and conditions > Privacy policy >

Copyright © Elsevier B.V ¬. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

Editorial Board

Editor-in-Chief

Dr. Gaurav Kant Saraogi

School of Pharmacy and Technology Management, NMIMS University, Shirpur Campus, Maharashtra, India Email: editor@ijaponline.org, gauravsaraogi13@gmail.com

Associate Editors

Dr. Genta Ida

Department of Drug Sciences, University of Pavia, Italy

Email:ida.genta@unipv.it

Assistant Editors

Dr. Awesh Kumar Yadav

Department of Pharmaceutics, Bhagyodaya Tirth Pharmacy College, Sagar, MP, India

Email: aweshyadav@gmail.com

Dr. Arvind Gulbake

Research & Development, Centre for Interdisciplinary Research, D. Y. Patil University, Kolhapur, Maharashtra, India

Email: arvind.gulbake@gmail.com

Editorial Members

Dr. Kailash C. Petkar

Scientist 'C', Government of India, DSIR, Min. of Science and Technology, New Delhi, India

Dr. Tarang Nema

Waters Pacific Pte Ltd, Singapore

Dr. Carlotta Marianecci

Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Universita di Roma, Rome, Italy

Dr. Manoj Nahar

Sun Pharmaceutical Industries Limited, Vadodara, Gujarat, India

Dr. Tarek Abdelnapy Ahmed

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, KAU, Jeddah, KSA

Dr. Elizabeth Igne Ferreira

Faculty of Pharmaceutical Sciences, University of Sao Paulo, Brazil

Dr. Surya Prakasarao Kowasu

Western University of Health Sciences, Pomona, California, USA

Dr. N. Kanagathara

Saveetha School of Engineering, Saveetha University, Chennai, India

Dr. Mohammed Elmowafy Gomaa Aburaia

Department of Pharmaceutics, College of Pharmacy, Jouf University, Saudi Arabia

Dr. Tarek Abdelnapy Ahmed

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, KAU, Jeddah, KSA

Dr. Elizabeth Igne Ferreira

Faculty of Pharmaceutical Sciences, University of Sao Paulo, Brazil

Dr. Surya Prakasarao Kowasu

Western University of Health Sciences, Pomona, California, USA

Dr. N. Kanagathara

Saveetha School of Engineering, Saveetha University, Chennai, India

Dr. Mohammed Elmowafy Gomaa Aburaia

Department of Pharmaceutics, College of Pharmacy, Jouf University, Saudi Arabia

Dr. Liang Chen

Wenzhou Medical University, Wenzhou, P. R. China

Dr. Franca Castiglione

Department "G. Natta", Politecnico di Milano, Italy

Dr. Iman Emam Omar Gomaa

Faculty of Pharmacy, University for Modern Sciences and Arts (MSA)" Cairo - Egypt

Dr. Basant Amarji

UIPS, Punjab University, Chandigarh, Punjab, India

Dr. Rabab Kamel

Pharmaceutical Technology Department, National Research Centre, Egypt

Dr. Satish Shilpi

Ravishankar College of Pharmacy, Bhopal, MP, India

Dr. Umeyor Chukwuebuka Emmanuel

Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Dr. Yosra S.R. Elnaggar,

Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt

Dr. Sumeet Kapoor

IIT New Delhi, India

Mr. Khent Alcantara

Chulalongkorn Univeristy, Bangkok, Thailand

Vol 13, Issue 1 (Jan-Feb), 2021

PUBLISHED: 07-01-2021

REVIEW ARTICLE(S)

AN UPDATED REVIEW ON THE APPLICATION OF DENDRIMERS AS SUCCESSFUL NANOCARRIERS FOR BRAIN DELIVERY OF THERAPEUTIC MOIETIES

SARANYA SASI, SHARON KUNNATH JOSEPH, ARYA MANGALATH ARIAN, SACHIN THOMAS, AMRUTHA V. U., ARYA G. K., SREEJA C. NAIR

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

THE COSMETIC EFFECTS OF VARIOUS NATURAL BIOFUNCTIONAL INGREDIENTS AGAINST SKIN AGING: A REVIEW

WISAM NASER 10-18

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

DETAILED VIEW ON REPURPOSED DRUGS, TRACKING OF VACCINES, AND BRIEF VIEW ON PROPHYLACTIC NANOMEDICINES AS AN ALTERNATIVE APPROACH AND PATIENT CARE FOR COVID-19

