Development, characterization, molecular docking, and in vivo skin penetration of coenzyme Q10 nanostructured lipid carriers using tristearin and stearyl alcohol for dermal delivery

Ni Luh Dewi Aryani, Siswandono Siswodihardjo, Widji Soeratri* and Nadia Fitria Indah Sari

Objectives: This study aims to develop coenzyme Q10 nanostructured lipid carriers (NLCs) using tristearin and stearyl alcohol as well as isopropyl palmitate (IPP) as solid and liquid lipid respectively for the dermal delivery system.

Methods: The coenzyme Q10 NLCs were optimized using tristearin, and stearyl alcohol in different concentrations and further characterized by dynamic light scattering (DLS) for particle size, polydispersity index (PDI), zeta potential, differential scanning calorimetry (DSC) and X-ray diffraction for crystallinity behavior, Fourier transform infrared spectroscopy (FT-IR) for drug-lipid interaction, scanning electron microscopy (SEM) for particle shape, viscometer for viscosity, and pH meter for pH value. Furthermore, entrapment efficiency (EE), drug loading (DL), and skin penetration in vivo were also evaluated while molecular docking was conducted to examine the interaction between coenzyme Q10 and the lipids.

Results: The coenzyme Q10 NLCs with tristearin-IPP and stearyl alcohol-IPP as lipid matrix had <1,000 nm particle size, <0.3 PDI, less negative than −30 mV zeta potential, about 41% crystallinity index, and about six as the pH value. Moreover, the EE, DL, viscosity, and in vivo skin penetration of the NLCs using tristearin were higher compared to stearyl alcohol, however, the skin penetration depths for both NLCs were not significantly different. Furthermore, the in silico binding energy of coenzyme Q10-tristearin was lower compared to coenzyme Q10-stearyl alcohol. Both of them showed hydrophobic and van der Waals interaction.

Conclusions: The NLCs of coenzyme Q10 were formulated successfully using tristearin-IPP and stearyl alcohol-IPP for dermal delivery.

Keywords: coenzyme Q10; dermal delivery; molecular docking; NLC; skin penetration.

Introduction

Coenzyme Q10 is a lipid-soluble antioxidant due to the 10 isoprenoid side-chains. Chemically, it is known as 2,3-dimethoxy-5-methyl-6-decaprenyl-1,4-benzoquinone [1]. Furthermore, coenzyme Q10 is used for skin anti-aging in cosmetic products. However, the skin penetration is poor due to its lipophilic property and large molecular weight (863.36 g/mol) [2–5]. The nanodelivery system is potentially used to overcome this problem since it enhances dermal penetration due to its active ingredients, lipid nanoparticles constitute part of this system [6, 7].

The two main classes of lipid-based nanoparticles are solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), the difference between both categories depends on the lipid matrix. For SLNs, only solid lipids are used whereas the lipids matrix for NLCs consisted of solid and liquid lipids. Due to the incorporation of liquid lipids in NLC, the crystal structure arrangement of the solid lipid become disordered hence, the entrapment efficiency (EE), drug loading (DL), and stability of NLC increases [6, 8].

In this study, coenzyme Q10 NLCs were developed using tristearin and stearyl alcohol as solid lipids and isopropyl myristate (IPM) or isopropyl palmitate (IPP) as liquid lipids. Meanwhile, tristearin and stearyl alcohol have different lipophilicity with the former being more lipophilic than the latter [9]. IPM or IPP is considered as a skin penetration enhancer [10].
Therefore, this study aims to develop the coenzyme Q10 NLCs for dermal delivery using tristearin and stearyl alcohol as solid lipids and IPM or IPP as liquid lipids. The NLC formulas were optimized to obtain optimal coenzyme Q10 NLCs for dermal delivery. The coenzyme Q10 NLCs were evaluated in physicochemical characteristics and in vivo skin penetration through rats’ skin. Moreover, in silico studies via molecular docking were also conducted to elucidate the interactions between coenzyme Q10 and solid lipid.

Materials and methods

Materials

The coenzyme Q10 was purchased from Kangcare Bioindustry Co., Ltd, Nanjing, China while Tristearin analytical grade was purchased from Sigma Aldrich (St. Louis, MO, USA). Also, Stearyl alcohol, Span 80, phenoxyethanol were purchased from Universal Pharma Chemical (Surabaya, Indonesia) while IPM, IPP, propylene glycol, and Tween 80 were purchased from Bratachem (Surabaya, Indonesia). Furthermore, Ethanol 96%, NaH2PO4, and Na2HPO4 (analytical grade) were purchased from E.Merck (Darmstadt, Germany). All materials used in the study fulfilled pharmaceutical-grade unless otherwise stated.

Preparation of optimized coenzyme Q10 NLCs formulas

Using the high shear homogenization method, the lipids were melted at 80 °C and stirred at 3,400 rpm with ultra turrax for 1 min until a homogeneous mixture was obtained. The 1% Coenzyme Q10 was placed into the mixture and agitated for about 2 min until dissolved. Furthermore, the 2% Span 80 and 18% Tween 80 were heated to 80 °C separately and poured gradually while the 10% propylene glycol and 69% phosphate buffer were also heated to 80 °C and then poured into the lipid phase and stirred until homogeneous for about 1 min. Thereafter, the stirring speed was increased to 24,000 rpm for 3 min, at 3,400 rpm, 0.6% phenoxyethanol was added at 40 °C and stirred continuously until room temperature. The coenzyme Q10 NLCs formulations for optimization are shown in Table 1

<table>
<thead>
<tr>
<th>Materials</th>
<th>Lipid 8%</th>
<th>Lipid 10%</th>
<th>Lipid 15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coenzyme Q10</td>
<td>F1 1 1 1 1 1 1</td>
<td>F4 2 3 3 3 3</td>
<td>F7 4 5 5 5 5</td>
</tr>
<tr>
<td>Tristearin</td>
<td>5.6</td>
<td>7</td>
<td>10.5</td>
</tr>
<tr>
<td>Stearyl alcohol</td>
<td>5.6</td>
<td>7</td>
<td>4.5</td>
</tr>
<tr>
<td>IPM</td>
<td>2.4</td>
<td>3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

NLC, nanostructured lipid carriers; IPP, isopropyl palmitate; IPM, isopropyl myristate.

