ABSTRACT
This paper deals with determining vehicle routes in product distribution from a distributor to a large number of retailers in a vast distribution area. To determine the vehicle routes in a vast distribution area and a large number of retailers that have to be served causes the VRP model to become complicated. Therefore, this paper applies the cluster first–route second concept to design a distribution system in two stages. The first stage is to cluster the distribution area based on the distance between retailers. The second stage is to determine a vehicle route for each cluster using the multi-objective vehicle routing problem with time window and balanced driver workload (VRPTWBW) approach. The proposed VRPTWBW model has three objectives, i.e., (i) to minimize the number of assigned vehicles, (ii) to minimize the total delivery time, and (iii) to balance the driver workload. This second stage starts once the clusters of the distribution area are set. Contrasted with the current practice in the company, this proposed model offers the significant impacts: (i) the reduction of workload gap among driver about 29% (from 2.59 hours to 1.83 hours); (ii) the increased of vehicle utility by 44% (from 30% to 43%), and (iii) the increase savings of two-week course fees of IDR. 11 million (about 23.84%).

Keywords: cluster first – route second, VRP time windows balance workload, distribution systems, workload balance

1. INTRODUCTION
The distributor and retailers are intermediaries in the distribution concept that have a role to distribute the products from the manufacturer to end customers (Chopra, 2019). A distributor can achieve high performance if the distributor delivers all retailer orders quickly (Das et al., 2021) or on time with minimum total costs (Goetschalckx, 2011). Therefore, transportation is one of the critical success key factors of the distribution system to ensure the delivery is on time (Ravindran and Warsing Jr, 2013). According to Neves-Moreira et al. (2016), there are two types of transportation, i.e., long-haul transportation and short-haul transportation. Generally, long-haul transportation is used to deliver the products from manufacturer to distributor when short-haul transportation for delivering the products from distributor to retailers (Ghiani et al., 2004). This paper focuses on short-haul transportation.

According to Ghiani et al. (2013), short-haul transportation is usually used to deliver products to many retailers in a relatively small-sized geographic area. Generally, the demand size of each retailer is less than truckload capacity so the distributor will deliver several retailers’ demand using sharing shipping concepts. In sharing shipping, the demand of multiple retailers is often delivered using LTL (less than truckload) or TL (truckload) carrier with multi stops (Cortes and Suzuki, 2020). The vehicle can load the demand of multi retailers as long as the vehicle capacity is still sufficient. Thus, the vehicle will visit several places to deliver the demand of retailers (Neves-Moreira et al., 2016). Hence, the sharing shipment problem in the product distribution focuses on optimizing the vehicle route (Brackers et al., 2016). The purpose of this paper is to determine the optimal routes of
assigned vehicles in distributing products from one distributor to geographically dispersed retailers.

The optimal routes of assigned vehicles to distribute products from one or multiple distributors to geographically dispersed retailers can be determined by applying the concepts of the vehicle routing problem (VRP) (Laporte et al., 1988). According to Daneshzand (2011), Chen (2018) and Liao et al. (2017), the VRP determines a set of routes that starts and ends at the distributor minimizing the transportation cost and fulfilling the customer demands and operational constraints. As stated by Goetschalckx (2011), the simplest of the vehicle routing problems (VRP) is the traveling salesman problem (TSP) that determines the route of a single vehicle without vehicle capacity constraint. In reality, we can only load products less than or equal to the vehicle capacity. In research growth, many researchers such as Toth and Vigo (2002), Lei et al. (2011), and Jin et al. (2014) have considered the vehicle capacity constraint in the developed model called capacitated VRP (CVRP). In CVRP, a distributor delivers homogeneous products to several customers geographically separated using identical vehicles with limited capacity.

Besides CVRP, there are many kinds of VRP researched. One of other VRP variants is VRP that considers time window (Baldaclci et al., 2012; Brackers et al., 2016; Pérez-rodríguez, and Hernández-aguirre, 2019). According to Miranda and Conceição (2016), in the vehicle routing problem with time windows (VRPTW), the vehicles are only allowed to start serving each retailer at the earliest time windows. Each vehicle has to return to the distributor before the latest time windows (El-Sherbeny, 2010). Due to the imbalanced load of each vehicle, Lee and Ueng (1999) considered the balanced load of each vehicle in the VRP model. Nevertheless, the VRP model did not consider the time window constraint. According to Mancini et al. (2021) and Matt et al. (2017), the workload can be measured by the number of customers visited by the driver or vehicle, the amount of delivered load, or the tour length. Kritisos and Ioannou (2010) developed the VRPTW model by considering the balance of loads carried by each vehicle. Even though Kritisos and Ioannou (2010) have balanced a load of vehicles carried, they cannot guarantee that the workload of each driver is balanced. If the number of consumers visited by vehicles is not the same, each vehicle has different travel times. It causes an imbalanced driver workload for each vehicle. Therefore, this paper uses the tour time length to balance driver workload.

The VRP model will be more complicated when a distributor has to distribute products to many serving retailers that are separated geographically. It needs more time to solve the complicated VRP model. Generally, a distributor has a large number of retailers, thus Cormet et al. (2016) suggest classifying the retailers into several clusters of the distribution area. The clustering retailers’ purpose is to simplify a complicated VRP model and reduce the completion time of solving the VRP model (Rautela et al., 2019). Dondo (2007) also states that in designing a distribution system with a vast distribution area and many retailers, the cluster first-route second algorithm is an appropriate heuristic approach to minimize total distribution cost.

Hiquebran et al. (2010) stated there are two heuristic methods for clustering the distribution area, namely route-first cluster second (RFCS) and cluster-first route-second (CFS). Similar to Dondo and Cerda (2007), Cormet et al. (2016), and Hiquebran et al. (2010), this paper deals with the cluster first-route second concept to design a distribution system. After clusters are formed in the CFS concepts, vehicle routes are determined for each cluster independent of each other.