KRISHNANJANA S. NAIR, SHIVALI KAMATH, ARYA RAJAN, SACHIN THOMAS, ASWIN D., SUBIN MARY
ZACHARIAH

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

A REVIEW ON POLOXAMER AND HYDROXY PROPYL METHYL CELLULOSE COMBINATION AS THERMORESPONSIVE POLYMERS IN NOVEL OPHTHALMIC IN SITU GEL FORMULATION AND THEIR CHARACTERIZATION

INSAN SUNAN KURNIAWANSYAH, TAOFIK RUSDIANA, IYAN SOPYAN, ANAS SUBARNAS 27-31

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

PHARMACY PROFESSIONS IN INDIADURING COVID-19 PANDEMIC: PRESENT STATUS, FUTURE CHALLENGES AND A WAY FORWARD

VIGNESH M., GANESH G. N. K. 32-35

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

NOVEL DELIVERY APPROACHES OF CO-TRIMOXAZOLE FOR RECREATING ITS POTENTIAL USE-A REVIEW

ROHITAS DESHMUKH, RANJIT K. HARWANSH, MAYUR SHARMA, SWARNALI DAS PAUL

LE VIEW ABSTRACT

Description D

SYSTEMATIC REVIEW: COCRYSTAL AS EFFORTS TO IMPROVE PHYSICOCHEMICAL AND BIOAVAILABILITY

IYAN SOPYAN, ALVIN B., INSAN SUNAN K. S., CIKRA IKHDA N. H. S., SANDRA MEGANTARA 43-52

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

CORRELATION OF GENETIC POLYMORPHISM IN UGTIAI, SLCOIBI, NAT2, AND CYP2EI WITH HEPATOTOXICITY

GITA WIDI SETYOWATI, NURUL ANNISA, MELISA I. BARLIANA

PROPERTIES OF ORAL SOLID DOSAGE FORM

53-58

36-42

② VIEW ABSTRACT ② PDF ③ DOWNLOAD PDF ③ HTML

NOVASOME: A PIONEERING ADVANCEMENTIN VESICULAR DRUG DELIVERY ASLAM ABDUL RAHIMAN C.A., KARTHIK KRISHNAN, SREELEKSHMI A.S., ARJUN K.K., SREEJA C. NAIR 59-64 VIEW ABSTRACT □ PDF □ DOWNLOAD PDF **HYDROGEL: RESPONSIVE STRUCTURES FOR DRUG DELIVERY** MALLIKARJUN P. N., ANUSHA S., SAI NANDINI V., RAMA RAO B., KAMALA KUMARI P. V., SRINIVASA RAO Y. 65-76 ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF HTML IMPORTANCE OF NANOCARRIERS AND PROBIOTICS IN THE TREATMENT OF ULCERATIVE COLITIS VANDANA THAKUR, BHUPENDRA SINGH, ANKITA SHARMA, NISHA KUMARI, INDER KUMAR, KRITIKA VERMA, 77-85 ARVIND KUMAR, SUSHMITA RANA ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF IN SITU GEL POLYMERS: A REVIEW MOUNIKA KONATHAM, MOUNIKA TEJASWI GORLE, NAVEEN PATHAKALA, VASUDHA BAKSHI, YASO DEEPIKA 86-90 MAMIDISETTI, PRIYANKA CHINTHAKINDI, RAJENDRA KUMAR JADI ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF HTML REVIEW ON EVALUATING THE ROLE OF NSAIDS FOR THE TREATMENT OF ALZHEIMER'S DISEASE. KRISHNENDU P. R., ARJUN B., VIBINA K., NIVEA CLEO T. S., DRISYA N. K., RADHIKA MOHANDAS, SUBIN 91-94 MARY ZACHARIAH, SUBIN MARY ZACHARIAH ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF HTML MICROFLUIDIC DEVICES AS A TOOL FOR DRUG DELIVERY AND DIAGNOSIS: A REVIEW ISHA SHARMA, MONIKA THAKUR, SHAVETA SINGH, ASTHA TRIPATHI 95-102 ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF HTML ORIGINAL ARTICLE(S) STUDY OF ISOTONICITY AND OCULAR IRRITATION OF CHLORAMPHENICOL IN SITU GEL INSAN SUNAN KURNIAWANSYAH, TAOFIK RUSDIANA, ZAHRA