INTRODUCTION

Diabetes mellitus, known as diabetes, is a metabolic disease characterized by high blood sugar. This disease is one of the ten diseases with the world's highest lethality rate. International Diabetes Federation counted that 463 million people have diabetes. This number will continue to increase, and it is estimated that in 2045, diabetes mellitus sufferers will increase of up to 51% and reach 700 million people. In general, diabetes consists of several types, namely type 1 diabetes mellitus (T1D), type 2 diabetes mellitus (T2D), and gestational diabetes mellitus (GDM). Globally, T2D is a type of diabetes that accounts for 85–95% of diabetes mellitus sufferers. Most countries show that diabetes increases along with rapid socio-cultural development such as urbanization, changing dietary patterns, to decreasing physical activity followed by unhealthy lifestyles (Goryakin et al., 2017). Without an effective management program, the number of diabetes mellitus sufferers will continue to increase.

Our previous literature study (Nathanael et al., 2020) showed that several gene expressions changed when animal models, cell culture, or epidemiological study applied a diet with a high carbohydrate or MSG. However, such study is a comprehensive study in which no central genes which may become determining factor(s) in the formation of T2D are concluded. This study focuses on two central proteins which are very much related to the insulin signaling pathway (Akt/Protein kinase B (PKB) and mitogen-activated protein kinase (MAPK) pathway), forkhead box protein 1 (FoxO1) and peroxisome proliferator-activated receptor gamma (PPARG). Study compared FoxO1 expression in average (non-obese) conditions and obesity with mild insulin resistance, in which FoxO1 expression was found to increase in obese conditions and even higher when sustaining a combination of obesity with
acute insulin resistance relative to the non-obese group (Battiprolu et al., 2012). It was shown that FoxO1 overexpression or gain-of-function studies increased blood sugar levels, which led to impaired insulin, glucose tolerance, and other various metabolic disorder such as obesity, glucose intolerance, hyperphagia, and impaired insulin secretion (Qu et al., 2006; Zhang et al., 2006). Other positive results also supported that FoxO1 knockdown or knock-out can decrease blood sugar levels and increase insulin sensitivity and shows rescue of diabetes (Alharbi et al., 2018; Altomonte et al., 2003; Dong et al., 2008; Matsumoto et al., 2007; Nakae et al., 2002; Samuel et al., 2006). High expression of PPARγ in pancreatic β-cell can be associated with a high-glucose profile (Hogh et al., 2014; Kanda et al., 2009). Additionally, mice lack PPARγ result in hypotension, insulin resistance, and other metabolic-related disorder (Duan et al., 2007; Greenstein et al., 2017; Norris et al., 2003; Odegaard et al., 2007).

Those correlation experiments mentioned above can be the basis for the involvement of the FoxO1 gene in body weight regulation and carbohydrate metabolism. Its inter-relation, several genes which regulate and are regulated by those two genes are discussed. Moreover, several small molecule ligands which have been reported to regulate the activity of two genes directly/indirectly will be discussed and mainly subjected to alleviate diabetes progression.

2 | REGULATION OF FoxO1: RELATION TO AKT SIGNALING AND REGULATION

2.1 | FoxO1 and Akt signaling pathway

When insulin is released by β-cell, it binds to a receptor known as insulin receptor (InsR). This receptor plays a vital role in a series of biochemical pathways such as carbohydrate and lipid metabolism. The abundance of this gene variant in humans is predominantly found in liver tissue, skeletal muscle, adipose tissue, and placenta (Benecke et al., 1992; Escribano et al., 2017). Binding of insulin to its receptor activates several insulin receptor substrate (IRS) proteins in which two proteins, IRS1 and IRS2, exert down-regulation activity toward various FoxO proteins, particularly focussing on FoxO1. The later was reported to give more dominant activity in various cells while IRS1 is mostly exerts its activity in skeletal muscle. Further signaling pathway activates the p110α subunit of phosphoinositide-3-kinase (PI3K) and to Akt/Protein kinase B (Guo et al., 2006). As transcription factor, FoxO1 displays most of its activity in nucleus. This signaling promotes phosphorylation of FoxO1 by Akt, resulting in an ejection of FoxO1 to cytoplasm and subsequently degraded by ubiquitin-mediated proteasome degradation (Huang & Tindall, 2011; Matsuzaki et al., 2003). Indeed, inactivation of Akt by a protein phosphatase 2A (PP2A) prevents FoxO1 deactivation and results in insulin resistance (Beg et al., 2016). Activated FoxO1, for example, in liver, promotes gluconeogenesis through activation of several genes such as glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), which also confers an insulin resistance phenomenon by the inability of insulin to suppress glucose production (Nakae et al., 2001a).

Insulin receptor correlation with the onset diabetes was not consistent. One study proved that overexpression of InsR in diabetic mice significantly reduced body weight, alleviated hyperphagia, and improved blood sugar level compared to diabetes control although other growth parameters were compromised (Sasaki et al., 2015). The particular study also reported no improvement on insulin sensitivity. In contrast, other study explained that overexpressed InsR increased insulin sensitivity so that glucose transport and glycogen synthesis run effectively and reduce blood sugar (Besic et al., 2015; Kosaki et al., 1995). Moreover, prolonged insulin stimulation in IRS1+/− mouse embryo fibroblasts (MEF) apparently failed to degrade FoxO1 in which IRS2 level itself was reduced (Guo et al., 2006). Additionally, FoxO1 activation can in turn give feedback by deactivating IRS1 by serine phosphorylation which promote the vicious cycle of metabolic disorder. Inactivation of FoxO1 reduced IRS2 level, but not IRS1 which plays more dominant role in metabolism (Battiprolu et al., 2012; Zhang, Li, et al., 2012). The negative impact of FoxO1 related to insulin sensitivity on another central protein such as PPARγ (Armoni et al., 2006; Dowell et al., 2003) and thus toward more downstream protein such as glucose transporter type 4 (GLUT4) activity (Armoni et al., 2007; Gonzalez et al., 2011) proofs that FoxO1 is a central protein that can modulate whole Akt signaling pathway. General overview on the action of insulin via Akt signaling to modulate FoxO1 activity and its downstream effect can be seen in Figure 1.

