Evaluation of Apium graveolens from different geographical origins based on TLC-fingerprint and chemometrics

To cite this article: K Kartini et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 913012062

View the article online for updates and enhancements.

You may also like
The Effect of Explant Types and Plant Growth Requlators On Callus Induction of Geranium (Pelargonium graveolens L'Her) In Vitro
Moch Faizul Huda, S Indriyani and W Widoretno

Development of thick celery-based paste recipe
G V Ivanova, O Ja Kolman, T N Yamskikh et al.

Study of the changes in the chemical composition of Bulgarian dill essential oils K Z Dobreva and M D Dimov

Evaluation of Apium graveolens from different geographical origins based on TLC-fingerprint and chemometrics

K Kartini*, M Jannah, F Wulandari, N D Oktaviyanti, F Setiawan, N I E Jayani
Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
*Corresponding author: kartini@staff.ubaya.ac.id

Abstract

Apium graveolens (celery) has various roles both in the food and medicine sectors. It grows very well in the tropical and subtropical areas of Africa and Asia, including Indonesia. This Apiaceae member contains a number of phytoconstituents, and geographical origin is known to significantly determine the type and concentration of phytochemicals in plant material. This study was carried out to validate and develop thin layer chromatography (TLC)based fingerprinting combined with chemometrics, i.e., Principal Component Analysis (PCA) and Cluster Analysis (CA), to evaluate the quality of celery harvested from thirteen different geographical origins in Indonesia. The mobile phase was first optimized with a simplex axial design, resulting in 2-propanol, toluene, and dichloromethane (1:6:1) as the optimum mobile phase for a stable and precise TLC system in the celery sample analysis. When analyzed with chemometrics, the TLC-fingerprints could discriminate celeries from various origins. The PCA score plot of the first two principal components (PCs) and CA clearly distinguished the samples' properties and classified them into four clusters. Samples grouped into one cluster were concluded to have comparable quality, while those in different clusters had different qualities.

Keywords: Apium graveolens, celery, cluster analysis, geographical origins, herbal quality, Principal Components Analysis

1. Introduction

Apium graveolens (celery) is a plant that is widely used as a food ingredient in various countries. In Indonesia, it is also used as a component of herbal medicines like jamu (a traditional herbal drink), phytopharmaceuticals, and scientifically proven jamu to lower high blood pressure. Celery contains various pharmacologically active compounds, especially from the flavonoid group (e.g., apigenin, luteolin, and kaempferol) and the coumarin group (including bergapten and umbelliferone). In addition, volatile compounds like d-limonene, β-pinene, and d-carvone and phenolic acids such as caffeic acid, p-coumaric acid, and chlorogenic acid are also commonly found in this plant [1, 2]. Celery, with these diverse compounds, is known to be a good antioxidant, and this property has been confirmed through various test methods. Furthermore, it also proves to exhibit a protective effect against various metabolic syndromes, such as diabetes mellitus, hyperlipidemia, and hypertension [1, 3].

Apigenin is the main flavonoid in celery and has been shown to have numerous pharmacological activities in vitro, in vivo, and even in clinical trials [1, 4]. Many have therefore used apigenin levels as a parameter in evaluating the quality of celery [5-9]. Moreover, various pharmacopeias have accepted the use of one or more chemical markers as a parameter of the quality of herbs and their products. Chemical markers can also be used to confirm the correctness of plant species, optimize extraction methods, and even evaluate product stability [10].

Herbal medicine is basically a multicomponent complex whose constituent compounds work synergistically to create pharmacological activities and contribute to its therapeutic safety and efficacy. Therefore, an evaluation that is solely based on one or several certain components cannot thoroughly describe the quality of herbal products [11]. A newer approach called chemical fingerprinting can provide a more comprehensive picture of their characteristics. Several pharmacopeias worldwide have started to accept this strategy, including the Chinese Pharmacopeia [12].

Fingerprinting describes a profile or pattern of characteristics that is chemically representative of herbal composition and usually "displays" as much information as possible. Herbs can be fingerprinted using chromatographic and spectroscopic techniques [12]. Fingerprinting produces multivariate data that require further processing to provide useful particulars of the tested herb. An example includes chemometrics that combines statistics and mathematics to process chemical data into larger and more readily used information [11].

Low and inconsistent quality is one of the challenges that herbal medicines still need to address. Plant sources, geographical environment, and cultivation technology are some of the major factors influencing the quality of herbal medicines [13]. In a previous study, FTIR-fingerprinting followed by chemometrics has been used to analyze celeries collected from ten planting locations [14]. This technique proves effective to classify them and even distinguish three samples of celeries obtained from the market. To complement the celery fingerprinting analysis method, the current research employs a chromatographic technique called thin layer chromatography (TLC). Herbal profile analysis by TLC is a standard procedure that many pharmacopeias still follow, including the Indonesian Herbal Pharmacopeia and the Chinese Pharmacopeia [9, 12].