Although Hiquebran et al. (2010), Dondo and Cerda (2007), and also Cormet et al. (2016) apply the CFS concepts but to determine vehicle routes, they apply different VRP variants. Hiquebran et al. (2010) use the classic vehicle routing problem that have no constraint, while Dondo and Cerda (2007) and also Cormet et al. (2016) use the capacitated vehicle routing problem (CVRP) that consider vehicle capacity constraint. In reality, each retailer has a different time to be able to receive their delivered order or has a different operating time, but whether Hiquebran et al. (2010), Dondo and Cerda (2007), and Cormet et al. (2016) did not consider it in their VRP model. Pérez-rodríguez and Hernández-aguirre (2019) have considered time window (duration time to be able to receive its order) in their VRP model (VRPTW) even though they did not apply CFS. This paper applies the CFS and also VRPTW to obtain the optimal vehicle routes.

On the other side, each cluster has many retailers that their order should be fulfilled. It impacts the distributor who will assign several vehicles to fulfill retailers’ orders in that cluster. When the distributor usually uses more than one vehicle in a cluster, it is necessary to pay attention to balance the workload among drivers in one cluster. Hiquebran (2010), Cormet et al. (2016), Dondo and Cerda (2007) did not consider it. Therefore, besides applying the cluster first-route second concept, this paper deals with determining vehicle routes by applying the VRP model that considers time window and a balanced driver’s workload. The vehicle route will be determined to maximize the vehicle utility, balance each driver’s workload, and minimize the total delivery time. According to the literature review above, the contribution of this study can be briefly shown as proposed model (see Table 1).

<table>
<thead>
<tr>
<th>Table 1 The contribution of this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>To apply CFRS</td>
</tr>
<tr>
<td>To consider Time window</td>
</tr>
<tr>
<td>To consider balanced workload</td>
</tr>
</tbody>
</table>

2. RESEARCH FRAMEWORK
The research framework is to provide a guideline conducting this research systematically. This research framework consists of two stages, the first stage is to develop
the cluster first route second algorithm, and the second one is to validate the proposed algorithm using a case study. In the first stage, there are two steps of developing the proposed cluster first – route second algorithm, as shown in Figure 1. The first step is to develop a clustering heuristic algorithm to form clusters of distribution. The heuristic algorithm of clustering distribution area is developed based on Comert et al. (2018). Meanwhile, the second step is to develop a vehicle routing problem model by considering the time window and balanced workload (VRPTWBW) for determining the vehicle route in each cluster independent of each other. The VRPTWBW model is developed based on the model VRPTW of Pérez-Rodríguez and Hernández-Aguirre (2019).

In the second stage, the proposed clustering heuristic algorithm and vehicle routing problem model are applied using numerical data of a distributor of a multi-national company located in East Java. Using the distributor’s data, we form the cluster of retailers every day. After forming clusters, we determine each cluster’s vehicle route independently for each cluster. In the last part of this research, we compare the company method result (current condition) and the proposed method one.

3. DISTRIBUTION SYSTEM DESIGN

The distribution system in this paper only has one distributor. It distributes its products to a large number of retailers. The location of retailers is separated geographically in a vast distribution area. The conditions cause the VRP model used to become more complicated. Therefore, the cluster first route second concept will be applied to design the distribution system (Figure 2). The first step is to develop heuristic clustering method for clustering the retailers into some clusters. The clustering retailers is to simplify the VRP model and to be able to solve the distribution problem easier. After we classify all retailers becomes several clusters, the next step we develop a vehicle routing problem (VRP) model with considering the time window and balanced driver workload (VRPTWBW).

Figure 1 Research framework

Figure 2 Illustration of retailers clustering and vehicle routing concepts

3.1 Retailer Clustering

In this paper, the retailer’s clustering algorithm is developed based on a random clustering algorithm (Comert et al., 2018). Like the random clustering algorithm (Comert et al., 2018), the proposed retailers clustering algorithm aims to maximize the similarity inside the set and minimize the similarity between data sets. The similarity inside and between sets of data can be calculated from the average distance between two retailers. Table 2 contents of the proposed retailers clustering algorithm.

<table>
<thead>
<tr>
<th>Step</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Collect and determine the latitude and longitude of distributor and retailers that will be served at a particular day</td>
</tr>
<tr>
<td>2</td>
<td>Calculate the distance between retailers and between the retailer – distributor</td>
</tr>
</tbody>
</table>
| 3 | Generate cluster by determining which set retailers belong to according to the shortest distances
 a. Choose k retailers having the shortest distance to the distributor
 b. Classify all retailers that belong to a cluster according to the shortest distance |
| 4 | Check whether any retailer has a shorter distance to another cluster, adjust the cluster until no retailer having a shorter distance to another cluster |

3.2 Vehicle Routes in Each Cluster of Distribution Area

After developing the clustering algorithm in the first step, the next step is to develop a VRP model for determining the vehicle route in each cluster. The vehicle route model is developed, taking into account the duration of each retailer’s operating time, and balancing the driver’s workload. The distributor distributes all products to its retailers in each cluster using its vehicles. The vehicles of each cluster are different. Each retailer has a different duration of operation time and only can be visited by a vehicle. The proposed vehicle routing problem model is developed by considering the balance of each driver workload, the minimum number of vehicles and the total delivery time. The VRPTWBW model is developed based on the VRPTW model developed by Pérez-Rodríguez and Hernández-Aguirre (2019) with the differences as shown in Table 3.

<table>
<thead>
<tr>
<th>Objective function</th>
<th>VRPTW model of Pérez-Rodríguez and Hernández-Aguirre (2019)</th>
<th>Proposed model</th>
</tr>
</thead>
</table>
| Minimize total transportation distance | Minimize number of assigned vehicles
 Minimize total delivery time
 Balancing the driver’s workload |

| Constraint | Time window | Time window of retailers
 The total delivery time of each vehicle has to be less than the maximum delivery duration for ensuring workload balancing of each vehicle (driver) |

3.2.1 Mathematical notation

The mathematical notations that are used in the developing VRPTW model that balancing all of the driver workload (VRPTWBW) consists of Index, parameters/intermediate variable, and decision variables as follows.