Modulating FoxO1 requires a delicate approach in which FoxO1 activation itself is one mechanism to alleviate oxidative stress and promote wound healing by activating various antioxidant-related proteins such as manganese superoxide dismutase (MnSOD) (Kitamura et al., 2005; Mohseni et al., 2021; Yun et al., 2014). One mechanism to protect cells from oxidative stress includes induced apoptosis (Ning et al., 2015; Shen et al., 2012; Weng et al., 2016). Additionally, active FoxO1 itself is responsible for the expression of insulin receptor, thus creating self-feedback loop (Puig & Tjian, 2005).
2.2 | Regulation of FoxO1 activity through post-translational modification

Although the basic concepts regarding FoxO1 regulation are that insulin activates cascades which ultimately deregulate FoxO1 activation through phosphorylation by Akt (Protein Kinase B), distinct phosphorylation sites by other protein kinase, various protein modification such as acetylation also plays a role on FoxO1 activity. Phosphorylation by Akt at S256, followed by T24 and S319 which seems Akt-independent, ultimately promotes degradation of FoxO1 by ubiquitination (Accili & Arden, 2004; Biggs et al., 1999; Guo, 2013; Matsuzaki et al., 2003; Nakae et al., 2001a, 2001b; Rena et al., 1999). However, its degradation is apparently regulated by 14-3-3 protein, in which 14-3-3 protein binding to the FoxO1 is promoted by phosphorylation, exporting FoxO1 out from the nucleus while subsequently protects FoxO1 from ubiquitin-mediated degradation (Saline et al., 2019; Tzivion et al., 2011). Other phosphorylation site is recently identified in S276 by protein kinase A (PKA), which is induced by glucagon (Wu et al., 2018). In contrast, phosphorylation of FoxO1 by MST-1 hinders binding of 14-3-3 protein toward phosphorylated FoxO1 at S212, thereby promoting nuclear localization and in turns can be dephosphorylated and activated in nucleus by PP2A (Lehtinen et al., 2006; Yan et al., 2008; Yuan et al., 2009) which promotes FoxO1-mediated cell death and modulates longevity. Additionally, FoxO1 can be activated through phosphorylation by AMP-activated protein kinase (AMPK) although with a preference to FoxO3 (Greer et al., 2007, 2009).

FoxO1 can be modified by acetylation through CREB-binding protein (CBP)/p300 which can reduce its activity as transcription factor and promotes degradation through phosphorylation (Matsuzaki et al., 2005). On the contrary, FoxO1 can also be deacetylated by sirtuin (SIRT) proteins, both SIRT1 and SIRT2. It is generally known that deacetylation of lysine increase the amount of positive charge of the protein, thereby creating a condition of nuclear trapping and promoting the binding to the DNA although the degree of the effect is dependent on the acetylation of the protein DNA-binding interface (Matsuzaki et al., 2005). As such, the consensus is deacetylation of FoxO1 by sirtuin protein positively regulates FoxO1 activity as transcription factor, thereby further promoting gluconeogenesis in which in long terms may promotes diabetic condition,
for example, by repressing PPARG (Wang & Tong, 2009). On the contrary, FoxO1 is also related to the expression of genes, which seems to be important for the protection from cell death due to oxidative stress. Increased activity of FoxO1 by SIRT1 deacetylation apparently reduces the effect of diabetic nephropathy by autophagy (Xu et al., 2019, 2020).

Acetylation dynamic effects are rather conflicting and seem to be quite dependent on genes and cells, level of acetylation and acetylated protein and closely related to alleviating oxidative stress and promoting cell longevity (Brunet et al., 2004; Motta et al., 2004). One example in muscle cells was that SIRT1 overexpression reduced FoxO1 activity and results in the protection and muscle atrophy (Lee & Goldberg, 2013). Acetylation of FoxO1 also creates a site competition for subsequent ubiquitination (Kitamura et al., 2005). It is worth to be mentioned that sirtuin itself asserts its effect to lots of protein, which are critical to metabolism and survival. Dynamics of FoxO1 acetylation is well discussed by Daitoku et al. (2011).