2. Materials and methods

2.1. Chemicals and plant materials

Apium graveolens was harvested from 13 locations in Indonesia (Table 1), and the samples have been verified by the Center for Information and Development of Traditional Medicine (PIPOT), Faculty of Pharmacy, University of Surabaya, with a certificate of identification No. 1432/D.T/I/2021. Unless stated otherwise, all the chemicals used in this research were obtained from Merck (Darmstadt, Germany). These included TLC silica gel $60 \mathrm{GF}_{254}$ plates, methanol, ethanol, toluene, ethyl acetate, formic acid, 2-aminoethyl diphenylborinate, PEG4000, tetrahydrofuran, dioxane, n-hexane, acetic acid, 2-propanol, diethyl ether, dichloromethane, and apigenin (Sigma Aldrich Co., St. Louis, MO, USA).

2.2. Extraction

All parts of the plant that are above the ground were harvested by cutting at the base of the stalk about 2 cm from the ground. Afterward, the leaves were harvested then washed with running water, airdried, ground into powder, and sifted using a 60 -mesh sieve (Figure 1). For each geographical origin, the moisture content of the resulting powder was measured (Table 1). One gram of the powder was extracted with 10 ml of methanol using an ultrasonic bath ($42 \mathrm{kHz}, 15$ minutes) then filtered into a 10 ml volumetric flask.

Figure 1. Celery powder from Tawangmangu (1), Materia Medika (2), Batu (3), Pasuruan (4), Bandung (5), Banyumas (6), Mojokerto (7), Ponorogo (8), Bondowoso (9), Karanganyar (10), Lumajang (11), Ngawi (12), and Surabaya (13)

Table 1. Moisture contents of the powdered celeries from different geographical origins in Indonesia.

No.	Location	Latitude, Longitude	Height (m a.s.l)	Moisture content (\%)*
1.	Tawangmangu	$7^{\circ} 39^{\prime} 54 " S, 111^{\circ} 07^{\prime} 45{ }^{\prime \prime E}$	1200	3.03 ± 0.96
2.	Materia Medika	$7^{\circ} 52^{\prime} 00{ }^{\prime \prime} \mathrm{S}, 112^{\circ} 31^{\prime} 11^{\prime \prime} \mathrm{E}$	896	5.09 ± 1.74
3.	Batu	$7^{\circ} 47^{\prime} 36{ }^{\prime \prime} \mathrm{S}, 112^{\circ} 32^{\prime} 17^{\prime \prime} \mathrm{E}$	1440	4.21 ± 0.28
4.	Pasuruan	$7^{\circ} 53{ }^{\prime} 58$ "S, 112**9'21"E	1140	3.94 ± 1.07
5.	Bandung	$6^{\circ} 49^{\prime} 37{ }^{\prime \prime} \mathrm{S}, 107^{\circ} 35^{\prime} 31^{\prime \prime} \mathrm{E}$	1331	3.38 ± 0.18
6.	Banyumas	$7^{\circ} 18^{\prime} 16^{\prime \prime} \mathrm{S}, 109^{\circ} 13{ }^{\prime} 26{ }^{\prime \prime} \mathrm{E}$	888	3.43 ± 0.39
7.	Mojokerto	$7^{\circ} 41^{\prime} 31{ }^{\prime \prime} \mathrm{S}, 112^{\circ} 32^{\prime} 42^{\prime \prime} \mathrm{E}$	600	3.52 ± 0.68
8.	Ponorogo	$7^{\circ} 52^{\prime} 34{ }^{\prime \prime} \mathrm{S}, 111^{\circ} 35^{\prime} 35{ }^{\prime \prime} \mathrm{E}$	355	3.39 ± 0.43
9.	Bondowoso	$7^{\circ} 54^{\prime} 51 \mathrm{SS}, 113^{\circ} 49^{\prime} 21^{\prime \prime} \mathrm{E}$	260	4.01 ± 0.53
10.	Karanganyar	$7^{\circ} 33{ }^{\prime} 36 " S, 110^{\circ} 53^{\prime} 05^{\prime \prime} \mathrm{E}$	900	4.83 ± 0.01
11.	Lumajang	$7^{\circ} 59^{\prime} 47{ }^{\prime \prime} \mathrm{S}, 113^{\circ} 15^{\prime} 04{ }^{\prime \prime} \mathrm{E}$	197	3.89 ± 0.08
12.	Ngawi	$7^{\circ} 29^{\prime} 14{ }^{\prime \prime} \mathrm{S}, 111^{\circ} 24^{\prime} 56{ }^{\prime \prime} \mathrm{E}$	58	5.12 ± 1.79
13.	Surabaya	$7^{\circ} 17^{\prime} 46{ }^{\prime \prime} \mathrm{S}, 112^{\circ} 41^{\prime} 58{ }^{\prime \prime E}$	24	4.96 ± 0.45

*mean $\pm \mathrm{SD}(\mathrm{n}=3)$

2.3. Method validation

2.3.1. TLC conditions

The celery extract $(8 \mu \mathrm{l})$ and apigenin solution $(2 \mu \mathrm{l})$ were applied to TLC plates. The plate was then inserted into the chamber that had been previously saturated with the mobile phase (according to the Selection of mobile phase section). It was eluted to the mark and sprayed with a staining agent (NPreagent). Afterward, it was observed and documented using a TLC visualizer under visible, 254 nm UV, and 366 nm UV lights.