Table 1: The coenzyme Q10 NLCs formulas for optimization (concentration materials in %).

Particle size, polydispersity index (PDI), and zeta potential

The nanoparticle analyzer (Nanotrac Wave, Microtrac W3717) was used to measure particle size, PDI, and zeta potential of the coenzyme Q10 NLCs. Meanwhile, before the test, the samples were diluted with appropriate aqua dem.

Thermal behaviors

Thermal behaviors for coenzyme Q10, the solid lipids, and coenzyme Q10 NLCs were analyzed using differential scanning calorimetry (DSC). Approximately, 4 mg of the samples were heated from 30 to 100 °C in a calorimeter (DSC model 1/500, Mettler Toledo) with a heating rate of 10 °C/min. The percentage of crystallinity index (%CI) was measured using the following equation:

\[\%CI = \frac{\text{enthalpy (AH) coenzyme Q10 NLC}}{\Delta H \text{ lipid matrix} \times \text{concentration lipid phase}} \times 100 \]

The X-ray diffraction

Crystallinity behaviors and X-ray diffractions were evaluated using an X-ray diffractometer (Phillip X’pert). The samples were analyzed in 2θ range of 4–40° at 40 kV, 30 mA.

Fourier transform infrared

Drug-lipid interaction was determined using Fourier transform infrared (FT-IR) spectra. The samples in a KBr were prepared to form a pellet and then scanned at wavelengths of 400–4,000 cm⁻¹ using FT-IR Spectrophotometer (Jasco FT-IR 5300).

Morphology

The coenzyme Q10 NLCs morphology was evaluated using scanning electron microscopy (SEM, ZEISS) with 25,000× magnification.

Rheology and viscosity

The Cone and Plate viscosimeter (Brookfield AT 17362, spindle CPE-41) were used to determine the rheology and viscosity of the coenzyme NLCs.

The pH value

The calibrated pH meter (SI analytic LAB 850) was utilized for evaluating the pH value of NLCs.

The entrapment efficiency (EE) and drug loading (DL)

The indirect method was used to assign the EE and the DL of coenzyme Q10 NLCs. The free coenzyme Q10 was obtained through centrifugation of coenzyme Q10 NLC at 10,000 rpm for 30 min. Prior to this, the
former was diluted with a known amount of aqua dem. The filtrate absorbance was measured using a spectrophotometer UV1800 (Shimadzu) at a wavelength of 275 nm.

In silico studies by molecular docking

The two and three-dimensional (2D and 3D) chemical structures of coenzyme Q10, tristearin, and stearyl alcohol were generated using ChemDraw® Pro 2016 (Cambridgesoft), as well as the energy minimization process using the same program. Also, molecular docking of coenzyme Q10 and solid lipids were performed by Autodock Tools (ADT)1.5.6, and AutoDock Vina (The Scripps research group) while the docking results were visualized with Discovery Studio Visualizer (DSV) (Biovia) and ADT.

Skin penetration in vivo

Skin penetration in vivo was performed using male Wistar rats weighing 200–300 g, aged 6–8 weeks without defects nor skin disease, also, there were no wounds after cleaning the rat’s hair. Thereafter, the coenzyme Q10 NLC with Nile red as a fluorescent label was spread on the skin of the hairless rats which were split into three groups. The first, second, and third groups were sacrificed via cervical dislocation at 2, 4, 6 h respectively after Q10 NLC application. Furthermore, the rats’ skin was made into histological preparations using a frozen cryotome while the depth of penetration was measured using fluorescence microscopy (Olympus FX-1000). The experimental animals were used with permission from the Animal Care and Use Committee (ACUC), Airlangga University (ethical clearance No. 2.KE.174.09.2019).

Statistical analysis

The Student’s t-test was used for evaluating the differences in mean values (n=3) of the physicochemical characteristics with p<0.05, whereas in the in vivo studies of rats skin penetration, the two-way ANOVA method with p<0.05 was used to determine the differences in mean values (n=3) among the formulation groups.

Results

Particle size, polydispersity index (PDI), and zeta potential

The Coenzyme Q10 NLCs formulas with different lipid matrix concentrations were evaluated to obtain optimal NLCs. The coenzyme Q10 NLCs had particle size 472–1,063 nm, PDI 0.297–0.293, and zeta potential −11.5 to −20.3 mV. The particle size of (F1) and (F3) were 472.0 ± 47.1 and 684.3 ± 8.0, respectively, hence, the particle size for (F1) was smaller than (F3) whereas, (F2), (F4), (F5), (F6), and (F7) were >600 nm.

Thermal behaviors

The melting point and enthalpy of coenzyme Q10, tristearin, stearyl alcohol, coenzyme Q10 NLC (F1), and (F3) showed endothermic peaks as presented in Figure 1 and Table 2. The %CI of solid lipids, coenzyme Q10 NLC (F1), and (F3) were 100, 41.47, and 41.44%, respectively.

The X-ray diffraction

The X-ray diffraction patterns for tristearin had several sharp peaks at 2θ values of 6.113, 21.117, and 23.293°, stearyl alcohol at 2θ values of 20.964 and 24.139° whereas,

![Figure 1](image-url)
Figure 1: (A) DSC thermogram and (B) X-ray diffraction of coenzyme Q10, tristearin, stearyl alcohol, and coenzyme Q10.
Coenzyme Q10 had sharp peaks at 2θ values of 18.544 and 22.746° as presented in Figure 1.

Fourier transform infrared

FT-IR spectra of coenzyme Q10 compared to coenzyme Q10 NLCs, and the lipids at 4,000–400 m−1 are shown in Figure 2. The FT-IR spectra of coenzyme Q10 indicated peaks at 2,962.13, 1,732.73, 1,645.95, and 1,200.47 cm−1 for C–H, C=O, C=C, and C–O stretching respectively.

Morphology

Morphologically, the coenzyme Q10 NLC (F1), and (F3) showed spherical particles as presented in Figure 3.