FoxO1 expression can be regulated by methylation both in protein and mRNA level. Methylation of FoxO1 in position K273 by G9a (known as euchromatic histone-lysine-N-methyltransferase) promotes its recruitment to S-phase kinase-associated protein-2 (SKP2), an E3 ubiquitin ligase and its degradation (Chae et al., 2019). In contrast, methylation at arginine position 248 and 250 by protein arginine N-methyltransferase 1 (PRMT1) turns out to block Akt binding to FoxO1, hinders its degradation, and subsequently promotes its activation. Methylation by PRMT1 can be promoted by oxidative stress and resulted in the FoxO1-mediated cell death (Yamagata et al., 2008). Methylation of FoxO1 mRNA by m(Altomonte et al., 2003) A methyltransferase possibly by METTL3 (methyltransferase 3) and its demethylation by fat mass and obesity-associated protein (FTO) affects the dynamic of its translation, in which the later promotes FoxO1 production (Dominissini et al., 2012; Peng et al., 2019). Additionally, FoxO1 can be glycosylated by N-acetylglucosamine via O-linked β-N-acetylglucosamine transferase (OGT), which apparently increased its activity for gluconeogenesis (Kuo et al., 2008a, 2008b). O-glycosylation of FoxO1 by glucosamine can also be induced by high-glucose intake and apparently leads to an increase of hepatic G6Pase expression, thereby releasing glucose into blood circulation and creating a vicious cycle of glucotoxicity. The effect of glycosylation can also be found in mutant FoxO1 protein in which the phosphorylation sites are mutated by alanine, which hints to an independent regulation from phosphorylation. Overview of post-translational modifications of FoxO1 and its impact on FoxO1 activity is summarized in Figure 2 and Table 1.

2.3 PPARG (Peroxisome proliferator-activated receptor gamma)

Peroxisome proliferator-activated receptor (PPAR) is a group of transcription factors and attached to PPAR response element (PPRE). PPAR itself comprises of PPARA, PPARG, and PPARD/B. PPARG and PPARD/B play a role in adipogenesis, while PPAR-α is involved in lipolysis. PPARG agonists, such as thiazolidinedione (TZD) or chiglitazar, are believed to improve glucose tolerance and obesity (Li et al., 2006). PPARG has three isoforms and mainly distributed in different tissues. Isoforms 2 and 3 are mainly expressed in adipose, and isoform two is usually found in the obese subject. Its activity is heavily dependent on various ligands, growth factors, protein complexes, and modifications on the protein.

The importance of PPARG can be extracted from several animal and transgenic studies. A high-glucose profile also showed overexpression of PPARG pancreatic β-cell-specific (Hogh et al., 2014). Meanwhile, mice lack PPARG result in hypotension, insulin resistance, and higher plasma-free fatty acid (Duan et al., 2007; Norris et al., 2003; Odegaard et al., 2007). Mice with PPARG deficient in adipose-specific bone marrow and liver-specific suffer from hepatomegaly and steatosis (Greenstein et al., 2017; He et al., 2003; Kanda et al., 2009). Furthermore, agonists applied to mice with obesity and insulin resistance have better results in improving conditions.

It is of note that PPARG signaling is also interrelated to adipogenesis and development of cancer. This is due to the signaling via MAPK-ERK kinase (MEK) pathway, which is related to cell division. In this case, phosphorylation of PPARG by MAPK/ERK (and janus kinases) inhibits its activity, which induces its export toward cytoplasm and its degradation by proteasome (Burgermeister & Seger, 2007; Kaplan et al., 2010) (Figure 3a). It is phosphorylated at position S84 in which its mutation to alanine increases the transcriptional activity of this protein (Adams et al., 1997). In mice, mutation S112A that inhibits PPARG phosphorylation indeed promotes weight gain but also manages to alleviate insulin resistance (Rangwala et al., 2003). PPARG exerts its activity by activating glucose transporter expression, mainly GLUT4 which further stimulate glucose uptake (Liao et al., 2007; Michael et al., 2001; Wu et al., 1998). It is to be noted that PPARG activities depend on the bound ligands. Some contrasting studies were reported in which activation of PPARG inhibits GLUT4 transcription in skeletal muscle cells (Miura et al., 2003) while PPARG knockout mice displayed better insulin sensitivity (Kubota et al., 1999; Miles et al., 2000). It turns out that retinoid X receptor (RXR) acted as ligands to
unphosphorylated S112 PPARG which suppress GLUT4 transcriptional activity while combination of PPARG agonist such as rosiglitazone displays the opposite phenotype (Armoni et al., 2003).

2.4 PPARG entanglement with FoxO1 signaling

FoxO1 and PPARG itself are interrelated and also center proteins which bridges and can modulate or be modulated Akt and MAPK signaling that affects the activity of GLUT4 which is downstream of the insulin signaling pathway (Liao et al., 2007; Wu et al., 1998). Early reports about FoxO1 relationship with PPARG are quite contrasting (Daitoku et al., 2003; Dowell et al., 2003). However, further studies showed that FoxO1 reported to repress PPARG2 isoform production through binding to IRS promoter (Armoni et al., 2006) or direct inhibition (Fan et al., 2009). This would indicate that both proteins modulate cell sensitivity toward insulin in the order of PPARG ligand-dependent activity. PPARG also displays crosstalk toward insulin signaling directly, in which administration of thiazolidinediones as PPARG agonist managed to increase IRS2 gene expression (Smith et al., 2001). PPARG itself can possibly indirectly modulate FoxO1 by its interrelation to SIRT1. Apparently, PPARG is negatively modulated by SIRT1 in which SIRT1 can acted as corepressor of PPARG in the promoter (Picard et al., 2004) or through the dynamic of acetylation by SIRT1 (Han et al., 2010). Interestingly, SIRT1 itself can also be back regulated by PPARG by reducing SIRT1 transcription level, thereby creating self-loop regulation (Han et al., 2010).