2.3.2. Selection of mobile phase

The optimum mobile phase was selected using a simplex axial design [15, 16] in two stages. In the first stage, elution was conducted using a single eluent, namely chloroform, tetrahydrofuran, ethanol, dioxane, n-hexane, toluene, ethyl acetate, acetic acid, 2-propanol, diethyl ether, and dichloromethane. Afterward, the second stage mixed two or three of these substances with a predefined ratio as the eluent. The substances selected in this stage were those producing the highest number of compound spots with the best separation in the first stage.

2.3.3. Stability testing based on chromatogram

The stability of the constituent compounds during the elution process was assessed by spotting the extract on the left corner of the plate ($10 \mathrm{~cm} \times 10 \mathrm{~cm}$), precisely 15 mm from the bottom and left edges. Afterward, the plate was eluted and dried before being rotated 90° to the left and re-eluted with a new mobile phase.

The compound's stability on the plate and in the extract solution was examined using three differently prepared inputs: (i) the extract was spotted onto the plate and left for three hours before elution, (ii) the extract was prepared and applied immediately before elution, and (iii) the extract was left in a solution for three hours before spotting. The plates were developed and documented using a TLC visualizer.

2.3.4. Precision analysis of the chromatogram

To evaluate the precision, celery powder was weighed three times and extracted in the same way. Then, each extract was applied three times on three different plates. Every time the plate was eluted, the same chamber was used but with a new mobile phase. After elution, the chromatogram was then documented using a TLC visualizer.

2.3.5. TLC-fingerprinting analysis

Celery extracts from 13 different locations were spotted on one TLC plate ($20 \mathrm{~cm} \times 10 \mathrm{~cm}$), eluted, and observed under the validated conditions. The chromatogram was then transferred to a VideoScan format to produce the video densitogram and data like Rf values, areas, and peak heights. For every sample, the peak height at each Rf value was then tabulated into a 13 x n data matrix, where 13 represents the number of celery samples and n denotes the number of peaks observed in the video densitogram. The data were then analyzed in Minitab v16.1.0 (Minitab Inc., USA) using Principal Component Analysis (PCA) and Cluster Analysis (CA), which are two chemometric techniques suitable for analyzing multivariate data.

3. Results and discussion

3.1. Optimized mobile phase

Powders of the celeries collected from 13 locations in Indonesia had different organoleptic characteristics (see Figure 1). Sample numbers 5, 11, 12, and 13 were dark green, while the rest were brownish-green. Chemical contents that vary between the plants are believed to be responsible for the color differences, which can be used as the first indicator-i.e., that samples with the same color also have comparable quality. However, this needs to be further confirmed with TLC-fingerprinting.

Sample 1 (from Tawangmangu) was used in the mobile phase optimization and method validation. From eleven single eluents, it was found that 2 -propanol, toluene, and dichloromethane produced the best separation. These three mobile phases were thereby mixed with varying ratios using the simplex axial design. The results showed that combining 2-propanol, toluene, and dichloromethane in a ratio of 1.5:6:1.5 created an element with the best separation among the ten prepared ratios. Nevertheless, because the resulting separation was visually less optimal, another mixture with a new ratio was made. Finally, it was found that the ratio of 1:6:1 produced a better separation (Figure 2A).

3.2. Compound's stability

The stability test results of the extract's compounds during the elution process are presented in a chromatogram in Figure 2B. The chromatogram shows that the compound spots lay on a diagonal line after the bidimensional elution. Thus, it can be concluded that the chemical compounds in the celery extract have good stability during elution [17]. Figure 3 shows the stability test results of the compound on the plate (a) and in the extract solution (c). Tracks a and chad the same pattern as track b (comparator). The difference in Rf values of the marker compounds (*) on tracks a, b, and c did not exceed 0.05 . In other words, the chemical compounds in the celery extract are stable on the plate and in the extract solution.

Figure 2.A. TLC plates resulting from the mobile phase optimization for celery extract analysis. B. Chromatogram showing the stability of the celery extracts during elution. MP: 2-propanol, toluene, dichloromethane (1:6:1). D: visible light (a), 254 nm UV light (b), 366 nm UV light (c).

Figure 3. Stability testing of the compound in the extract solution and on the plate with three differently prepared inputs: a. The spotted extract was left on the plate for 3 hours, b: the extract was prepared just before spotting, c: the extract was left in a solution for 3 hours before spotting, st: apigenin. MP: 2-propanol, toluene, dichloromethane (1:6:1). D: visible light (A), 254 nm UV light (B), and 366 nm UV light (C).