Index:

- \(i, j \): distribution/retailer location;
 \(i,j = 1 \) is distributor and \(i,j > 1 \) are retailers
- \(v \): vehicle
- \(n \): total number of retailers
- \(H \): total number of vehicles

Parameters/intermediate variables:

- \(K_v \): the capacity of vehicle \(v \)
- \(D_{ij} \): the distance from distributor/retailer location \(i \) to retailer/ distributor location \(j \)
- \(W_{iv} \): the total delivery time of distributor/retailer location \(i \) using vehicle \(v \)
- \(D_i \): the demand of retailer location \(i; \ i > 1 \)
- \(A_i \): the earliest time that retailer \(i \) is able to receive the load; \(i > 1 \)
- \(B_i \): the latest time that retailer \(i \) is able to receive the load \(i > 1 \) or vehicle return to distributor \((i=1) \)
- \(S_i \): the service time at retailer \(i; \ i > 1 \)
- \(T_{ij} \): the transportation time from distributor/retailer \(i \) to distributor/retailer \(j \)
- \(T_{\text{max}} \): the maximum delivery duration

Decision variables:

- \(Z_v = 1 \) if vehicle \(v \) is used and 0 otherwise
- \(X_{ijv} = 1 \) if vehicle \(v \) is used to deliver from distributor/retailer \(i \) to distributor/retailer \(j \) and 0 otherwise

3.2.2 Mathematical Formulation

This proposed VRPTWBW model developed based on the VRPTW model of Pérez-Rodriguez and Hernández-Aguirre (2019) has three objectives. The first objective is to minimize the number of assigned vehicles to deliver the product from a distributor to many retailers (\(TT \)). It is formulated by vehicle capacity multiply by \(Z_v \). \(K_v \) is a parameter for vehicle capacity \(v \) that is different for every vehicle. Meanwhile, \(Z_v \) is a binary variable, a decision variable to indicate whether the vehicle is being used. Thus, when we combine the first objective function and constraint (6), it will maximize the vehicle utility. The second objective is to minimize the total delivery time (\(TT \)). The total delivery time is the accumulation of service time and transportation time of all assigned vehicles. The third objective is to balance the workload of all drivers (\(TN \)). \(TN \) is the workload of all
drivers driving an assigned vehicle, so the total working time maximum multiply by \(Z_v\). The objective functions are as follows.

\[
\text{Minimize } TV = \sum_{v=1}^{n} K_v Z_v \tag{1}
\]

\[
\text{Minimize } TT = \sum_{v=1}^{n} W_{1v} \tag{2}
\]

\[
\text{Minimize } TN = (\sum_{v=1}^{n} Z_v) T_{\text{max}} \tag{3}
\]

Several constraints are used to ensure the suitability of the proposed VRPTWBB model and the condition of distribution systems. Constraint (4) ensures that each retailer can only be served by one vehicle. This constraint does not apply to vehicles that start from the distributor, so the constraint formula is applied for \(i > 1\). Meanwhile, each vehicle that arrived from another retailer or distributor is guaranteed by constraint (5) will continue to visit another retailer before returning to the distributor. The total loads of a vehicle have to be less than its capacity is stated by constraint (6).

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} X_{ijv} = 1; \forall i, i \neq 1, j \neq i \tag{4}
\]

\[
\sum_{i=1}^{n} X_{ijv} - \sum_{i=1}^{n} X_{jiv} = 0; \forall j, v \tag{5}
\]

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} Z_v \leq K_v Z_v; \forall v \tag{6}
\]

Constraint (7) and (8) guarantee that a vehicle always starts from the distributor and returns to the distributor after completing product delivery, where \(i, j = 1\) is distributor, otherwise retailers.

\[
\sum_{i=1}^{n} X_{i1v} = Z_v; \forall v \tag{7}
\]

\[
\sum_{j=1}^{n} X_{j1v} = Z_v; \forall v \tag{8}
\]

Constraint (9) deals with time window concepts, where a vehicle can only serve retailers during their working or operation time. Operation or working time of retailer \(i\) starts at time \(A_i\) and ends at time \(B_i\). Constraint (10) states the total time needed in the shipping process until vehicle \(v\) arrives at retailer \(j\) is summation of time at vehicle \(v\) comes at retailer \(i\) and transportation time from retailer \(i\) to retailer \(j\). \(M\) is a big number. Meanwhile, if vehicle \(v\) starts from distributor \(i=1\), so there is no service time at distributor. Therefore, constraint (11) states the total delivery time at retailer \(j\) when the vehicle \(v\) starts from distributor equal to the transportation time from distributor to retailer \(j\).

\[
A_i \sum_{j=1}^{n} X_{ijv} \leq W_{1v} \leq B_i \sum_{j=1}^{n} X_{ijv}; \forall i, v \tag{9}
\]

\[
W_{1v} \geq W_{iv} + S_i + T_{ij} - M (1 - X_{ijv}) \tag{10}
\]

\[
W_{1v} \geq T_{ij} Z_v - M (1 - X_{ijv}) \tag{11}
\]

\[
W_{1v} \geq B_i Z_v; \forall v \tag{13}
\]

\[
W_{1v} \leq T_{\text{max}}; \forall v \tag{14}
\]

\[
Z_v \in [0,1]; \forall v \tag{15}
\]

\[
X_{ijv} \in [0,1]; \forall i,j,v \tag{16}
\]

4. RESULTS AND DISCUSSION

The proposed clustering heuristic algorithms and VRPTWB model are applied in one of the multi-national company distributors located in East Java, Indonesia. The distributor distributes various products to a large number of various types of retailers. The distributor classifies its retailers into three types (segments) based on service time duration, and the number of orders. The first type consists of traditional market, retailer and store, the second one is minimarkets, and the last one is supermarkets. Table 4 shows operating time and service time of each type of retailers.