It is to be noted that the activities of both proteins are quite dependent on the type of the cells. One well studied that link FoxO1 and PPARG is in the kidney through Klotho protein (Figure 3b), a protein related to alleviating oxidative stress and nephropathy mostly in streptozotocin-induced or db/db diabetic rat/mice models (Asai et al., 2012; Cheng et al., 2010; Kim et al., 2016; Takenaka et al., 2019). Klotho protein managed to protect kidney from further destruction through
its inhibition of MAPK and RelA, a protein related to the activation of inflammatory protein nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) (Zhao et al., 2011). It is known although FoxO1 is positively related to the onset of diabetes, FoxO1 activity also protects cell from oxidative stress via activating various antioxidant enzymes or induced apoptosis and autophagy as described above. This indicates that PPARG indirectly activates FoxO1 activity by preventing its phosphorylation in kidney through klotho protein (Kuro-o, 2008; Yamamoto et al., 2005; Zhang et al., 2008). It is also true then overexpression of Klotho in transgenic mice displays moderate resistant to insulin (Utsugi et al., 2000).

To summarize, FoxO1 and PPARG as a regulatory protein play a critical factor in modulating expression and activation of protein both downstream and upstream of the signaling pathway. While GLUT4 localization on the membrane, for example in muscle tissue, can also be a biomarker to detect abnormality in the metabolism, aberrant FoxO1 and PPARG expression, especially high level of FoxO1 protein, can be a good indicator for the onset of diabetes and other metabolic disorder.

2.5 Chemical biology: Modulating FoxO1 activity by small molecules

One study made an opinion that targeting the expression or transient inactivation of FoxO1 by selective ligand may indeed be a promising technique for diabetes therapy and/or detection (Zhang, Li, et al., 2012). FoxO1 inhibitor such as AS1842856 remains a tool for molecular and chemical biologist for in vitro and in vivo study (Nagashima et al., 2010; Tanaka et al., 2010). It proves to be challenging to directly use FoxO1 inhibitor as drug since inhibition of FoxO1 can also induced cell death. Designing or deriving
inhibiting ligands for specific binding on FoxO1 may open new therapeutic FoxO1 inhibitor ligands strategy to combat diabetes.

On the contrary, many PPARG agonists (and antagonists) have been developed for drugs as PPARG is heavily dependent on ligands. Many reviews have discussed and compiled PPARG ligands (Lamers et al., 2012; Takada & Makishima, 2020). Those include also various metabolites natural products (Grygiel-Górniak, 2014; Wang et al., 2014) and a study about structure to function correlation study (Peng et al., 2010). Trends between agonists and antagonists are also mixture and conflicting, for example in the case of anticancer drug antagonist GW9662 that manage to covalently binds to PPARG (Leesnitzer et al., 2002). GW9962 was reported to inhibit growth of breast tumor cells and reporting that rosiglitazone (PPARG agonist) cannot reverse the antagonist effect given by GW9962, and thus, the effects are independent from PPARG activation (Seargent et al., 2004). Meanwhile, recent paper using bladder cancer said otherwise (Lv et al., 2019) in which PPARG activation inhibits Akt signaling pathway and thus detrimental to cancer cells. On the contrary, various ligands from the same class (thiazolidinediones) were reported to not affect Akt expression but increase IRS2 expression (Smith et al., 2001). Diverse effects can arise due to the multiple binding sites or structural arrangement upon ligand binding (Hughes et al., 2014; Sheu et al., 2005). Further discussion of PPARG ligands is out of the scope of this review. Excluding this topic, it is to be reminded that targeting PPARG for the modulation of Akt and ERK signaling pathway directly or indirectly (using rapamycin) can be one strategy to combat metabolic disorder (Goetze et al., 2002; Kim & Chen, 2004).

2.6 | Small molecules modulated FoxO1 activities

Treating diabetes by targeting FoxO1 activity must be taken with great caution since FoxO1 is a central protein which regulates various metabolic processes, cell division, and longevity. Two big approaches are reported in various paper, which can also be biased on constructing the method to proof their initial hypothesis. A nice review that also includes various small molecules modulating FoxO1 activity is written by Calissi et al. (2021). Indeed, various ligands discussed in the aforesaid review act rather as anticancer drug. We focus our discussion on the ligands, which are relevant for diabetes treatment (Table 2).