3.3. Chromatogram's precision

Figure 4 shows that the TLC method used has good intraday precision, as indicated by the Rf values of the marker compounds $(*)$ that were not higher than 0.02 on the three plates (I, II, III) [17].

Figure 4. Intraday precision test results. The numbers 1,2 , and 3 mean that the celery extract was spotted three times, st: apigenin, while the Roman numerals I, II, and III show three different plates. MP: 2-propanol, toluene, dichloromethane (1:6:1). D: visible light (A), 254 nm UV light (B), and 366 nm UV light (C). (*) marker compound.

3.4. TLC-fingerprints of celery leaves

Thin layer chromatography (TLC) is an analytical technique that has been commonly used in both qualitative and quantitative analyses of herbs and even for testing biological activities when combined with bioautography. TLC remains a preferred choice for it is fast, simple, and inexpensive. Further,
this method also has great flexibility because it can analyze up to 20 samples simultaneously under the same conditions. With advances in technology, modern high-performance thin layer chromatography (HPTLC) has been successfully developed, thus providing a reliable and robust analytical technique that can meet the demands of Current Good Manufacturing Practices (CGMPs) [18-20].

In this study, the celery leaves (Figure 5) were fingerprinted by spotting the sample extract on a TLC plate (20 cm x 10 cm) using a Linomat 5 TLC , eluting it with 2-propanol-toluenedichloromethane (1:6:1), and performing derivatization with NP-reagent (1\% 2-aminoethyl diphenylborinate in methanol), followed by 5% PEG 4000 in methanol. After 15 minutes, the chromatograms were observed under visible, 254 nm UV, and 366 nm UV lights using a TLC visualizer. Observations with 366 nm UV light (Figure 5C) detected the highest number of spots with the best separation compared with two other lights. Furthermore, in Figure 5, apigenin (tracks 1 and 15) appeared as green fluorescent spots (5C) that reduced fluorescence intensity (5B). However, the samples on other tracks (2-14) did not show any spots with the same color and Rf as apigenin. This is presumably because the apigenin levels in all celery samples are too small to be observed with the TLC system used.

With the TLC visualizer, peaks or patterns on the chromatogram observed under 366 nm UV light (Figure 5D) were converted into a video densitogram (Figure 5D). Afterward, the data presented on it were tabulated to show the Rf value and peak height of each sample (table not shown). These data were obtained from spotting samples three times (triplicates) on three different plates.

3.5. PCA and $C A$

For each sample, PCA and CA were applied to analyze the height of each detected peak. PCA is a multivariate analysis that can transform original variables that are correlated to each other into new independent ones, creating a smaller dimension that can still explain most of the information contained in the diverse original variables. The scree plot of the PCA (Figure 6A) shows that the total variance was shared among the ten principal components (PCs). PC1 explained 46.5% of the total variance, or the largest proportion compared with the original variables. PC2 contributed 25.6% of the total
variance. It can be concluded that, together, PC1 and PC2 represent 72.1% of the data variability. Accordingly, PCA can reduce data from ten variables (peak heights at ten Rf values) into two new representative ones (up to PC2) because 72.1% of the information can be extracted up to PC2. Figure 6B displays the plot scores of the two principal components (PC 1 and PC 2) for the thirteen celery leaf samples.

Figure 6. Scree plot of ten PCs analyzed with PCA (A) and score plot of two PCs (PC1 and PC2) from 13 celery leaf samples (B). 1-13 represents the origin of samples as described in Table 1.

The loading plot (Figure 7A) illustrates how strongly each variable is correlated. If two variables are close and form a small angle (e.g., peaks on the chromatogram with Rf values of between 0.1-0.2 and $0.3-0.4$), they are positively correlated. On the contrary, if they meet at an angle close to 90° (e.g., peaks on the chromatogram with Rf values between $0.1-0.2$ and $0.9-1.0$), they are not correlated. Meanwhile, if they are far apart and form a large angle close to 180° (e.g., peaks on the chromatogram with Rf values between $0.5-0.6$ and $0.9-1.0$), they are likely to be negatively correlated.

After PCA, Cluster Analysis (CA) was applied to group celery leaves from 13 different regions in Indonesia based on their similarity. As seen in Figure 7B, the dendrogram generated by CA shows four clusters of the celery leaf samples. The first cluster consisted of samples from Tawangmangu (1), Batu (3), Ponorogo (8), Pasuruan (4), Banyumas (6), Bondowoso (9), and Karanganyar (10). The second cluster was a sample from Mojokerto (7), the third was from Bandung (5), Lumajang (11), Ngawi (12), and Surabaya (13), while the fourth was from Materia Medika (2).