<table>
<thead>
<tr>
<th>Types</th>
<th>Operating time</th>
<th>Service time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08.00 AM – 15 minutes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>09.00 AM – 25 minutes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>09.00 AM – 0.7 minutes</td>
<td></td>
</tr>
</tbody>
</table>

The distributor has 21 vehicles for delivering products to 646 retailers. The twenty-one vehicles can be classified into three types of vehicles. Two vehicles (type 1) have a capacity of 12m³ per vehicle, and two vehicles (type 2) have a capacity of 6m³ per vehicle. Meanwhile, 17 vehicles (type 3) have a capacity of 3m³ per vehicle. Delivering products has to be completed within the duration of retailer operation time. The distributor conducts the clustering and route arrangement every day.

Currently, the distributor forms distribution areas (clusters) based on the retailer type (top priority) and region. With this current clustering method, two retailers of various types are sent in two different vehicles even though their locations are very close. All drivers only receive a list of retailers that must be served, so drivers make their route arrangements without considering the retailers’ operation hours. It causes drivers to visit the retailer twice or wait for the store to open to send retailer orders so shipping is inefficient. The current clustering and routing method causes an imbalanced workload of each driver and low vehicle utility. Figure 3 shows the result of clustering on March 5th, 2019.
As discussed above, the proposed method consists of two steps, i.e., the clustering method and the routing arrangement. The proposed clustering method is applying to data of retailer’s order to the distributor in one day, such as on March 5th, 2019. The result of applying the proposed clustering methods is that all retailers that have an order to distributor are classified into three clusters, as shown in Figure 4. The detail of the district area in each cluster as shown in Table 5.

For every day, we form the clusters of distribution area using the proposed clustering algorithm. After forming the distribution area cluster on a particular day, we have to arrange routes in each cluster one by one by implementing the proposed VRPTWBW model. Table 6 shows an example of the outcome of the proposed VRPTWBW model at each cluster on March 5th, 2019. We get the number of assigned vehicles and vehicle routes for each cluster every day as well as the number of the served retailer. There are indirect results, i.e., the total loading that a vehicle delivers in one route as well as the vehicle utility, the total delivery distance, and total delivery time (\(W_{ij}\)). With 1 litre of fuel (bio solar), a vehicle can travel an average distance of 6.34 km. The price of 1 litre fuel is amount IDR 5,150, so that the cost of fuel is IDR 812.5 per km. Therefore, we can calculate the total fuel cost for every vehicle on 5/3/2019, as shown in Table 6.

The workload of each vehicle driver is measured from their total delivery time. For every day, after we have the delivery time of each vehicle, we can get the fastest and the longest delivery time. Based on the fastest and the longest delivery time on a day, we can calculate each vehicle driver’s workload gap. Table 7 compares of the delivery time gap, which also means the workload gap between the current practice and the proposed method.

Table 5 The district area of members in each cluster

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Distribution area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Genteng district, Pabean Cantian district, Kenjeran district and Tambak Sari district</td>
</tr>
<tr>
<td>2</td>
<td>Mulyorejo district, Gubeng district, Sawahan district, Wonokromo district and Tengglinis Mejoyo district</td>
</tr>
<tr>
<td>3</td>
<td>Tandes district, Dukuh Pakis district, Sambikerep district, Pakal district and Benowo district</td>
</tr>
</tbody>
</table>

Table 6 The outcome of the proposed VRPTWBW model at each cluster on March 5th, 2019

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Number of Assigned Vehicle</th>
<th>Vehicle Number:</th>
<th>Route</th>
<th>Number Served Retailer</th>
<th>Total Loading (m3)</th>
<th>Total Delivery Distance (km)</th>
<th>Total Delivery Time (minutes)</th>
<th>Total Fuel Cost (IDR)</th>
</tr>
</thead>
</table>
Table 7 Comparing the gap of workload

<table>
<thead>
<tr>
<th>Date (year 2019)</th>
<th>Current Practice</th>
<th>Proposed</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The fastest time (hours)</td>
<td>The longest time (hours)</td>
<td>Gap (hours)</td>
</tr>
<tr>
<td>March 5th</td>
<td>4.83</td>
<td>6.85</td>
<td>2.02</td>
</tr>
<tr>
<td>March 6th</td>
<td>4.08</td>
<td>6.83</td>
<td>2.75</td>
</tr>
<tr>
<td>March 8th</td>
<td>4.92</td>
<td>6.92</td>
<td>2</td>
</tr>
<tr>
<td>March 9th</td>
<td>3.87</td>
<td>6.33</td>
<td>2.67</td>
</tr>
<tr>
<td>March 11th</td>
<td>4.17</td>
<td>7.17</td>
<td>3.17</td>
</tr>
<tr>
<td>March 12th</td>
<td>4.33</td>
<td>6.25</td>
<td>1.92</td>
</tr>
<tr>
<td>March 13th</td>
<td>4.67</td>
<td>7.33</td>
<td>2.67</td>
</tr>
<tr>
<td>March 14th</td>
<td>4.67</td>
<td>7.67</td>
<td>3</td>
</tr>
<tr>
<td>March 15th</td>
<td>4.5</td>
<td>7.87</td>
<td>3.37</td>
</tr>
<tr>
<td>March 16th</td>
<td>4.17</td>
<td>6.5</td>
<td>2.33</td>
</tr>
<tr>
<td>Average</td>
<td>2.59</td>
<td></td>
<td>1.83</td>
</tr>
</tbody>
</table>

Table 7 shows that the proposed clustering algorithm and VRPTWBW model can reduce the average driver workload gap by around 29%. The company routing methods result in the average driver workload amount of 2.59 hours, while the proposed VRPTWBW results in 1.83 hours. It means the proposed clustering algorithm and routing method results in a more balanced workload.