Two common FoxO1 inhibitors that have been used in many studies are AS1842856 (Nagashima et al., 2010) and AS1708727 (Tanaka et al., 2010). Both small molecules proved to improve blood glucose level in db/db mice model by possibly inhibiting gluconeogenesis by PECK due to the inactivation of FoxO1. AS1842856 is also shown to selectively bind to FoxO1, but not the S256-phosphorylated one and shows considerably lower inhibition activity to FoxO3 and FoxO4. Antihypertriglyceridemia effects are also displayed by
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Effect</th>
<th>Remarks</th>
<th>Concentration-dependent parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1842856</td>
<td>Binds and inactivates FoxO1</td>
<td>Direct binding</td>
<td>IC₅₀ by reporter gene assay to insulin response element = 0.03 μM. IC₅₀ for FoxO3 and FoxO4 is above 1 μM</td>
<td>Nagashima et al. (2010)</td>
</tr>
<tr>
<td>AS1708727</td>
<td>Inactivates FoxO1</td>
<td>Unknown</td>
<td>EC₅₀ = 0.48 μM for FoxO1 one-hybrid assay and 0.1 μM for reporter gene assay to insulin response element DNA</td>
<td>Tanaka et al. (2010)</td>
</tr>
<tr>
<td>Valproic acid</td>
<td>Inhibits FoxO1 activity</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Khan et al. (2016)</td>
</tr>
<tr>
<td>Decursinol derivative (compound 2b)</td>
<td>FoxO1 inhibitor</td>
<td>Unknown</td>
<td>Compound 2b exhibits ~40% of FoxO1 activity at 100 μM</td>
<td>Joo et al. (2019)</td>
</tr>
<tr>
<td>JY-2</td>
<td>FoxO protein inhibitor</td>
<td>Unknown</td>
<td>IC₅₀ for FoxO1 transcriptional activity = 22 μM</td>
<td>Choi et al. (2021)</td>
</tr>
<tr>
<td>Carbenoxolone</td>
<td>FoxO proteins binder, including FoxO1 but mainly FoxO3</td>
<td>Direct binding</td>
<td>Found to directly bind to FoxO3 (Kᵩ = 53.4 nM) but can also quench fluorophore completely at 10 μM</td>
<td>Salcher et al. (2020)</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>Activates Akt thereby promotes FoxO1 phosphorylation</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Wu et al. (2008)</td>
</tr>
<tr>
<td>Rg1</td>
<td>Activates Akt and promotes FoxO1 phosphorylation</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Liu et al. (2017)</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>Activates Akt thereby promotes FoxO1 phosphorylation</td>
<td>Indirectly modulates FoxO1</td>
<td>Unknown, observed from incubating human umbilical vein endothelial cells with 1 μM atorvastatin</td>
<td>Park et al. (2018)</td>
</tr>
</tbody>
</table>
TABLE 2 (Continued)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Effect</th>
<th>Remarks</th>
<th>Concentration-dependent parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxylated tanzawaic acid</td>
<td>Putative FoxO1 binder</td>
<td>Direct binding</td>
<td>Direct binding with $K_d = 37 \text{ nM}$</td>
<td>Sun et al. (2017)</td>
</tr>
<tr>
<td>Entacapone</td>
<td>Competitively inhibits FTO thereby increases FoxO1 mRNA methylation and inhibit transcription</td>
<td>Direct binding to FTO</td>
<td>$IC_{50} = 3.5 \text{ µM}$</td>
<td>Peng et al. (2019)</td>
</tr>
<tr>
<td>Docosahexanoic acid</td>
<td>Reduce transcriptional level of FoxO1</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Chen et al. (2012)</td>
</tr>
<tr>
<td>Okadaic acid</td>
<td>PP2A inhibitor, prevents FoxO1 dephosphorylation</td>
<td>Direct PP2A inhibitor</td>
<td>$K_i = 30–40 \text{ pm}$</td>
<td>Takai et al. (1992)</td>
</tr>
<tr>
<td>Fostriecin</td>
<td>PP2A inhibitor, more potent toward type 2A than type 1</td>
<td>Direct PP2A inhibitor</td>
<td>$IC_{50} = 3.2 \text{ nM}$</td>
<td>Walsh et al. (1997)</td>
</tr>
<tr>
<td>Benfotiamine</td>
<td>PP2A inhibitor</td>
<td>Indirectly inhibit PP2A activity</td>
<td>Unknown</td>
<td>Du et al. (2010)</td>
</tr>
<tr>
<td>Compound 7</td>
<td>Selective PTP-MEG2 inhibitor than other protein tyrosine phosphatase types</td>
<td>Competitive inhibitor</td>
<td>$IC_{50} = 75 \text{ nM}; K_i = 34 \text{ nM}$</td>
<td>Zhang, Liu, et al. (2012)</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>Induces insulin resistance, indirectly inhibits phosphorylation of FoxO1</td>
<td>Unknown, seems to be indirect modulation mode</td>
<td>Unknown, but cells were incubated with 750 µM of palmitate for 24 h</td>
<td>Kumar & Tikoo, 2015)</td>
</tr>
<tr>
<td>Metformin</td>
<td>Alleviates oxidative stress and increase cell survival through FoxO1 activation</td>
<td>Unknown</td>
<td>Unknown, various animal- and cells-based techniques were used rather to detect FoxO1 signaling pathway</td>
<td>Xu et al. (2019), Wang et al. (2018), Kalender et al. (2010), Zhou et al. (2001), Ren, Shao, et al. (2020)</td>
</tr>
</tbody>
</table>
these two ligands. Similar activity is displayed by valproic acid, a drug usually subjected to treat neuronal disorders (Khan et al., 2016), planar decursinol derivatives particularly named compound 2b (Joo et al., 2019), and a non-planar aromatic heterocyclic compound named JY-2 (Choi et al., 2021). It is particularly intriguing that JY-2 is also the same compound that exhibits allosteric inhibition toward metabotropic glutamate receptor subtype 5 (mGluR5) (Raboisson et al., 2012). The IC50 to mGluR5 was found to be 10-fold lower than to FoxO1 although the difference in values might also be due to different kind of assays. An old ligand, carbonoxalone, which is initially reported as 11β-hydroxysteroid dehydrogenase inhibitor apparently also exerted antidiabetic activity (Andrews et al., 2003; Walker et al., 1995). It is recently reported that carbonoxalone can also bind to the several FoxO class protein DNA-binding domain including FoxO1 (Salcher et al., 2020) in which the main study is for FoxO3 inhibitors. While valproic acid might not interferes directly with FoxO1, the decursinol derivative, compound JY-2, and carbonoxalone intriguingly inhibits FoxO1 in concentration-dependent manner although both compounds have different electron distribution in the ring systems (chemical structures are provided in Table 2). Clearly, the binding modes, intermolecular interactions between ligand and protein, and possibly the binding sites as well might not be similar and cannot be easily generalized for rational drug design. Another approach may also activate Akt which increase FoxO1 phosphorylation and its degradation, for example by various drugs that combat high lipid level such as simvastatin and even natural products such as Rg1, a saponin ginsenoside from Panax ginseng (Liu et al., 2017; Wu et al., 2008). In addition to activating Akt, atorvastatin enhances FoxO1 degradation by promoting the binding of SKP2 (Park et al., 2018).