Table 2: Melting point, enthalpy (ΔH), crystallinity index (CI) of coenzyme Q10, tristearin, stearyl alcohol, and coenzyme Q10 NLCs.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Melting point, °C</th>
<th>Enthalpy, J/g</th>
<th>CI, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak 1</td>
<td>Peak 2</td>
<td>Peak 1</td>
</tr>
<tr>
<td>Coenzyme Q10</td>
<td>51.63</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tristearin</td>
<td>48.24</td>
<td>56.77</td>
<td>–125.51</td>
</tr>
<tr>
<td>Coenzyme Q10 NLC (F1)</td>
<td>55.49</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Stearyl alcohol</td>
<td>41.17</td>
<td>55.58</td>
<td>30.57</td>
</tr>
<tr>
<td>Coenzyme Q10 NLC (F3)</td>
<td>44.31</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

NLC, nanostructured lipid carriers; CI, crystallinity index.

Rheology and viscosity

The rheology was determined by examining the viscosity of coenzyme Q10 NLC (F1), and (F3) at various shear rates. The coenzyme Q10 NLCs viscosity decreased by increasing the rate of shear, as shown in Figure 4. In addition, the viscosity of the NLC Coenzyme Q10 (F1), and (F3) were 23,582 ± 1,922 and 17,739 ± 1,126 Cps at 0.5 rpm indicating that (F1) was higher than (F3) (p<0.05).

The pH value

The pH value of coenzyme Q10 (F1), and (F3) NLC were 5.88 ± 0.03 and 5.75 ± 0.10, respectively meanwhile, the pH values of the coenzyme Q10 NLC (F1) and (F3) were not significantly different (p>0.05).
The entrapment efficiency (EE) and drug loading (DL)

The EE of coenzyme Q10 NLC (F1) and (F3) were 90.612 ± 0.908 and 86.138 ± 1.786%, respectively whereas, the DL for both NLCs were 11.327 ± 0.113 and 10.767 ± 0.223%, respectively, indicating higher % EE and % DL values for (F1) compared to (F3) (p<0.05).

In silico studies by molecular docking

The binding energy (ΔG) in silico of coenzyme Q10-tristearin and coenzyme Q10-stearyl alcohol were −9.2 and −6.6 kcal/mol, respectively. Both of them showed hydrophobic and van der Waals interaction in the 3D visualization using DSV and ADT respectively as shown in Figure 5. Furthermore, this hydrophobic bond was at C18 atoms of tristearin and C48 atoms of coenzyme Q10 with a distance of 4.31 Å. A similar bond was found between coenzyme Q10 and stearyl alcohol at C18 atom of tristearin and C53 atom of coenzyme Q10 with a distance of 4.48 Å.

In vivo skin penetration

The skin penetration depth of coenzyme Q10 NLC (F1) at 2, 4, and 6 h after applications were 298.45 ± 8.70, 332.94 ± 36.27, and 358.34 ± 15.86 μm, respectively whereas, for (F3) with similar intervals, the obtained values were 294.64 ± 38.21, 340.73 ± 10.13, and 349.62 ± 6.59 μm. Hence, the depth of skin penetration for both (F1) and (F3) increased with increasing time (p<0.05) and showed no significant difference after 6 h (p>0.05). The fluorescence intensity of (F1) was higher compared to (F3), and however, both NLCs could across the stratum corneum and penetrated the skin, as shown in Figure 6.

Discussion

The Coenzyme Q10 NLC was designed to overcome coenzyme Q10 difficulties in penetrating the skin. Foremost, the coenzyme Q10 NLC formulas were optimized and then prepared using the high shear homogenization method with different concentrations and types of lipid matrix as shown in Table 1. Meanwhile, 1% Coenzyme Q10 in NLC was used due to its ability to induce the fibroblast cells in the mice model [11].

The lipid matrix concentrations include 8, 10, and 15%, while the ratio of solid to liquid lipid was 70:30. Hence, the results showed that the lower the matrix concentration, the smaller the particle size. This is because, lower lipid matrix concentration requires less energy to reduce the particle size compared to higher lipid concentrations which increase the viscosity of the system but decrease the shearing capacity of the stirrer, hence, particle size reduction becomes difficult. Moreover, the surfactant concentration was not adequate to match the increasing lipid matrix concentration to cover the particle surface therefore, the particle size increased. The result was in line with other previous studies [12, 13].

The particle sizes for coenzyme Q10 NLC (F1) and F3 were ≤600 nm, whereas, others were >600 nm. Transdermal preparations have particle sizes of about 600 nm [14]. While particle size distribution of the coenzyme Q10 NLC (F1) and (F3) were homogenously dispersed (PDI < 0.3).

The Zeta potentials for (F1) and (F3) were less negative than −30 mV. Even though the zeta potential of NLCs Q10 was less negative than −30 mV, it did not mean physically unstable. Due to the use of nonionic surfactants (Tween 80, and Span 80), these compounds provide steric stability to the system [15]. It failed to ionize into a charged group such as ionic surfactants capable of producing zeta potential due to molecular polarization and constructed electric double-layer [16–18].
Furthermore, the coenzyme Q10 NLC (F1) and (F3) were evaluated for physicochemical characteristics and in vivo percutaneous penetration through the rats’ skin.

DSC was used to determine the physical characteristics and crystal structure of coenzyme Q10, solid lipids, and coenzyme Q10 NLCs [19]. Meanwhile, the DSC thermogram of tristearin and stearyl alcohol as presented in Figure 1 showed two endothermic peaks, indicating the presence of a crystal structure in tristearin and stearyl alcohol [20, 21]. In general, triglycerides and fatty acids exhibit three different polymorphs [22–24].

The melting point and enthalpy of coenzyme Q10 NLCs were lower compared to that of coenzyme Q10 and solid lipids, as shown in Figure 1 and Table 2. This was caused by the incorporation of IPP as liquid lipid hence, the crystal order of solid lipid became less ordered or amorph state in NLCs. Therefore, coenzyme Q10 was entrapped or dissolved in the lipid matrix [25, 26]. The CI of coenzyme Q10 NLCs were determined by assuming the CIs of solid lipids were 100%, meanwhile, this value decreased compared to the solid lipid. Furthermore, the CI of coenzyme Q10 NLC (F1) and (F3) were less than 50%, as shown in Table 2 indicating that the coenzymes NLCs were in an amorphous state hence, creating enough space for the entrapment of coenzyme Q10 [25–27].