Although the average workload of drivers using the proposed method is 1.83, if we analyze the driver workload gap per day in more detail, the driver workload gap is measured by the difference of the longest and fastest delivery time. The driver workload gap ranges from 0.96 hours to 3.26 hours. There were two days where the workload gap was more than 2.5 hours or 50% greater than the average. If we look again at Table 5, each vehicle’s total delivery time is not in line with the vehicle's load carried (vehicle utility) but in line with the total delivery distance. Thus, we can conclude that the total vehicle delivery distance is not only influenced by the number of retailers served by a vehicle but also the retail distribution area (Table 5). Therefore, future research needs to be carried out by developing the clustering retailer algorithm that considers the retailers’ distance and the number of served retailers, so the driver workload is more balanced.

Vehicle utility is calculated from the ratio of total loading of the vehicle and the vehicle capacity. Table 8 shows the average vehicle utility per day using both the company method and the proposed method. The average vehicle utility using current practice is 30%, while the average vehicle utility using the proposed method becomes 43%. The proposed methods consisted of the clustering algorithm, and the VRPTWBW model can increase vehicle utility by around 44%. Although the increase in vehicle utility using the proposed method is around 44%, the average vehicle utility is still low. We pay attention to the average total delivery time per day ranging between 4 hours until 6 hours. It is still able to make an improvement to increase vehicle utility in the future.

Table 8 Comparing the vehicle utility

<table>
<thead>
<tr>
<th>Date (year 2019)</th>
<th>Average vehicle utility</th>
<th>Increment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current practice</td>
<td>Proposed</td>
</tr>
<tr>
<td>March 5th</td>
<td>37%</td>
<td>51%</td>
</tr>
<tr>
<td>March 6th</td>
<td>30%</td>
<td>51%</td>
</tr>
<tr>
<td>March 8th</td>
<td>23%</td>
<td>35%</td>
</tr>
<tr>
<td>March 9th</td>
<td>37%</td>
<td>53%</td>
</tr>
<tr>
<td>March 11th</td>
<td>15%</td>
<td>22%</td>
</tr>
<tr>
<td>March 12th</td>
<td>43%</td>
<td>49%</td>
</tr>
<tr>
<td>March 13th</td>
<td>33%</td>
<td>49%</td>
</tr>
<tr>
<td>March 14th</td>
<td>21%</td>
<td>31%</td>
</tr>
<tr>
<td>March 15th</td>
<td>23%</td>
<td>34%</td>
</tr>
<tr>
<td>March 16th</td>
<td>35%</td>
<td>51%</td>
</tr>
<tr>
<td>Average</td>
<td>30%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Table 9 shows the comparison between the total transportation cost of current practice and the proposed method and the cost saving. The total transportation cost consists of the total fuel cost and the fixed cost of the vehicle. Transportation cost is driven by assigned vehicles. In contrast, the assigned vehicle is driven by fulfilling retailer order (demand) that have to be delivered, vehicle utility, time window (range of retailer operating time), and the balanced driver workload. Due to the reduced number of assigned vehicles, the proposed methods can reduce the transportation cost by around 23.84%. In this paper, reducing the transportation cost is the impact of minimizing the assigned vehicles. For the future study, the transportation cost can be considered to become the objective function.
5. CONCLUSION

The proposed method is developed based on the concepts of cluster first - route second. Therefore, the proposed method consists of two steps, and the first is to develop clustering algorithm based on the distance of retailers for classifying all retailers into several clusters. The second step is to develop VRPTWBW model for determining the vehicle routes in each cluster formed in step one.

The results of applying the proposed methods in a distributor are as follow. There are three clusters formed, the proposed method can reduce the average of driver workload gap around 29%, increase the average of vehicle utility around 44% and reduce the total transportation cost around 23.84%.

Although the proposed methods have increased the distribution performance, there are some potentials for future research. It is to develop the clustering retailer algorithm that considers the retailers' distance and the number of served retailers in each cluster to establish a more balanced workload. We will also consider the minimum utility vehicle used to improve vehicle utility and to consider transportation cost to become an objective function.

ACKNOWLEDGEMENT

The authors would like to thank the Ministry of Research, Technology and Higher Education, Republic of Indonesia, supported and provided funding for this research through the applied research grant of university excellence (PTUPT, Kemenristekdikti).

REFERENCES

<table>
<thead>
<tr>
<th>Date (year 2019)</th>
<th>Type vehicle</th>
<th>Total cost</th>
<th>Proposed</th>
<th>Cost saving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>March 5th</td>
<td>7</td>
<td>1</td>
<td>4,890,221.50</td>
<td>6</td>
</tr>
<tr>
<td>March 6th</td>
<td>6</td>
<td>2</td>
<td>4,915,134.50</td>
<td>6</td>
</tr>
<tr>
<td>March 8th</td>
<td>7</td>
<td>1</td>
<td>4,869,096.50</td>
<td>6</td>
</tr>
<tr>
<td>March 9th</td>
<td>8</td>
<td>1</td>
<td>5,265,908.50</td>
<td>7</td>
</tr>
<tr>
<td>March 11th</td>
<td>7</td>
<td>1</td>
<td>4,782,971.50</td>
<td>6</td>
</tr>
<tr>
<td>March 12th</td>
<td>6</td>
<td>1</td>
<td>4,186,284.50</td>
<td>7</td>
</tr>
<tr>
<td>March 13th</td>
<td>7</td>
<td>1</td>
<td>4,895,909.00</td>
<td>6</td>
</tr>
<tr>
<td>March 14th</td>
<td>7</td>
<td>1</td>
<td>4,838,221.50</td>
<td>6</td>
</tr>
<tr>
<td>March 15th</td>
<td>7</td>
<td>1</td>
<td>4,730,159.00</td>
<td>6</td>
</tr>
<tr>
<td>March 16th</td>
<td>7</td>
<td>1</td>
<td>4,813,846.50</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>48,187,753.00</td>
<td>36,698,742.44</td>
</tr>
</tbody>
</table>
series in operations research and management science 161. New York: Springer.