Similar results in inhibiting hepatic glucose production by reducing FoxO1 activity were reported as well in a small compounds library screening study (Langlet et al., 2017). Moreover, various natural products derived from marine organism exert FoxO1 DNA-binding domain binder as well in which the largest affinity (>10^7 M^-1) is displayed by hydroxylated tanzawaic acid D by fluorescence titration assay in the presence of DNA as competitor (Sun et al., 2017). Additionally, metabolite such as docosahexaenoic acid (DHA) also reduces the transcriptional level of FoxO1 (Chen et al., 2012).

Indirectly, FoxO1 can also be down-regulated by inhibiting FTO with entacapone by preventing adenine demethylation of FoxO1 mRNA (Peng et al., 2019, 2020).
Entacapone was found to act as competing substrates for FTO with IC₅₀ of 3.5 μM in which the hydroxyl groups bound to the phenyl seem important for inhibitory activity as also has been proven by crystal structure (PDB 6AK4). Insulin resistance and high-glucose-related drawbacks can also be alleviated by blocking PP2A, which hinders Akt activity (Galbo et al., 2011). Small molecules that are known to inhibit PP2A activities are okadaic acid, fostriecin, and benfotamine (Cheng & Li, 2020; Du et al., 2010; Takai et al., 1992; Walsh et al., 1997). Similar FoxO1 inhibition activity is also shown by synthetic compound 7 that was found to competitively inhibit PTPN9 (protein tyrosine phosphatase non-receptor type 9/PTP-MEG2), which again in turn reduce the dephosphorylation of FoxO1 and promotes its destruction (Zhang, Liu, et al., 2012). This compound 7 is found to bind specifically to PTPN9 in particular in terms of inhibition constant and not the other protein tyrosine phosphatases (PTPs) protein. In opposite, palmitate rather induces insulin resistance not only by inhibiting the phosphorylation of Akt but also potentially through modification of mTOR activity (Kumar & Tikoo, 2015).

Opposite polar point of view is also proposed in which activating FoxO1 prevent diabetes-induced cell death. For example, metformin itself is a very common diabetes drug to improve insulin resistance conditions (Giannarelli et al., 2003). Metformin promotes the activation of FoxO1 via activation of AMPK, promoting deacetylation by SIRT1 or inhibition mTOR kinase (both mTORC1 and mTORC2) which in turn also inhibits Akt to promote longevity of cells and relieve oxidative stress (Kalender et al., 2010; Ren, Shao, et al., 2020; Wang et al., 2018; Xu et al., 2019, 2020; Zhou et al., 2001). Inhibition of Akt phosphorylation is also shown by shikonin derivative DMAKO-05 (Yang et al., 2016).

Similar to metformin result in alleviating oxidative stress through FoxO1 activation are 2,2,4-trimethyl-1,2-dihydroquinolin-6-ol (Kryl'skii et al., 2021) and curcumin (Ren, Zhang, et al., 2020). However, two contradicting results were reported in curcumin study in which curcumin managed to activate not only SIRT-FoxO1 pathways but also Akt in which phosphorylated FoxO1 by Akt is subsequently destroyed by proteasome. Specific discussion can also be directed to SIRT1-binder using natural product. It is also clear that SIRT1 promotes deacetylation of FoxO1, thereby activating its axis. In that case, resveratrol, a stilbenoid phenolic compound, activates SIRT1 (Borra et al., 2005) or AMPK (Yun et al., 2014) and subsequently FoxO1 which alleviates oxidative stress and promotes wound healing in various diabetes mice model such as with STZ treatment or db/db model (Chen et al., 2009; Huang et al., 2019; Kitada et al., 2011; Wu et al., 2012) and in turn decrease PPARγ expression (Costa et al., 2011). Apparently, resveratrol was also found to promote Akt pathway, which also alleviate insulin resistance (Brasnyó et al., 2011; Chen et al., 2015). Such unspecific effect might be the reason on the balance activity of FoxO1 in displaying its activity as cell survival gene and hyperglycemic-related critical gene. Comparable effect was also displayed in Xanthigen, a diet product derived from pomegranate seed and brown seaweed which contain punicic acid and fucoxanthin. Administration of Xanthigen increases the activity of SIRT1 and AMPK and down-regulates PPARγ. However, Xanthigen also stimulate insulin signaling and promote Akt-dependent phosphorylation of FoxO1 (Lai et al., 2012). Additionally, compound W2476 also manages to dephosphorylate FoxO1 at Ser319 and promotes FoxO1 association with (carbohydrate response element-binding protein (ChREBP). However, the activity to alleviate diabetes was rather due to subsequent repression of thioredoxin-interacting protein (TXNIP) (Zhong et al., 2021).

It is clear that there is a large gap in the treatment of diabetes by targeting FoxO1. One concept by promoting FoxO1 activity is directed toward wound healing and cell longevity point of view on the treatment of diabetes. In general, blocking FoxO1 activity shows more decisive conclusion to reduce high plasma glucose and alleviate insulin resistance. However, long-term study must be done on FoxO1 inhibitor, for example, its effect on the cell survival in hyperglycemic condition. Additionally, chronic study must also be done in which promoting cell survival by activating FoxO1 will not induce insulin resistance. For example, curcumin is famously known to disrupt Akt pathway for anticancer activity (Choi et al., 2008), which might also promote insulin resistance.