Figure 7. Loading plot of the first two PCs resulting from the PCA of celery leaves from 13 different locations (A). The dendrogram resulting from an average linkage in the CA (B). 1-13 represents the origin of samples as described in Table 1.
Samples grouped into one cluster are likely to have similar chemical content both qualitatively and quantitatively, or in other words, they have comparable quality. On the other hand, different clusters indicate samples with different qualities. The 13 samples of celery leaves observed in this study came from varying heights, from lowlands (Surabaya and Ngawi), midlands (Ponorogo, Bondowoso, Lumajang, and Mojokerto) to highlands (Tawangmangu, Batu, Pasuruan, Banyumas, Karanganyar, Bandung, and Materia Medika). However, the four clusters resulting from the CA are not necessarily related to the altitude of the geographical origin. Other factors such as soil type and cultivation process are believed to affect the clustering. These results are in line with a previous study
that has confirmed the celery leaf clusters produced in the FTIR-fingerprinting are not based on the altitude at which the samples were collected [14].

4. Conclusion

The combination of TLC-fingerprinting and chemometrics (PCA and CA) can distinguish Apium graveolens from various locations. A. graveolens harvested from 13 regions in Indonesia can be classified into four clusters. Here, the samples grouped into one cluster are concluded to have comparable quality, while different clusters indicate those with different qualities.

Acknowledgments

We thank to the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia (Kemendikbudristek) for the finance of this research under PDUPT Research Scheme with the grant number 008/SP-Lit/LPPM-01/Dikbudristek/Multi/FF/VII/2021.

References

[1] Kooti W and Daraei N 2017 J Evid Based Complementary Altern Med 221029
[2] Al-Asmari A K, Athar M T and Kadasah S G 2017 Pharmacogn Rev11 13
[3] Hedayati N, Bemani Naeini M, Mohammadinejad A and Mohajeri S A 2019 Phytother Res 333040
[4] Ali F, Rahul, Naz F, Jyoti S and Siddique Y H 2017 Int J Food Prop20 1197
[5] Yao Y, Sang W, Zhou M and Ren G 2010 J Food Sci75 C9
[6] Miean K H and Mohamed S 2001 J Agric Food Chem49 3106
[7] Zhang Q, Zhou M M, Chen P L, Cao Y Y and Tan X L 2011 J Food Sci76 C680
[8] Han D and Row K H 2011 J Sci Food Agric91 2888
[9] RI D 2017 Farmakope Herbal Indonesia Edisi II (Jakarta: Departemen Kesehatan Republik Indonesia)
[10] Li S, Han Q, Qiao C, Song J, Cheng C L and Xu H 2008 Chin Med3 7
[11] Bansal A, Chhabra V, Rawal R K and Sharma S 2014 J Pharm Anal4 223
[12] Shen M-R, He Y and Shi S-M 2020 J Pharm Anal11 155
[13] Liu C, Guo D-a and Liu L 2018 Phytomedicine44 247
[14] Kartini K, Putri L A D and Hadiyat M A 2020 J Appl Pharm Sci10 062
[15] Alves de Almeida A and Spacino Scarminio I 2007 J Sep Sci30 414
[16] Wall P E 2007 Thin-layer chromatography: a modern practical approach (Cambridge: Royal Society of Chemistry)
[17] Reich E and Schibli A 2007 High-performance thin-layer chromatography for the analysis of medicinal plants (New York: Thieme)
[18] Cheng Z and Wu T 2013 Comb Chem High Throughput Screen 16531
[19] Legerská B, Chmelová D, Ondrejovič M and Miertuš S 2020 Crit Rev Anal Chem 1
[20] Milojković Opsenica D, Ristivojević P, Trifković J, Vovk I, Lušić D and Tešić Ž 2016 J Chromatogr Sci54 1077

围 NOTICE: There are currently some performance issues with IOPscience, which may also cause error messages to appear. Apologies for the inconvenience..

The open access IOP Conference Series: Earth and Environmental Science (EES) provides a fast, versatile and costeffective proceedings publication service.

Latest published conferences

Vol 1031	\vee	Go
Conference archive		
2022	\vee	Go

View forthcoming volumes accepted for publication.

If you would like more information regarding IOP Conference Series: Earth and Environmental Science please visit conferenceseries.iop.org, and if you are interested in publishing a proceedings with IOP Conference Series please visit our page for conference organizers.

Conference organizers can use our online form and we will get in touch with a quote and further details.

Most read
Latest articles

JOURNAL LINKS

Journal home
Journal scope
Information for organizers
Information for authors
[

\qquad
\qquad

.
Pr
.