In this study, the DSC analysis was combined with the XRD. Furthermore, the X-ray diffraction pattern was employed to support the crystallinity analysis of the molecules [19]. The X-ray diffraction pattern of coenzyme Q10, tristearin, and stearyl alcohol presented sharp peaks, as shown in Figure 2 whereas, the peak intensity of the coenzyme Q10 NLCs decreased. Meanwhile, sharp peaks point to a highly crystallized particle state [28]. The decreased intensity of the coenzyme Q10 NLCs indicated

![Figure 6: In vivo skin penetration through rats skin of (A) coenzyme Q10 NLC (F1) and (B) coenzyme Q10 NLC (F3) for 2, 4, and 6 h after applying the coenzyme Q10 NLC using a fluorescence microscope with a magnification of 10×.](image-url)
that the coenzyme Q10 was entrapped or dissolved in the lipid matrix in an amorphous state [29–31].

The FT-IR spectra of coenzyme Q10 were closely in line with the previous study [32]. There was no significant shift in wavenumber and new peaks for coenzyme Q10 NLCs compared to coenzyme Q10 and lipid using the FT-IR spectra. However, there was a burned peak at 1,732.73 nm, which correlates with functional group C=O stretching in coenzyme Q10. These results indicated that coenzyme Q10 was entrapped in the lipid matrix, and the absence of chemical interaction between coenzyme Q10 and lipid matrix which capable of changing the wavenumber and creating new peaks. Similar results were presented in another study with different drugs and lipid matrix [33–36].

The coenzyme Q10 NLC (F1) had an almost spherical shape while F3 was completely spherical. Meanwhile, an aggregate of molecules appeared prior to SEM analysis with a sticky lipid matrix.

The flow behavior for coenzyme Q10 (F1), and (F3) NLC were non-Newtonian, pseudoplastic due to the decrease in viscosity with increasing shear rate [37] as presented in Figure 4. Therefore, the viscosity of coenzyme Q10 NLC (F1), and (F3) depended on the rate of shear. Both coenzyme NLCs had semisolid consistencies which were suitable for dermal application due to the ease in dispersibility on the skin.

The pH values of the coenzyme NLCs were suitable for dermal preparations as they were similar to the pH of the skin (4–6.5) [38].

The EE and DL of coenzyme Q10 NLC (F1) higher than (F3). This is because coenzyme Q10 is a lipophilic substance with log p>10 (5), therefore it was more soluble in tristearin compared to stearal alcohol. Also, the lipophilicity of tristearin, as solid lipid in coenzyme Q10 NLC (F1), was higher compared to stearal alcohol. Apart from its crystallinity behaviors, thelipophilicity of the lipid matrix also influences EE and NLC drug loading [39, 40].

In silico molecular docking between coenzyme Q10 and solid lipids showed that the binding energy (ΔG) coenzyme Q10-tristearin was lower compared to coenzyme Q10-stearal alcohol. This showed that coenzyme Q10 has a higher affinity for tristearin compared to stearal alcohol because the former is more lipophilic than the latter [9]. The negative ΔG values indicate that the interactions occur spontaneously [37, 41].

The 3D visualization of molecular docking using DSV showed a hydrophobic bond between coenzyme Q10 with the lipids as shown in Figure 5. Intermolecular interactions include ionic, ion-dipole, and dipole-dipole, hydrogen, hydrophobic, and van der Waals bonds [42]. Furthermore, the van der Waals interactions tend to occur in nonpolar molecules [37]. It is an attractive force, between uncharged molecules or atoms, closely located at a distance of ±4–6 Å. The van der Waals forces are weak interaction which occurs due to the polarity of the induced atoms. However, in large amounts, it produces significant interaction and binding energy between molecules [42]. Coenzyme Q10, tristearin, and stearal alcohol are nonpolar compounds [9]. The 3D visualization for the van der Waals interactions of coenzyme Q10-lipids was performed using ADT.

The skin penetration depth for (F1) and (F3) was not significantly different after 6 h, however, the fluorescence intensity of (F1) was higher than (F3), as shown in Figure 6. Furthermore, based on the particle size, (F1) was smaller compared to (F3). The EE and drug loading of coenzyme Q10 NLC (F1) were higher compared to (F3). Meanwhile, the skin penetration of NLC was affected by particle size and drug loading, this is supported by a previous study [43].

Conclusions

The coenzyme Q10 NLCs was developed using tristearin and stearal alcohol, as well as IPP as solid and liquid lipids respectively. It possessed suitable physicochemical characteristics for dermal delivery and successfully penetrated the skin.

Research funding: University of Surabaya, Surabaya, Indonesia.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: The authors state no conflict of interest.

Informed consent: Not applicable.

Ethical approval: The experimental animals were carried out with the permission of the Animal Care and Use Committee (ACUC), Airlangga University (ethical clearance No. 2.KE.174.09.2019).

References

Journal of Basic and Clinical Physiology and Pharmacology

ISSN: 2191–0286
Editor-in-chief: Ugo Oliviero
Managing Editor: Alberto Marra

About this journal

Objective
The Journal of Basic and Clinical Physiology and Pharmacology (JBCPP) is a peer-reviewed bi-monthly published journal in experimental medicine. JBCPP publishes novel research in the physiological and pharmacological sciences, including Emergency Medicine, Oncology, Hematology and Coagulation disorders, Vascular Medicine, Gastroenterology, Liver Disease, Neurology and Cerebrovascular Diseases, Gender Medicine, Endocrinology, Diabetology and Metabolism, Cardiovascular Diseases, Heart Failure, Respiratory Disease, Geriatrics, Immunology and Rheumatology.

Moreover, Manuscripts regarding basic and laboratory sciences will be very welcome.

As the borders between physiology, pharmacology and biochemistry become increasingly blurred, we also welcome papers using cutting-edge techniques in cellular and/or molecular biology to link descriptive or behavioral studies with cellular and molecular mechanisms underlying the integrative processes.

Topics
- Emergency Medicine
- Oncology
- Hematology and Coagulation disorders
- Vascular Medicine

If you have institutional access, your institution may have a subscription to this journal. Authenticate with your institution to access content.