Furthermore, the chemical structures of various drugs that target or directly bind to FoxO1 protein (Table 2) seem very diverse ranging from small molecules, which freely rotate to cyclic aliphatic and/or aromatic. Many drugs that were found to modulate (activate / inhibit) FoxO1 were subjected rather from its effect for blood glucose-lowering activity or from its impact on FoxO1 transcriptional activity. As such, it might happen that the modulation of FoxO1 activity can be not due to direct interaction to FoxO1 but rather via binding to other macromolecule(s) that further modify FoxO1 activity. One example about the predicted binding modes was found rather only by molecular docking (AbuZenaladah et al., 2018) to the previously established crystal of the free structures that only contain the DNA-binding domain of FoxO1 (Brent et al., 2008). The reported binding modes might not reflect the real binding sites to the whole FoxO1 protein. Moreover, results extracted by molecular docking without support from biophysical and structural studies are uncertain.
Biophysical assays to proof the binding of the ligands to FoxO1 protein seem scarce (Table 2). Out of all studied articles, compound AS1842856 was screened by mass spectrometry that indicates direct binding (Nagashima et al., 2010). While AS1842856 inhibitory activity is selective to FoxO1, carbenoxolone was also proven to directly bind to the DNA-binding domain, however, of various FoxO proteins by fluorescence titration assay (Salcher et al., 2020). One example about complementation of molecular docking with biophysical studies can be found in a study that screen natural products which selects one compound called tanzawaic acid D which of molecular docking with biophysical studies can be interpreted directly into the experimentally obtained K_d (Sun et al., 2017). Therefore, the need to establish high-resolution structure for ligand-FoxO1 interaction cannot be evaded which is still absent to this date for better rational drug design and more specific protein targeting.

ACKNOWLEDGMENTS

The writing of this paper was funded by the Indonesia Ministry of Research, Technology, and Higher Education (024/SP-Lit/LPPM-01/RistekBRIN/Mono/FTB/III/2021).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ETHICAL APPROVAL

The studies conducted in this article do not involve human participants or animals.

REFERENCES

Takai, A., Ohno, Y., Yasumoto, T., & Mieskes, G. (1992). Estimation of the rate constants associated with the inhibitory effect of...

How to cite this article: Nathanael, J., Suardana, P., Vianney, Y. M., & Dwi Putra, S. E. (2021). The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review. *Chemical Biology & Drug Design, 00*, 1–18. https://doi.org/10.1111/cbdd.13989
The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review

Joshua Nathanael | Putu Suardana | Yoanes Maria Vianney | Sulisty Emantoko Dwi Putra

Abstract
Diabetes mellitus type 2 (T2D) is one of the metabolic disorders suffered by a global human being. Certain factors, such as lifestyle and heredity, can increase a person’s tendency for T2D. Various genes and proteins play a role in the development of insulin resistance and ultimately diabetes in which one central protein that is discussed in this review is FoxO1. In this review, we regard FoxO1 activation as detrimental, promote high plasma glucose level, and induce insulin resistance. Indeed, many contrasting studies arise since FoxO1 is an important protein to alleviate oxidative stress and promote cell survival, for example, also by preventing hyperglycemic-induced cell death. Inter-relation to PPAR gamma, another important protein in metabolism, is also discussed. Ultimately, we discussed contrasting approaches of targeting FoxO1 to combat diabetes mellitus by small molecules.

Keywords
Akt pathway, diabetes, FoxO1, modulators, small molecules

1 | Introduction
Diabetes mellitus, known as diabetes, is a metabolic disease characterized by high blood sugar. This disease is one of the ten diseases with the world’s highest lethality rate. International Diabetes Federation counted that 463 million people have diabetes. This number will continue to increase, and it is estimated that in 2045, diabetes mellitus sufferers will increase of up to 51% and reach 700 million people. In general, diabetes consists of several types, namely type 1 diabetes mellitus (T1D), type 2 diabetes mellitus (T2D), and gestational diabetes mellitus (GDM). Globally, T2D is a type of diabetes that accounts for 83–95% of diabetes mellitus sufferers. Most countries show that diabetes increases along with rapid sociocultural development such as urbanization, changing dietary patterns, to decreasing physical activity followed by unhealthy lifestyles (Goryakin et al., 2017). Without an effective management program, the number of diabetes mellitus sufferers will continue to increase.