DZAKIRAH ABNAZ, IYAN SOPYAN, ANAS 103-107 SUBARNAS ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF EXPERIMENTAL DEVELOPMENT AND MOLECULAR DOCKING: NANOSTRUCTURED LIPID CARRIERS (NLCs) OF COENZYME Q10 USING STEARIC ACID AND DIFFERENT LIQUID LIPIDS AS LIPID MATRIX NI LUH DEWI ARYANI, SISWANDONO, WIDJI SOERATRI, FANNY PUTRI RAHMASARI, DIAN RIZKI KARTIKA) SARI ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF COMPARATIVE DISSOLUTION STUDIES OF WARFARIN SODIUM TABLETS: INFLUENCE OF AGITATION RATE. DISSOLUTION MEDIUM, AND USP APPARATUS JOSE RAUL MEDINA LOPEZ. LUIS DANIEL MAZON ROMAN. JUAN MANUEL CONTRERAS JIMENEZ. JUAN 117-123 CARLOS RUIZ-SEGURA VIEW ABSTRACT A PDF DOWNLOAD PDF HTML

LILIIA BUDNIAK, LIUDMYLA SLOBODIANIUK, SVITLANA MARCHYSHYN, PAVLINA KLEPACH, YANA 124-128 HONCHARUK ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML CHITOSAN NANOPARTICLES MEDIATED DELIVERY OF MIR-106B-5P TO BREAST CANCER CELL LINES MCF-7 AND T47D LEONNY DWI RIZKITA, YSRAFIL, RONNY MARTIEN, INDWIANI ASTUTI 129-134 ☑ VIEW ABSTRACT ☐ PDF ☐ DOWNLOAD PDF ☐ HTML MUCOADHESIVE POLYMERIC FILMS OF ACYCLOVIR PRONIOSOMES FOR BUCCAL ADMINISTRATION DEEKSHA U. SUVARNA, MARINA KOLAND, ANANTH PRABHU, SINDHOOR S. M. 135-143 ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☐ HTML TOPICAL DRUG DELIVERY OF GOSSYPIN FROM PRONIOSOMAL GEL FORMULATIONS: IN VITRO EFFICACY AGAINST HUMAN MELANOMA CELLS JAMPALA RAJKUMAR, G.V. RADHA, S. GANAPATY 144-152 □ PDF □ DOWNLOAD PDF □ HTML RP-HPLC (STABILITY-INDICATING) BASED ASSAY METHOD FOR THE SIMULTANEOUS ESTIMATION OF DORAVIRINE, TENOFOVIR DISOPROXIL FUMARATE AND LAMIVUDINE V. L. N. BALAJI GUPTA TIRUVEEDHI, VENKATESWARA RAO BATTULA, KISHORE BABU BONIGE 153-159 ☑ VIEW ABSTRACT ☐ PDF ☐ DOWNLOAD PDF ☐ HTML A VALIDATED RP-HPLC METHOD FOR IMPURITY PROFILING OF SODIUM NITROPRUSSIDE IN INJECTION DOSAGE FORM MURALI KRISHNAM RAJU P., VENKATA NARAYANA B., SHYAMALA P., SRINIVASU KONDRA, HSN RAJU 160-169 DANTULURI ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF THE DEVELOPMENT AND CHARACTERISATION OF FAST DISSOLVING FILM OF POORLY WATERSOLUBLE DRUG LURASIDONE HYDROCHLORIDE ANAGHA PRABHU, ASMITA ARONDEKAR Arondeka, PRASHANT BHIDE, SHWETA BORKAR 170-177 PDF DOWNLOAD PDF FORMULATION, OPTIMIZATIONANDEVALUATION OF SUBLINGUAL FILM OF ENALAPRILMALEATE USING 32 FULL FACTORIAL DESIGN SATYAJIT SAHOO, KIRTI MALVIYA, AMI MAKWANA, PRASANTA KUMAR MOHAPATRA, ASITRANJAN SAHU ☑ VIEW ABSTRACT 🚨 PDF 🚨 DOWNLOAD PDF BIOWAIVER STUDY OF IMMEDIATE RELEASE GLIMEPIRIDE TABLETS SIHAM ABDOUN, DALIA GABER, RAGHAD ALWAHABI, NASHWA ALQUSSIR, NEHAL ALMUTAIRI, WAAD 187-192 ALSALAMAH ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF PREPARATION AND EVALUATION OF DOLUTEGRAVIR SOLID DISPERSIONS SUNDEEP MUPPARAJU, VIDYADHARA SURYADEVARA, SANDEEP DOPPALAPUDI 193-198 ☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF

DETERMINATION OF CARBOHYDRATES CONTENT IN GENTIANA CRUCIATA L. BY GC/MS METHOD

ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF ACETYLSALICYLIC ACID VIA CO-CRYSTALLIZATION TECHNIQUE: A NOVEL ASA-VALINE COCRYSTAL

SHANTHALA H. K., JAYAPRAKASH H. V., MUNIGANTI RADHAKRISHNA, JASWANTH GOWDA B. H., KARTHIKA 199-205 PAUL, S. J. SHANKAR, MOHAMMED GULZAR AHMED, SANJANA A.

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

FABRICATION OF NANO CLAY INTERCALATED POLYMERIC MICROBEADS FOR CONTROLLED RELEASE OF CURCUMIN

DHARMENDER PALLERLA, SUMAN BANOTH, SUNKARI JYOTHI 206-215

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

FORMULATION, OPTIMIZATION AND IN VITRO EVALUATION OF 5-FLUOROURACIL LOADED LIQUORICE CRUDE PROTEIN NANOPARTICLES FOR SUSTAINED DRUG DELIVERY USING BOX-BEHNKEN DESIGN

GEETHA V. S., MALARKODI VELRAJ 216-226

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

SLOW QUASIKINETIC CHANGES IN WATER-LACTOSE COMPLEXES DURING STORAGE

M. A. MOROZOVA, A. M. KOLDINA, T. V. MAKSIMOVA, A. V. MARUKHLENKO, I. A. ZLATSKY, A. V. SYROESHKIN 227-232

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

FABRICATION OF SODIUM ALGINATE/GUM GHATTI IPN MICROBEADS INTERCALATED WITH KAOLIN NANO CLAY FOR CONTROLLED RELEASE OF CURCUMIN

D. GANESH, P. SURESH, G. SRINIVAS RAO 233-241

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

PRONIOSOMAL GEL MEDIATED TRANSDERMAL DELIVERY OF GLIBENCLAMIDE AND ATENOLOL COMBINATION: EXVIVO AND PHARMACODYNAMIC STUDIES

P. ANITHA, S. V. SATYANARAYANA 242-248

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML

DRUG RELEASE CONTROL AND ENHANCEMENT USING CARRIERS WITH DIFFERENT CONCENTRATIONS OF CAPMUL® MCM C8

MOHAMMAD F. BAYAN 249-252

☑ VIEW ABSTRACT
☑ PDF
☑ DOWNLOAD PDF
☑ HTML

SHORT COMMUNICATION(S)

HPLC DETERMINATION OF SILDENAFIL IN TABLETS

MIGLENA SMERIKAROVA, STANISLAV BOZHANOV, VANIA MASLARSKA 253-256

☑ VIEW ABSTRACT ☑ PDF ☑ DOWNLOAD PDF ☑ HTML