围 NOTICE：There are currently some performance issues with IOPscience，which may also cause error messages to appear．Apologies for the inconvenience．．

Table of contents

Volume 913

2021
4 Previous issue Next issue＊

4th International Conference on Bioscience and Biotechnology 16－18 August 2021，Indonesia （Virtual）

Accepted papers received： 01 November 2021
Published online： 02 December 2021

Open all abstracts

Preface

OPEN ACCESS
Preface：Proceedings of the $4^{\text {th }}$ International Conference on Bioscience and
Biotechnology（4 ${ }^{\text {th }}$ ICBB 2021）， $21^{\text {st }}-23^{\text {rd }}$ September 2021.
\pm Open abstract 国 View article PDF

OPEN ACCESS
Peer review declaration
＋Open abstract 国 View article PDF

Natural Resources in Agriculture

OPEN ACCESS

Application of manures reduces inorganic fertilizers requirement for maize grown in a sandy soil

G A A P Kreshnadhi，I K D Jaya，B B Santoso，W Wangiyana and H Suheri
＋Open abstract
View article
気 PDF

Soil chemical characteristics and yield of red rice under aerobic irrigation system as
affected by intercropping with peanut and application of organic wastes on permanent raised－beds
I G M Kusnarta，D Rahmadhanti，N W D Dulur and W Wangiyana

+ Open abstract 国 View article 国 PDF

OPEN ACCESS

The effect of organic waste application on some soil physical properties，growth and yield of red rice between conventional and aerobic irrigation system on raised－beds

I G M Kusnarta，A Mawaddah，N W D Dulur and W Wangiyana
＋Open abstract
View article
（L）PDF

OPEN ACCESS

Optimization of curcumin temulawak（Curcuma xanthorrizha Roxb．）on calcareous marginal land under teak

P K Sholihah，E Nihayati and A S Karyawati
$\boldsymbol{+}$ Open abstract 国 View article PDF

OPEN ACCESS

Yield performance of several promising lines of black rice as affected by application of mycorrhiza biofertilizer and additive intercropping with soybean under aerobic irrigation system on raised－beds

W Wangiyana，N Farida and I G P M Aryana

+ Open abstract 国 View article PDF

OPEN ACCESS

Enhancement of antioxidant activity of kencur rhizome in the shade by potassium fertilizer

F Zaini，AR R Friska，D M Mustika，S Y Tyasmoro，A Saitama，A H Zaini and E Widaryanto
\pm Open abstract 国 View article PDF

OPEN ACCESS
Analysis on rhizome shrinkage of two expected kencur（Kaempferia galanga）accessions from east java using MgSO4 fertilizer under shading

R Kurniawan，A R Dalilah，M D Ridwan，A Saitama，A H Zaini，E Widaryanto and K P Wicaksono
\pm Open abstract 国 View article 興 PDF

Effect of Intercropping on Mycorrhizal Populations，Growth，and Yield on Several
Varieties of Maize（Zea mays L．）and Soybeans［Glycine max（L．）Merr．］in Dryland North Lombok， Indonesia

W Astiko，N M L Ernawati and I P Silawibawa
\pm Open abstract 国 View article 㬂 PDF

OPEN ACCESS

Attack intensity of pest in the vegetative phase of Atlantic potato variety in three different altitudes

M Sarjan，Kisman，Anikmatullah，M Windarningsih，A Jihadi，P D Permana and T Chitra

+ Open abstract 国 View article 興 PDF

OPEN ACCESS

Solar－powered IoT based smart hydroponic nutrition management system using FARM
W．Wedashwara，A．H．Jatmika，A．Zubaidi and I．W．A．Arimbawa

```
Open abstract 囯 View article 䟪 PDF
```


OPEN ACCESS

The Rhizobium and calcium fertilizer application to peanut plant in dry land
A Farid Hemon and Sumarjan
＋Open abstract 国 View article 四 PDF

OPEN ACCESS

Development stages of soybean varieties against pod sucking pest Riptortus linearis F ． （Hemiptera：Alydidae）under two different cultivation technologies

Tantawizal，M Sarjan，B Supeno，B A Patu and B N Hidayah

```
+ Open abstract 圂 View article 盛 PDF
```

The relationship of the morphological characteristics of some varieties of soybean on the attack itensity of the pod borer（Etiella zinckenella Treitschke）in two different cultivation techniques

B A Patu，M Sarjan，Tarmizi and Tantawizal
\pm Open abstract 国 View article 興 PDF

OPEN ACCESS
The effect of method and dosage application of biofungicide extract of Legundi leaf fermented with Trichoderma harzianum fungus for control of Fusarium wilt disease on shallots

I M Sudantha，Sudirman and N M L Ernawati
＋Open abstract
View article
國 PDF

OPEN ACCESS

Economic and environmental studies of conservation agriculture on dryland in Central Lombok，Indonesia

E Lastariningsih，T Sjah and I G L P Tanaya
＋Open abstract 国 View article 包 PDF
OPEN ACCESS 012016

Growth response of diploid and tetraploid taro（Colocasia esculenta（L．）Schott）shoot culture to drought stress using polyethylene glycol

A Wulansari，A Purwito，D Sukma and TM Ermayanti

OPEN ACCESS

Crop selection in dryland of North Lombok Regency：farmers search for more money and less risk