To subscribe

– or –

Subscription

Electronic Individual 99,00 €
Electronic Institution 641,00 €

To subscribe

Contact our sales team

Online ISSN: 2191–0286
Type: Journal
Language: English
Publisher: De Gruyter
First published: December 1, 1986
Publication Frequency: 6 Issues per Year
Audience: researchers and health professionals in the field of clinical physiology and pharmacology
Endocrinology: Ieva Ruza, (University of Riga, Riga, Latvia)

Diabetology and Metabolism: Mariarosaria De Luca (Federico II University, Naples)

Cardiovascular Diseases: Andrea Salzano (Glenfield General Hospital, University of Leicester, Leicester, UK)

Heart Failure: Antonio Cittadini (Federico II University of Naples, Naples, Italy)

Respiratory Medicine: Salvatore Torrisi (University of Catania, Catania, Italy)

Geriatrics: Leonardo Bencivenga (Federico II University, Naples, Italy)

Immunology: Gilda Varricchi (Federico II University, Naples, Italy)

Rheumatology: Domenico Sambataro (Artroreuma, Catania, Italy)

Basic Science: Raffaella Spina (University of Maryland, School of Medicine, Baltimore, USA), Francesca Vinchi (New York Blood Center, New York, USA), Roberta D'Assante (Federico II, Naples), Jia Liu (University of Virginia Health System, Charlottesville, USA)

Editorial Office:
E-mail: jbcpp.editorial@degruyter.com

(Deutsch)
Acetylcholinesterase inhibitory activity of extract and fractions from the root of *Rauvolfia serpentina* (L.) Bth.ex Kurz
Suciati, Debora Poerwantoro, Aty Widyawaruyanti, Kornkanok Ingkaninan
Page range: 313–317

Green tea and its active compound epigallocatechin-3-gallate (EGCG) inhibit neuronal apoptosis in a middle cerebral artery occlusion (MCAO) model
Abdulloh Machin, Imam Susilo, Djoko A. Purwanto
Page range: 319–325

The effects of quercetin on nicotine-induced reward effects in mice
Mahardian Rahmadi, Dian Suasana, Silvy Restuning Lailis, Dinda Monika Nusantara Ratri, Chrismawan Ardianto
Page range: 327–333

Resveratrol ameliorates physical and psychological stress-induced depressive-like behavior
Chrismawan Ardianto, Aniek Setiya Budiatin, I Nengah Budi Sumbertha, Nurrahmi Nurrahmi, Mahardian Rahmadi, Junaidi Khotib
Page range: 335–340

Translation and cross-cultural adaption of an instrument measuring patient’s well-being under treatment for schizophrenia
Julaeha Julaeha, Umi Athiyah, Margarita Maria Maramis, Agus Sugianto, Andi Hermansyah
Page range: 341–347

Quercetin promotes behavioral recovery and biomolecular changes of melanocortin-4 receptor in mice with ischemic stroke
Tuhfatul Ulya, Chrismawan Ardianto, Putri Anggreini, Aniek Setiya Budiatin, Dwi Setyawan, Junaidi Khotib
Page range: 349–355
Knowledge and attitudes of healthcare professionals on prescribing errors
Desak Ketut Ernawati, Ida Ayu Alit Widhiartini, Endang Budiarti
Page range: 357–362

Inhibition of Ras and STAT3 activity of 4-\((\text{tert}-\text{butyl})-\text{N}\)-carbamoylbenzamide as antiproliferative agent in HER2-expressing breast cancer cells
Aguslina Kirtishanti, Siswando Siswodihardjo, I Ketut Sudiana, Desak G. A. Suprabawati, Aristika Dinaryanti
Page range: 363–371

Predicting the molecular mechanism of glucosamine in accelerating bone defect repair by stimulating osteogenic proteins
Maria Apriliani Gani, Ahmad Dzulfikri Nurhan, Aniek Setiya Budiatin, Siswando Siswodihardjo, Junaidi Khotib
Page range: 373–377

Larvicidal toxicity and parasporal inclusion of native \(\text{Bacillus thuringiensis}\) BK5.2 against \(\text{Aedes aegypti}\)
Salamun, Fatimah, Ahmad Fauzi, Seling N. Praduwana, Ni’matuzahroh
Page range: 379–384

Synthesis, ADMET predictions, molecular docking studies, and \(\text{in-vitro}\) anticancer activity of some benzoxazines against A549 human lung cancer cells
Melanny Ika Sulistyowaty, Retno Widyowati, Galih Satrio Putra, Tutuk Budiati, Katsuyoshi Matsunami
Page range: 385–392

Thymoquinone and its derivatives against breast cancer with HER2 positive: \(\text{in silico}\) studies of ADMET, docking and QSPR
Adinda Adelia Wulandari, Achmad Aziz Choiri, Fitria, Tri Widiandani
Page range: 393–401

Assessment of patient understanding of their conventional cardiac medicines and herbal prepared/derived products: preliminary survey and interviews with selected community-dwelling elderly patients in the Philippines
Jay P. Jazul, Trisha Michaela G. Arciga, Mary Angelie C. Ante, Danavin Gwyneth B. Berlin, Loise Francoise L. Briones, Samantha A. Bryan, Jhaneille Stachel
The development and validation of the health belief model questionnaire for measuring factors affecting adherence in the elderly with hypertension
Rodhiyatul Fithri, Umi Athiyah, Elida Zairina
Page range: 415–419

Analysis of the side effect of QTc interval prolongation in the bedaquiline regimen in drug resistant tuberculosis patients
Denny Ardhianto, Suharjono, Soedarsono, Umi Fatmawati
Page range: 421–427

Shallot skin profiling, computational evaluation of physicochemical properties, ADMET, and molecular docking of its components against P2Y12 receptor
Juni Ekowati, Kholidah Febriani, Itsna N. A. Yaqin, Adinda A. Wulandari, Indra H. Mulya, Kholis A. Nofianti, Achmad Syahrani
Page range: 429–437

Analysis of HMGB-1 level before and after providing atorvastatin standard therapy in coronary artery disease patients with type-2 diabetes mellitus compared to without type-2 diabetes mellitus
Widya Handayani, Suharjono, Mohammad Yogiarto
Page range: 439–446