Amelia Santos is an Associate Professor of Industrial Engineering at the University of Surabaya, Indonesia. She received her Master's and Ph.D. degree in Industrial Engineering from Institut Teknologi Bandung (ITB), Bandung, Indonesia, and her Bachelor's degree in Statistics from Institut Teknologi Sepuluh Nopember (ITS) Surabaya, Indonesia. Her research interests are production, distribution, transportation systems; supply chain engineering; and humanitarian logistics in disaster operations and management.

Joniarto Parung is currently a Professor of Supply Chain Management at the Department of Industrial Engineering, University of Surabaya, Indonesia. He received his Ph.D. from Design Manufacture and Engineering Management, University of Strathclyde, Glasgow, UK. His research interests include supply chain management, smart supply chain, sustainable supply chain, and humanitarian logistics.

Dina Natalia is an Associate Professor of Industrial Engineering at the University of Surabaya, Indonesia. She received her Master's degree in Industrial Engineering from the National University of Singapore and her Bachelor's degree in Physic Engineering from Institut Teknologi Sepuluh Nopember (ITS) Surabaya, Indonesia. Her research interests are in container terminal operations, supply chain engineering, and disaster operations and management.

Winardi is an industrial practitioner, and he obtained a bachelor’s degree in Industrial Engineering from the University of Surabaya, Indonesia. His research interests include transportation and distribution systems, Vehicle routing optimization, and modeling.
Operations and Supply Chain Management
AN INTERNATIONAL JOURNAL

Nyoman Putrawan
Operations and Supply Chain Management: Editorial

Renata M. Feenstra
Sustainability and the Future of Supply Chain Management

Manish Soni, Christopher S. Tang
Is the East Following the West or Is Own Destiny for Industrial Development?
A Research Agenda Based on Supply Chain Integration

Damien Prevot
Adoption of Supply Chain Management Enabling Technologies:
Comparing Small, Medium and Larger Organizations

Reza S. Lashkari, Haihun (Helen) Zhang
Modeling and Analysis of a Reverse Supply Chain Network
for Lead-Acid Battery Manufacturing

A.H.M. Shamsuzzoha, Petri Helo, Tauno Kekala
Applying Design Structure Matrix (DSM) Method in Mass Customizations
Source details

Operations and Supply Chain Management
Scopus coverage years: from 2018 to Present
Publisher: Operations and Supply Chain Management Forum
ISSN: 1979-3561 E-ISSN: 2579-9363
View all

Source type: Journal

CiteScore 2020
1.3

SJR 2020
0.234

SNIP 2020
0.859

CiteScore rank & trend
Scopus content coverage

Improved CiteScore methodology
CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more

CiteScore 2020
1.3
100 Citations 2017 - 2020
76 Documents 2017 - 2020
Calculated on 05 May, 2021

CiteScoreTracker 2021
2.4
253 Citations to date
105 Documents to date
Last updated on 05 October, 2021 - Updated monthly

CiteScore rank 2020

<table>
<thead>
<tr>
<th>Category</th>
<th>Rank</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Sciences</td>
<td>#87/152</td>
<td>43rd</td>
</tr>
<tr>
<td>Decision Sciences: Statistics, Probability and Uncertainty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision Sciences: Information Systems and Management</td>
<td>#75/125</td>
<td>40th</td>
</tr>
<tr>
<td>Business, Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View CiteScore methodology CiteScore FAQ Add CiteScore to your site
Editor in Chief

Professor Nyoman Pujawan
Department of Industrial Engineering
Sepuluh Nopember Institute of Technology (ITS), Surabaya – Indonesia
E-mail: pujawan@ie.its.ac.id

Associate Editors

Dr. Kamrul Ahsan
School of Business IT and Logistics,
RMIT University, Australia
E-mail: kamrul.ahsan@rmit.edu.au

Dr. Youssef Boulaksil
UAE University College of Business and Economics, United Arab Emirates
E-mail: youssef.boulaksil@gmail.com

Professor Felix T.S. Chan
Department of Industrial and Systems Engineering,
The Hong Kong Polytechnic University
E-mail: f.chan@polyu.edu.hk

Professor Bin Dan
School of Economics and Business Administration,
Chongqing University, China
E-mail: danbin@cqu.edu.cn

Dr. Yash Daultani
Indian Institute of Management (IIM) Lucknow, India
E-mail: yash.daultani@gmail.com

Dr. Matthew J. Drake
Palumbo–Donahue School of Business,
Duquesne University, USA
E-mail: drake987@duq.edu

Dr. Amulya Gurtu
University of Wisconsin–Green Bay Green Bay, WI, USA
E-mail: gurtua@uwgb.edu

Dr. Seock-Jin Hong
Department of Marketing, Logistics, and Operations Management,
G. Brint Ryan College of Business, University of North Texas, USA
E-mail: seock.hong@unt.edu

Dr. Ying Liao
Department of Marketing and Supply Chain Management
College of Business, East Carolina University, USA
E-mail: liaoy17@ecu.edu

Dr. Barbara Ocicka
SGH Warsaw School of Economics, Poland
E-mail: barbara.ocicka@sgh.waw.pl

Dr. Himanshu Shee
Victoria University Business School, Melbourne, Australia
E-mail: himanshu.shee@vu.edu.au
Dr. Xinan Yang
Department of Mathematical Sciences, University of Essex, UK
E-mail: xyangk@essex.ac.uk

Members of the Editorial Board

- Imad Alyouf
 Industrial Engineering and Engineering Management Dept.
 University of Sharjah, Sharjah, UAE