T Sjah，I Budastra，I G L P Tanaya and Halil
＋Open abstract 国 View article PDF

OPEN ACCESS

Utilization of oil palm empty fruit bunches biomass through slow pyrolysis process
D E Rahayu，N Karnaningroem，A Altway and A Slamet
＋Open abstract
View article
（ LDF

OPEN ACCESS

Foliar Organic Fertilizer Enhanced Growth，Yield and Carotenoid Content of Carrot Plants（Daucus carota L．）Cultivated in the Lowland

A Nikmatullah，G G Samudra，K Zawani，K Muslim，I Nairfana and M Sarjan
＋Open abstract 国 View article 㦮 PDF

OPEN ACCESS

Agronomic response of kangkung plants typical of Lombok Island with a hydroponic system treated with Trichoderma bionutrients
I M Sudantha，Suwardji and N L P N Sriwarthini
＋Open abstract 国 View article 围 PDF

Effectiveness of snap traps on capturing rodent and small mammals in rural area of two provinces（Yogyakarta and West Java）in Indonesia

N A Herawati and T Purnawan

```
# Open abstract 圂 View article 咀 PDF
```


OPEN ACCESS

Screening of plant growth－promoting bacterial endophytes and rhizobacteria isolated from Curcuma xanthorrhiza

N A Saryanah，Y P Roswanjaya，S Himawati，Sulastri，I S Bidara and D Iskandar
$\boldsymbol{+}$ Open abstract 国 View article 四 PDF

OPEN ACCESS
Intensity of pest attack and yield of potato plant during offseason in Sajang Village， Sembalun District，West Lombok

M Sarjan，A Jihadi，Kisman and A Nikmatullah
\pm Open abstract 国 View article PDF

OPEN ACCESS
Analyses of organic matter and heavy metal composition in formulated macroalgae－based organic fertilizer

S Widyastuti，A Jupri，A Nikmatullah，N S H Kurniawan，I A P Kirana，A S Abidin，A Hernawan，H Sunarpi and
E S Prasedya
\pm Open abstract 国 View article PDF

OPEN ACCESS

Analysis of leaf chlorophyll content of paddy plants during vegetative stage grown in soil media containing macroalgae organic fertilizer

N S H Kurniawan，I A P Kirana，A S Abidin，A Jupri，S Widyastuti，A Hernawan，A Nikmatullah，H Sunarpi and E S Prasedya
＋Open abstract 国 View article PDF

Natural Resources Utilization in Food

OPEN ACCESS

Effect of Saccharomyces cerevisiae ATCC 9763 concentration and fermentation time on bioethanol content from corn stover crude cellulose substrate

A M M Napitupulu，L Suhendra and I B W Gunam
\pm Open abstract 婔 View article 止 PDF

Current status of taro（Colocasia esculenta）utilization as local food diversification toward climate resilience in Indonesia

D Maretta，Sobir，I Helianti，Purwono and E Santosa
\pm Open abstract 国 View article 国 PDF

OPEN ACCESS

Formulation of Indonesian traditional functional drink wedang empon based on Zingiberaceae rhizomes mixed with fruits

D Fitriarni，Martanto and E．E．Rifkowaty

+ Open abstract 国 View article 興 PDF

OPEN ACCESS

Multi－response optimization of cellulose fiber isolation from tapioca solid waste and its characteristics

I W Arnata，B A Harsojuwono，A Hartiati，I B W Gunam，A A M D Anggreni and D Sartika
＋Open abstract
View article
風 PDF

OPEN ACCESS

Synthesis of starch－carrageenan bio－thermoplastic composites on the type and concentration of thermoplastic forming materials as packaging materials

A Hartiati，B A Harsojuwono，H Suryanto and I W Arnata
\pm Open abstract 婔 View article 嵒 PDF

OPEN ACCESS
Effect of antimicrobial addition from lime extract on edible film as food packaging
L Pudjiastuti，N N Sugianto，A Hamzah，D R Zuchrillah，N F Puspita and A Rosalya
＋Open abstract
View article
次 PDF

OPEN ACCESS

Production of bioethanol from wild cassava crude starch（Manihot glaziovii Muell．Arg） using different microbial types and fermentation times

S V Mellicha，I B W Gunam，N S Antara and I W Arnata
\pm Open abstract 婔 View article 興 PDF

OPEN ACCESS

Quality Profiles of the Traditional Shrimp Paste of Lombok
B R Handayani，Zainuri，M D Ariyana，T I Rahayu，M Amaro and L R Ulfa
\pm Open abstract 婔 View article PDF

Analysis of supply chain and added value of rice in west Lombok regency
Wuryantoro，T Sjah，I Budastra，C Ayu，N L S Supartiningsih and S Maryati
＋Open abstract 国 View article 因 PDF

OPEN ACCESS
012035
Yogurt As A Functional Drink Development From Various Local Raw Materials Using Eucheuma Spinosum As Natural Stabilizer