Analysis of matrix metalloproteinase-9 levels among acute heart failure patients with ACE inhibitor therapy (Dr. Soetomo Regional General Hospital, Surabaya)
Ira Purbosari, Bambang Zubakti Zulkarnain, Muh Aminuddin, Umi Fatmawati
Page range: 447–451

The correlation between self-related adherence, asthma-related quality of life and control of asthma in adult patients
Elida Zairina, Gesnita Nugraheni, Gusti Noorrizka Veronika Achmad, Arie Sulistyarini, Yunita Nita, Arief Bakhtiar, Muhammad Amin
Page range: 453–458
Providing counseling through home pharmacy care (HPC) for hemodialysis patients with hypertension in lowering blood pressure
Rahmiyati Daud, Bambang Subakti Zulkarnain, Ivan Virnanda Amu
Page range: 459-465

Community knowledge and attitude in recognizing asthma symptoms and using medication for asthma attacks: a cross-sectional study
Arina Dery Puspitasari, Bindaria Mutmaina Prabawati, Alfian Nur Rosyid
Page range: 467-472

A study of anticoagulant therapy in patients with coronary artery disease
Arina D. Puspitasari, Daniel Dwi Christiananta Salean, Didik Hasmono, Rudy Hartono, Meity Ardiana
Page range: 473-478

The association of FKBP5 polymorphism with asthma susceptibility in asthmatic patients
Sura F. Alsaffar, Haider Abdulhameed Alqaraghuli, Jabbar H. Yenzeel, Haider F. Ghazi
Page range: 479-484

Gastroprotective effect of fluvoxamine and ondansetron on stress-induced gastric ulcers in mice
Mahardian Rahmadi, Nily Su’aida, Pratiwi Yustisari, Wahyu Agung Dewaandika, Elma Oktavia Hanaratri, Mareta Rindang Andarsari, Sumarno, Toetik Aryani
Page range: 485-490

Osteoblast iron genes: real time PCR and microarray hybridization approach under hyperoxia
Prihartini Widiyanti, Hartmut Kuehn, Soetjipto Soetjipto
Page range: 491-496

Attenuation of hyperplasia in lung parenchymal and colonic epithelial cells in DMBA-induced cancer by administering Andrographis paniculata Nees extract using animal model
Aniek Setiya Budiatin, Ilham Bagus Sagitaras, Ika Putri Nurhayati, Nismatun Khairah, Khoirotin Nisak,
Imam Susilo, Junaidi Khotib
Page range: 497–504

Requires Authentication June 25, 2021
N-nitrosodiethylamine induces inflammation of liver in mice
Devy Maulidya Cahyani, Andang Miatmoko, Berlian Sarasitha Hariawan, Kusuma Eko Purwantari, Retno Sari
Page range: 505–510

Requires Authentication June 25, 2021
AST/ALT levels, MDA, and liver histopathology of Echinometra mathaei ethanol extract on paracetamol-induced hepatotoxicity in rats
Angelica Kresnamurti, Dita Nurlita Rakhma, Amitasari Damayanti, Septiyan Dwi Santoso, Enggar Restryarto, Wifqi Hadinata, Iwan Sahrial Hamid
Page range: 511–516

Requires Authentication June 25, 2021
Development, characterization, molecular docking, and in vivo skin penetration of coenzyme Q10 nanostructured lipid carriers using tristearin and stearyl alcohol for dermal delivery
Ni Luh Dewi Aryani, Siswandono Siswodihardjo, Widji Soeratri, Nadia Fitria Indah Sari
Page range: 517–525

Requires Authentication June 25, 2021
The effect of Camellia sinensis (green tea) with its active compound EGCG on neuronal cell necroptosis in Rattus norvegicus middle cerebral artery occlusion (MCAO) model
Abdulloh Machin, Ramidha Syaharani, Imam Susilo, Muhammad Hamdan, Dyah Fauziah, Djoko Agus Purwanto
Page range: 527–531

Requires Authentication June 25, 2021
Hepatoprotective effect of ethanolic extract of sugarcane (Saccharum officinarum Linn.) leaves
Ika P. Dewi, Rifdah B. Kwintana, Jihan U. Ulinnuha, Fadhillah Rachman, Fransiska M. Christianity, Diana Holidah
Page range: 533–540

Requires Authentication June 25, 2021
Correlation between the exposure time to mobile devices and the prevalence of evaporative dry eyes as one of the symptoms of computer vision syndrome among Senior High School students in East Java, Indonesia
Rozalina Loebis. Bambane Subakti Zulkarnain. Nadhifa Zahra

The effect of various high-fat diet on liver histology in the development of NAFLD models in mice
Mahardian Rahmadi, Ahmad Dzulfikri Nurhan, Eka Dewi Pratiwi, Devita Ardina Prameswari, Sisca Melani Panggono, Khoirotin Nisak, Junaidi Khotib
Page range: 547–553

Fabrication and characterization of bovine hydroxyapatite–gelatin–alendronate scaffold cross-linked by glutaraldehyde for bone regeneration
Samirah, Aniek Setiya Budiatin, Ferdiansyah Mahyudin, Junaidi Khotib
Page range: 555–560

Health related quality of life among postmenopausal woman with hormone responsive HER2-breast cancer in Indonesia
Ria Etikasari, Tri Murti Andayani, Dwi Endarti, Kartika Widayati Taroeno–Hariadi
Page range: 561–565

Gender differences in the blood glucose type 2 diabetes patients with combination rapid and long acting insulin therapy
Dinda M. N. Ratri, Arina D. Puspitasari, Cahyo W. Nugroho, Budi Suprapti, Suharjono, Christoper P. Alderman
Page range: 567–570

Correlation of dietary iron intake and serum iron with thyroid stimulating hormone (TSH) and free thyroxine (FT4) levels in adult hyperthyroid patients
Utami Harjantini, Yulia Lanti Retno Dewi, Diffah Hanim, Ida Nurwati
Page range: 571–576

The effect of pillbox use and education by pharmacist toward medication adherence in diabetes mellitus patients in a Primary Health Care Center in Mataram
Mahacita Andanalusia, Yunita Nita, Umi Athiyah
Page range: 577–582
Variation concentration effect of propyleneglycol, glycerin, and polyethylene glycol 400 to physical properties and dissolution rate of loratadine liquisolid tablet
Mikhania Christiningtyas Eryani, Esti Hendradi, Siswando
Page range: 583–587