- Andi Cakravastia
 Department of Industrial Engineering
 Bandung Institute of Technology, Indonesia

- Pavel Cestka
 College of Business and Economics
 University of Canterbury, New Zealand

- Felix T. S. Chan
 Department of Industrial and Systems Engineering
 The Hong Kong Polytechnic University, China

- Erik J. de Bruijn
 School of Business, Public Administration and Technology
 University of Twente, the Netherlands

- Ike Echie
 College of Business Administration
 Kansas State University, USA

- Per Engelson
 Molde University College, Norway

- Per Hillstroth
 Department of Industrial Engineering and Management
 Jönköping University, Sweden

- M. Abdul Hoque
 Dept. of Mathematics
 University Brunei Darussalam, Brunei Darussalam

- Kap Hwan Kim
 Department of Industrial Engineering
 Pusan National University, Korea

- René de Koster
 Department Management of Technology and Innovation
 RSM Erasmus University, the Netherlands

- Duangpun Kritchanachai
 Centre of Logistics Management
 Mahidol University, Thailand

- Rajesh Piplani
 School of Mechanical and Aerospace Engineering
 Nanyang Technological University, Singapore

- Yiannis Polychronakis
 Salford Business School
 University of Salford, UK

- Damien Power
 Dept. of Management, Faculty of Economics & Commerce
 The University of Melbourne, Australia

- Saibal Ray
 Desautels Faculty of Management
 McGill University, Canada

- David Robb
 Department of Management Science and Engineering
 Tsinghua University, China

- Ahmad Rusdiansyah
 Department of Industrial Engineering
 Sepuluh Nopembar Institute of Technology, Indonesia

- Ruhul Amin Sarker
 Operations Research Group, School of ITEE
 University of New South Wales, Australia

- Chien-wen Shen
 Department of Business Administration,
 National Central University, Taiwan

- Togar Simatupang
 School of Business
 Bandung Institute of Technology, Indonesia

- Vinod Singhal
 College of Management
 Georgia Institute of Technology, USA

- Ramaswami Sridharan
 School of Management
 RMIT University, Australia

- Ahmad Syamil
 BINUS University, Indonesia
• Reza Lashkari
 Dept. of Industrial & Manufacturing Systems Eng.
 University of Windsor, Canada

• Henry Lau
 Dept. of Industrial and Manufacturing Systems Eng.
 The University of Hong Kong, Hong Kong

• Ming K Lim
 Sustainability and Strategy Centre for Business in Society
 Coventry University, UK

• Shui-Shun Gordon Lin
 Department of Business Administration
 National Chinyi University of Technology, Taiwan

• Tore Markeset
 Center for Industrial Asset Management
 University of Stavanger, Norway

• Bhimaya A. Metri
 International Management Institute, New Delhi, India

• Uche Okongwu
 CERMAS Research Centre and Dept of Logistics & Org.
 Toulouse Business School, France

• Monalisha Pattnaik
 Dept of Business Administration, Utkal University, India
 University of New South Wales, Australia

• Katsuhiko Takahashi
 Graduate School of Engineering
 Hiroshima University, Japan

• Kim Hua Tan
 Nottingham University Business School
 University of Nottingham, UK

• Armagan Tarim
 Department of Management
 Hacettepe University, Turkey

• Benny Tjahjono
 Cranfield School of Management
 Cranfield University, UK

• Zulkifli Mohamed Udin
 Faculty of Technology Management
 Universiti Utara Malaysia (UUM), Malaysia

• Hui Ming Wee
 Industrial Engineering Department
 Chung Yuan Christian University
 Taiwan

• Joel D. Wisner
 College of Business
 University of Nevada, Las Vegas, USA

• Hartanto Wong
 Aarhus University, Denmark

• Suhaiza Zailani
 Universiti of Malaysia, Malaysia

• Li Zhou
 Business School
 University of Greenwich, UK
Volume 14, Issue 4, 2021

1. Identifying the Relation Between a Supply Chain Network's Structure and Its Overall Financial Performance
 Penina Orenstein Hongfei Tang
 http://doi.org/10.31387/oscum0470311 Full PDF
 No tags defined

2. Additive Manufacturing: Currently a Disruptive Supply Chain Innovation?
 Per Engelseth Maryam Salman Waqas Mushtaq Fahad Awaleh Remigiusz Kozlowski
 Richard Giavee-Geo
 http://doi.org/10.31387/oscum0470312 Full PDF
 No tags defined

 Kevin Forehand Juan Roman Thomas Schaefer
 http://doi.org/10.31387/oscum0470313 Full PDF
 No tags defined

4. Key Components and Critical Success Factors for Project Management Success: A Literature Review
 Sarath Herath Siong Choy Chong
 http://doi.org/10.31387/oscum0470314 Full PDF
 No tags defined

5. Raw Material Order Allocation Problem Using Mixed Integer Linear Programming and Simulation
 Ary Wibowo Niniet Arvitrda Erwin Widodo
 http://doi.org/10.31387/oscum0470315 Full PDF
 No tags defined

6. Sustainable Supply Chain Practices (SSCPs) and Organizational Performance: A Mediating Role of Functional Constructs
 Eliza Sharma Jagdeep Singia
 http://doi.org/10.31387/oscum0470316 Full PDF
 No tags defined

7. The State of Cold Logistics Supply Chain in a Developing Asian Country – A Preliminary Insights
 Mohd Faizal Abu Hassan Abdul Hafaz Ngah Mohamed Syazwan Ab Talib
 http://doi.org/10.31387/oscum0470317 Full PDF
 No tags defined
8. Barriers to Adoption of Supply Chain Management in India: A Theoretical Model and Scale Development
Srichandan Sahu K.V.S.S. Narayana Rao
http://doi.org/10.31387/oscm0470318 Full PDF
No tags defined

9. A Study on Transfer Pricing Considering Fairness and Profitability
Qian Huang Shunichi Ohmori
http://doi.org/10.31387/oscm0470319 Full PDF
No tags defined