M Amaro，M D Ariyana，B R Handayani，Nazaruddin，S Widyastuti and T I Rahayu
＋Open abstract 国 View article 因 PDF

OPEN ACCESS

Analysis of heat energy in the drying process of Moringa Oleifera leaves using a greenhouse effect dryer（ERK）

Sukmawaty，Murad，Ansar，H Kurniawan and Z Fitri
＋Open abstract 国 View article PDF

OPEN ACCESS

012037
Optimization Process to Increase the Quality of Lombok Porang Flour
Zainuri，Sukmawaty，E Basuki，B R Handayani，Y Sulastri，D N A Paramartha，Y Sayuna and I M D Anggraini
＋Open abstract 国 View article PDF

OPEN ACCESS

Analysis of Heat Energy on the Drying Process of Paddy Using Fluidized Beds Dryer
S Syahrul，S Sukmawaty，A Priyati，J Sari and M Mirmanto
＋Open abstract 国 View article 包 PDF

OPEN ACCESS
Heat transfer analysis in fluidized bed dryer with heat exchanger pipe for corn material
Sukmawaty，G M D Putra，I Asmoro，S Syahrul and M Mirmanto
＋Open abstract 國 View article PDF

A generalization SPARQL federated query：An initial step towards machine－readable web of data for halal food products

A Hernawan，AL Sunarwidhi，ES Prasedya and S Widyastuti
＋Open abstract 国 View article 包 PDF
Home Journal Rankings Country Rankings Viz Tools Help About Us

IOP Conference Series: Earth and Environmental Science

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United Kingdom \qquad Universities and research	Earth and Planetary Sciences Earth and Planetary Sciences (miscellaneous)	IOP Publishing Ltd.	34
	Environmental Science Environmental Science (miscellaneous) Physics and Astronomy Physics and Astronomy (miscellaneous)		
PUBLICATION TYPE	ISSN	coverage	INFORMATION
Conferences and Proceedings	17551307, 17551315	2010-2021	Homepage
			How to publish in this journal ees@ioppublishing.org

SCOPE

The open access IOP Conference Series: Earth and Environmental Science (EES) provides a fast, versatile and cost-effective proceedings publication service.Join the conversation about this journal

G SCImago Graphica

Explore, visually ommunicate and make

Source details

IOP Conference Series: Earth and Environmental Science

Scopus coverage years: from 2010 to Present
ISSN: 1755-1307 E-ISSN: 1755-1315
Subject area: Environmental Science: General Environmental Science
Earth and Planetary Sciences: General Earth and Planetary Sciences
Physics and Astronomy: General Physics and Astronomy
Source type: Conference Proceeding
View all documents $>$ Set document alert \boxtimes Save to source list Source Homepage

CiteScore CiteScore rank \& trend Scopus content coverage

CiteScore 2020	CiteScoreTracker 2021 ©
25,463 Citations 2017-2020	44,677 Citations to date
49,883 Documents 2017-2020	74,322 Documents to date
Calculated on $05 \mathrm{May}, 2021$	Last updated on 06 April, 2022 . Updated monthly

CiteScore rank 2020 (1)

Category	Rank Percentile	
Environmental Science	\#183/220	17th
General Environmental Science		
Earth and Planetary Sciences L General Earth and	\#157/186	15th
Planetary Sciences		

[^0]
About Scopus

What is Scopus
Content coverage
Scopus blog
Scopus API
Privacy matters

Language

日本語に切り替える
切换到简体中文
切換到繁體中文

Русский язык

Customer Service

Help
Tutorials
Contact us

ELSEVIER

Terms and conditions 7 Privacy policy 7
Copyright © Elsevier B．V 7 ．All rights reserved．Scopus ${ }^{\circledR}$ is a registered trademark of Elsevier B．V．
We use cookies to help provide and enhance our service and tailor content．By continuing，you agree to the use of cookies．
Q RELX

This certificate is proudly awarded to

Kartini，S．Si．，M．Si．，Apt．，Ph．D．

as
Oral Presenter
of the paper entitled：

Evaluation of Apium Graveolens from Different Geographical Origins based on TLC－Fingerprint and Chemometrics

in the $4^{\text {th }}$ International Conference on Bioscience and Biotechnology（ICBB） 2021
＂Natural Resources Management and Utilization＂ $21^{\text {st }}-23$ rd September 2021

Directur of Pascasarjana，University of Mataram
Chairman of ICBB 2021

Organized by Pusat Unggulan Biosains dan Bioteknologi and Pascasarjana University of Mataram In collaboration with

（2）
FUKUSHIMA MEDICAL
UNIVERSITY Keio University

 UNIVERSITT MALAYA
（0）$-\mathbf{G}$ Universitas
Gadjah Mada

[^0]: View CiteScore methodology $>$ CiteScore FAQ > Add CiteScore to your site 8