Role of Centella asiatica and ceramide in skin barrier improvement: a double blind clinical trial of Indonesian batik workers
Sylvia Anggraeni, Menul Ayu Umborowati, Damayanti Damayanti, Anang Endaryanto, Cita Rosita Sigit Prakoeswa
Page range: 589–593

Secondary metabolite and antipyretic effects of Maja (Crescentia cujete L.) in fever-induced mice
Teodhora, Munawarothus Sholikh, Asniatul Ania, Ika Maruya Kusuma
Page range: 595–601

Hydration effect on kidney function and serum electrolyte in children with tumor lysis syndrome (TLS) and risk of TLS
Yulistiani, Claudia Tiffany, I. Dewa Gede Ugrasena, Mariyatul Qibtiyah
Page range: 603–609

Drug utilization study and cost analysis of adult β-thalassemia major patient therapy at Dr. Soetomo General Hospital Surabaya
Hasna Qatrunnada, Suharjono, Siprianus Ugroseno Yudho Bintoro, Siti Wahyuni
Page range: 611–616

The role of hyperbaric oxygen to platelet aggregation in noninsulin-dependent diabetes mellitus (NIDDM)
Prihartini Widiyanti, Purnomo Suryohudoyo
Page range: 617–621

Cocrystal formation of loratadine–succinic acid and its improved solubility
The role of chondroitin sulfate to bone healing indicators and compressive strength
Herry Wibowo, Prihartini Widiyanti, Syaifullah Asmiragani
Page range: 631–635

The effects of quercetin on the expression of SREBP-1c mRNA in high-fat diet-induced NAFLD in mice
Jamal Nasser Saleh Al-maamari, Mahardian Rahmadi, Sisca Melani Panggono, Devita Ardina Frameswari, Eka Dewi Pratiwi, Chrismawan Ardianto, Santhra Segaran Balan, Budi Suprapti
Page range: 637–644

Analysis of stress ulcer prophylaxis drug regimentation in surgical patients
Dhani Wijaya, Suhaarjono, Fendy Matulatan, Elfri Padolo
Page range: 645–649

The stability and irritability study of the chitosan–Aloe vera spray gel as wound healing
Dini Retnowati, Retno Sari, Esti Hendradi, Septiani Septiani
Page range: 651–656

Effectiveness of citicoline in pediatric patients with refractive amblyopia in Surabaya, East Java, Indonesia
Rozalina Loebis, Bambang Subakti Zulkarnain, Fitri Amalia Siswanto
Page range: 657–661

The thermodynamic study of p-methoxycinnamic acid inclusion complex formation, using β-cyclodextrin and hydroxypropyl-β-cyclodextrin
Dewi Isadiartuti, Noorma Rosita, Juni Ekowati, Achmad Syahrani, Toetik Ariyani, M. Ainur Rifqi
Page range: 663–667

The effect of chitosan type and drug-chitosan ratio on physical characteristics and release
Dwi Setyawan, Firdaus Rendra Adyaksa, Hanny Lystia Sari, Diajeng Putri Paramita, Retno Sari
Page range: 623–630

The effect of chitosan type and drug-chitosan ratio on physical characteristics and release profile of ketoprofen microparticles prepared by spray drying
Muhammad A. S. Rijal, Hanah Masitah, Fanny Purvitasari, Retno Sari
Page range: 669–673

The maximum dose and duration in the therapy single use methotrexate to achieve remission by rheumatoid arthritis patients through disease activity score 28 (DAS28)
Anisyah Achmad, Tika Yasmin Rahmayanti, Bagus Putu Putra Suryana
Page range: 675–680

Knowledge, attitudes, and practices (KAP) towards COVID-19 among university students in Pakistan: a cross-sectional study
Shah Faisal, Junaidi Khotib, Elida Zairina
Page range: 681–686

The impact of glutaraldehyde on the characteristics of bovine hydroxyapatite–gelatin based bone scaffold as gentamicin delivery system
Aniek Setiya Budiatin, Maria Apriliani Gani, Chrismawan Ardianto, Samirah, Sahrati Yudiaprijah Daeng Pattah, Fitroh Mubarokah, Junaidi Khotib
Page range: 687–691

Analysis of the use of antibiotics profile and factors of surgical site infections study on digestive and oncology surgeries
Lisa Narulita, Suharjono, Kuntaman, Mohammad Akram
Page range: 693–700

Second internal transcribed spacer (ITS-2) as genetic marker for molecular characterization of Sarcoptes scabiei in rabbits from several areas of East Java, Indonesia
Nunuk Dyah Retno Lastuti, Nur Rusdiana, Poedji Hastutiek
Page range: 701–705

Design of gossypetin derivatives based on naturally occurring flavonoid in Hibiscus sabdariffa and the molecular docking as antibacterial agents
Nuzul W. Diyah, Isnaeni, Shabrina W. Hidayati, Bambang T. Purwanto, Siswando
Page range: 707–714
Discovery of new targeting agents against GAPDH receptor for antituberculosis drug delivery
Muhammad Amirul Asyraf Noh, Siti Sarah Fazalul Rahiman, Habibah A Wahab, Amirah Mohd Gazzali
Page range: 715-722

The effect of red passion fruit (*Passiflora edulis* Sims.) fermentation time on its activity against Extended Strain Methicillin-Resistant (ESBL) *Escherichia coli* and Methicillin-Resistant *Staphylococcus aureus* (MRSA)
Iif Hanifa Nurrosyidah, Ni Made Mertaniasih, Isnaeni
Page range: 723-727

Antibiotic use on acute respiratory tract infection nonpneumonia and nonspecific diarrhea in Primary Health Care Centre in Banjarbaru City, South Kalimantan, Indonesia
Rizky Liestya Wardani, Suharjono, Kuntaman, Agus Widjaja
Page range: 729-735

Screening of anti-HIV activities in ethanol extract and fractions from *Ficus fistulosa* leaves
Siti Qamariyah Khairunisa, Dwi Wahyu Indriati, Lidya Tumewu, Aty Widyawaruyanti, Nasronudin
Page range: 737-742

The characteristics of lactic acid bacteria isolated from fermented food as potential probiotics
Victoria Yulita Fitriani, Budi Suprapti, Muhammad Amin
Page range: 743-749