10. Operational Coordination in Intermodal Hinterland Transport as Support for Managing Operational Disruptions – An Information Processing Perspective
Per Wide Dan Andersson Violeta Roso
http://doi.org/10.31387/oscm0470320 Full PDF
No tags defined

11. Integrating a Voice of Customer to Create the Customer Needs Quality Function Deployment (CN-QFD) for a Sustainable New Product Development
Thanyatorn Fongsatirkul Yasutaka Kainuma
http://doi.org/10.31387/oscm0470321 Full PDF
No tags defined

12. Designing Clusters of Distribution Area and Delivery Route for Maximizing the Vehicle Utilization and Minimizing the Workload Gap and Transportation Cost
Amelia Santoso Joniarto Parung Dina Frayogo Winardi
http://doi.org/10.31387/oscm0470322 Full PDF
No tags defined

13. Critical Factors for Food Safety in Global Commodity Flows with a Focus on Logistics – A Case Study on Mycotoxin Contamination of Agri-Bulk Commodities
Milena Zupaniec Helmut-A. Schafft Ann-Kathrin Lindemann Robert Pieper Anneluise Mader
http://doi.org/10.31387/oscm0470323 Full PDF
No tags defined

Joshin John
http://doi.org/10.31387/oscm0470324 Full PDF
No tags defined

15. Managing the Risks in the Clothing Supply Chain Considering the Coronavirus Pandemic
Eli Sumariah Kamila Usmanova Fauziyah Fauziyah Kawther Mousa
http://doi.org/10.31387/oscm0470325 Full PDF
No tags defined
Operations and Supply Chain Management

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>SUBJECT AREA AND CATEGORY</th>
<th>PUBLISHER</th>
<th>H-INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>Decision Sciences
Information Systems and Management
Management Science and Operations
Research
Statistics, Probability and Uncertainty</td>
<td>Operations and Supply Chain Management Forum</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUBLICATION TYPE</th>
<th>ISSN</th>
<th>COVERAGE</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journals</td>
<td>19793561, 25799363</td>
<td>2018-2020</td>
<td>Homepage, How to publish in this journal, oscm.editor@gmail.com</td>
</tr>
</tbody>
</table>
SCOPE

The Journal will publish original papers in the broad area of operations management and supply chain management, including, but are not limited to:

- Operations / Supply chain strategy
- Operations / Supply chain design
- Operations / Supply chain planning
- Inventory planning and control
- Procurement management
- Demand forecasting
- Demand management
- Product design and supply chain
- Transportation and distribution
- Warehousing & material handling
- Logistics outsourcing
- Lean manufacturing
- Quality management
- Maintenance management
- Location decisions
- Retail operations
- Global operations / SCM
- Sustainable supply chain
- IS/IT for SCM
- E-Business
- SCM / Marketing interfaces
- SCM performance measure
- Financial aspects of SCM
- Human aspects of operations / SCM
- Pedagogical issues in OSCM
- IS/IT for SCM
- E-Business
- Research methodology for OSCM

Join the conversation about this journal
1. International Journal of Logistics Research and GBR
 74% similarity

2. Uncertain Supply Chain Management CAN
 74% similarity

 74% similarity

4. Logistics Research DEU
 72% similarity

SJR
 The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from. It measures the scientific influence of the average article in a journal and expresses how central to the global scientific community a journal is.

Total Documents
 Evolution of the number of published documents. All types of documents are considered, including citable and non-citable documents.

Citations per document
 This indicator counts the number of citations received by documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor (Thomson Reuters) metric.

Cites per document
 Year
 Value
 Cites / Doc. (4 years)
 2018 0.000
 2019 1.100
 2020 1.568
 Cites / Doc. (3 years)
 2018 0.000
 2019 1.100
 2020 1.568
 Cites / Doc. (2 years)
 2018 0.000
 2019 1.100
 2020 1.568

Total Cites
 Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years. Journal self-citation is defined as the number of citations from a journal citing article to articles published by the same journal.

Cites
 Year
 Value
 SlfCit
 2018 0

External Cites per Doc
 Evolution of the number of total citation per document and external citation per document (i.e. journal self-citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal's documents.

Cit
 Year
 Value
 2018 0.4
 2019 0.8
 2020 1.2

% International Collaboration
 International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is including more than one country address.

Citable documents
 Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents.
Sorry to ask? Do all journals have to be in English? How do I create an account?

reply

Melanie Ortiz 4 weeks ago

Dear Sugeng,

Thank you for contacting us.

Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage or contact the journals editorial staffs, so they could inform you more deeply.

Best Regards, SCImago Team
Dear Admin,

Greetings of the Day!

Can you please update whether this journal is still listed in SCOPUS or not?

reply

Dear Ramakrishna,

Thank you very much for your comment. All the metadata have been provided by Scopus /Elsevier in their last update sent to SCImago, including the Coverage's period data. The SJR for 2019 was released on 11 June 2020. We suggest you consult the Scopus database directly to see the current index status as SJR is a static image of Scopus, which is changing every day.

Best Regards, SCImago Team

could you tell me that the coverage mentioned above says 2019 but we are in 2020 now can we still publish paper.

reply

Dear Anusha,

Thank you for contacting us. The Coverage data shown above indicates the period in which the journal has been indexed in Scopus database. For further information about the journal's submission guidelines, please visit the journal's website or contact the editorial staff.

Best Regards, SCImago Team

Dear Sigit,

Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage or contact the journal's editorial staff, so they could inform you more deeply.

Best Regards, SCImago Team
Dear Scimago admin,

could you please send the homepage of this journal.

thanks

reply

Dear Trinoto, thank you for contacting us. We will proceed to update the journal's website information as soon as possible. Greetings from Spain and thank you for using the SCImago products, SCImago Team

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.
EST MODUS IN REBUS
Hercule (Série 1,1,196)