Profile of gyrA gene mutation in clinical isolate of levofloxacin resistant *Escherichia coli*
Alifia Risma Fahmi, Suharjono, Kuntaman
Page range: 751-754

Antimicrobial activity of *Centella asiatica* and *Gigantochloa apus*
Siti Mudaliana
Page range: 755-759
Drug-related problems of antibiotic use in gastroenteritis related to patient therapy outcomes at Universitas Gadjah Mada Hospital
Fivy Kurniawati, Nanang Munif Yasin, Farida Aulia, Gidfrie Vinanda Krisha
Page range: 761–766

The impact of suitability of empirical antibiotics use on therapeutic outcome of respiratory tract infection patients at inpatient wards of Universitas Gadjah Mada Academic Hospital
Fivy Kurniawati, Nanang Munif Yasin, Safina Nur Azizah, Silvia Ayu Purbaningtyas
Page range: 767–771

Genetic profile mutation rpoB in clinical isolate of rifampicin-resistant Staphylococcus aureus
Risa Zulfiana, Suharjono, Kuntaman
Page range: 773–776

Hematological side effect analysis of linezolid in MDR-TB patients with individual therapy
Novan Yusuf Indra Pratama, Bambang Subakti Zulkarnain, Soedarsono, Umi Fatmawati
Page range: 777–781

Adverse drug reaction and its management in tuberculosis patients with multidrug resistance: a retrospective study
Wenny Putri Nilamsari, Muhammad Fajar Rizqi, Natasya Olga Regina, Prastuti Asta Wulaniringrum, Umi Fatmawati
Page range: 783–787

Analysis of prophylactic antibiotic use and risk factor of postoperative infection in urological surgery patients
Ratri Rokhani, Suharjono, Kuntaman, Mohammad Akram
Page range: 789–794

Molecular docking studies of Nigella sativa L and Curcuma xanthorrhiza Roxb secondary metabolites against histamine N-methyltransferase with their ADMET prediction
Prediction of compounds with antiosteoporosis activity in *Chrysophyllum cainito* L. leaves through *in silico* approach

Burhan Ma'arif, Hilwa Fitr, Nisfatul Lailatus Saidah, Luqman Alfani Najib, Achmad Hamdan Yuwafi, Ria Ramadhani Dwi Atmaja, Fidia Rizkiah Inayatillah, Meilina Ratna Dianti, Hening Laswati, Mangestuti Agil

Page range: 803-808

Phyllanthin and hypophyllanthin, the isolated compounds of *Phyllanthus niruri* inhibit protein receptor of corona virus (COVID-19) through *in silico* approach

Honey Dzikri Marhaeny, Aty Widyawaruyanti, Tri Widiandani, Achmad Fuad Hafid, Tutik Sri Wahyuni

Page range: 809-815

Cratoxylum sumatranum stem bark exhibited antimalarial activity by Lactate Dehydrogenase (LDH) assay

Lidya Tumewu, Fendi Yoga Wardana, Hilkatul Ilmi, Adita Ayu Permanasari, Achmad Fuad Hafid, Aty Widyawaruyanti

Page range: 817-822

Endophytic fungi inhabiting *Physalis angulata* L. plant: diversity, antioxidant, and antibacterial activities of their ethyl acetate extracts

Kartika Dyah Palupi, Muhammad Ilyas, Andria Agusta

Page range: 823-829

Exploration of several plants from Baung Forest on bone formation cell models

Retno Widyowati, Neny Purwitasari, Rice Disi Oktarina, Wiwied Ekasari, Saarah Khairunnisa, Hsin-I. Chang

Page range: 831-837

In vitro antimalarial activity of *Garcinia parvifolia* Miq. Stem extracts and fractions on *Plasmodium falciparum* lactate dehydrogenase (LDH) assay

Marsih Wijayanti, Hilkatul Ilmi, Einstenia Kemalahayati, Lidya Tumewu, Fendi Yoga Wardana, Suciat, Achmad Fuad Hafid, Aty Widyawaruyanti

Page range: 839-844
Antioxidant and antiviral potency of *Begonia medicinalis* fractions

Muhammad Sulaiman Zubair, Siti Qamariyah Khairunisa, Evi Sulastri, Ilwan, Agustinus Widodo, Nasronudin, Ramadani Pitopang

Page range: 845–851

Artocarpus sericicarpus stem bark contains antimalarial substances against *Plasmodium falciparum*

Lidya Tumewu, Lutfah Qurrota A’yun, Hilkatul Ilmi, Achmad Fuad Hafid, Aty Widyawaruyanti

Page range: 853–858

Formulation and characterization of *Eleutherine palmifolia* extract-loaded self-nanoemulsifying drug delivery system (SNEDDS)

Rahmi Annisa, Mochammad Yuwono, Esti Hendradi

Page range: 859–865

Analytical method for the determination of curcumin entrapped in polymeric micellar powder using HPLC

Helmy Yusuf, Nina Wijiani, Rizka Arifa Rahmawati, Riesta Primaharinastiti, M. Agus Syamsur Rijal, Dewi Isadiartuti

Page range: 867–873

Challenges in the provision of natural medicines by community pharmacists in East Java Province, Indonesia

Hanni P. Puspitasari, Dhiba Fatmaningrum, Sa’adatus Zahro, Shofa Salsabila, Zulfi A. Rizquloh, Ana Yuda, Mufarrihah, Anila I. Sukorini, Neny Purwitasari

Page range: 875–880

In vitro and in silico analysis of phytochemical compounds of 96% ethanol extract of semanggi (*Marsilea crenata* Presl.) leaves as a bone formation agent

Agnis P.R. Aditama, Burhan Ma’arif, Hening Laswati, Mangestuti Agil

Page range: 881–887
Inhibitory activity of *Urena lobata* leaf extract on alpha-amylase and alpha-glucosidase: *in vitro* and *in silico* approach

Yudi Purnomo, Juliah Makdasari, Faiqoh Inayah Fatahillah

Page range: 889-894

Case Report

Effect of hydrocortisone on hypocortisolism caused by pituitary adenoma

Niswah N. Qonita, Hanik B. Hidayati

Page range: 895-898