Our previous literature study (Nathanael et al., 2020) showed that several gene expressions changed when animal models, cell culture, or epidemiological study applied a diet with a high carbohydrate or MSG. However, such study is a comprehensive study in which no central genes which may become determining factor(s) in the formation of T2D are concluded. This study focuses on two central proteins which are very much related to the insulin signaling pathway (Akt/Protein kinase B (PKB)) and mitogen-activated protein kinase (MAPK) pathway, forkhead box protein 1 (FoxO1) and peroxisome proliferator-activated receptor gamma (PPARG). Study compared FoxO1 expression in average (non-obese) conditions and obesity with mild insulin resistance, in which FoxO1 expression was found to increase in obese conditions and even higher when sustaining a combination of obesity with...
acute insulin resistance relative to the non-obese group (Battiprolu et al., 2012). It was shown that FoxO1 overexpression or gain-of-function studies increased blood sugar levels, which led to impaired insulin, glucose tolerance, and other various metabolic disorder such as obesity, glucose intolerance, hyperphagia, and impaired insulin secretion (Qu et al., 2006; Zhang et al., 2006). Other positive results also supported that FoxO1 knockdown or knockout can decrease blood sugar levels and increase insulin sensitivity and shows rescue of diabetes (Alharbi et al., 2018; Altomonte et al., 2003; Dong et al., 2008; Matsumoto et al., 2007; Nakae et al., 2002; Samuel et al., 2006). High expression of PPARγ in pancreatic β-cell can be associated with a high-glucose profile (Hogh et al., 2014; Kanda et al., 2009). Additionally, mice lack PPARγ result in hypotension, insulin resistance, and other metabolic-related disorder (Duan et al., 2007; Greenstein et al., 2017; Norris et al., 2003; Odegaard et al., 2007).

Those correlation experiments mentioned above can be the basis for the involvement of the FoxO1 gene in body weight regulation and carbohydrate metabolism. Its inter-relation, several genes which regulate and are regulated by those two genes are discussed. Moreover, several small molecule ligands which have been reported to regulate the activity of two genes directly/indirectly will be discussed and mainly subjected to alleviate diabetes progression.

2 | REGULATION OF FoxO1: RELATION TO AKT SIGNALING AND REGULATION

2.1 | FoxO1 and Akt signaling pathway

When insulin is released by β-cell, it binds to a receptor known as insulin receptor (Insr). This receptor plays a vital role in a series of biochemical pathways such as carbohydrate and lipid metabolism. The abundance of this gene variant in humans is predominantly found in liver tissue, skeletal muscle, adipose tissue, and placenta (Benecke et al., 1992; Escribano et al., 2017). Binding of insulin to its receptor activates several insulin receptor substrate (IRS) proteins in which two proteins, IRS1 and IRS2, exert down-regulation activity toward various FoxO proteins, particularly focussing on FoxO1. The later was reported to give more dominant activity in various cells while IRS1 is mostly exerts its activity in skeletal muscle. Further signaling pathway activates the p110α subunit of phosphoinositide 3-kinase (PI3K) and to Akt/Protein kinase B (Guo et al., 2006). As transcription factor, FoxO1 displays most of its activity in nucleus. This signaling promotes phosphorylation of FoxO1 by Akt, resulting in an ejection of FoxO1 to cytoplasm and subsequently degraded by ubiquitin-mediated proteasome degradation (Huang & Tindall, 2011; Matsuzaki et al., 2003). Indeed, inactivation of Akt by a protein phosphatase 2A (PP2A) prevents FoxO1 deactivation and results in insulin resistance (Beg et al., 2016). Activated FoxO1, for example, in liver, promotes gluconeogenesis through activation of several genes such as glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), which also confers an insulin resistance phenomenon by the inability of insulin to suppress glucose production (Nakae et al., 2001).

Insulin receptor correlation with the onset diabetes was not consistent. One study proved that overexpression of InsR in diabetic mice significantly reduced body weight, alleviated hyperphagia, and improved blood sugar level compared to diabetes control although other growth parameters were compromised (Sasaki et al., 2015). The particular study also reported no improvement on insulin sensitivity. In contrast, other study explained that overexpressed InsR increased insulin sensitivity so that glucose transport and glycogen synthesis run effectively and reduce blood sugar (Besic et al., 2015; Kosaki et al., 1995). Moreover, prolonged insulin stimulation in IRS1−/− mouse embryonic fibroblasts (MEF) apparently failed to degrade FoxO1 in which IRS2 level itself was reduced (Guo et al., 2006). Additionally, FoxO1 activation can in turn give feedback by deactivating IRS1 by serine phosphorylation which promote the vicious cycle of metabolic disorder. Inactivation of FoxO1 reduced IRS2 level, but not IRS1 which plays more dominant role in metabolism (Battiprolu et al., 2012; Zhang et al., 2012). The negative impact of FoxO1 related to insulin sensitivity on another central protein such as PPARγ (Armoni et al., 2006; Dowell et al., 2003) and thus toward more downstream protein such as glucose transporter type 4 (GLUT4) activity (Armoni et al., 2007; Gonzalez et al., 2011) proofs that FoxO1 is a central protein that can modulate whole Akt signaling pathway. General overview on the action of insulin via Akt signaling to modulate FoxO1 activity and its downstream effect can be seen in Figure 1.

Modulating FoxO1 requires a delicate approach in which FoxO1 activation itself is one mechanism to alleviate oxidative stress and promote wound healing by activating various antioxidant-related proteins such as manganese superoxide dismutase (MnSOD) (Kitamura et al., 2005; Mohseni et al., 2021; Yun et al., 2014). One mechanism to protect cells from oxidative stress includes induced apoptosis (Ning et al., 2015; Shen et al., 2012; Weng et al., 2016). Additionally, active FoxO1 itself is responsible for the expression of insulin receptor, thus creating self-feedback loop (Puig & Tjian, 2005).
2.2 | Regulation of FoxO1 activity through post-translational modification

Although the basic concepts regarding FoxO1 regulation are that insulin activates cascades which ultimately deregulate FoxO1 activation through phosphorylation by Akt (Protein Kinase B), distinct phosphorylation sites by other protein kinase, various protein modification such as acetylation also plays a role on FoxO1 activity. Phosphorylation by Akt at S256, followed by T24 and S319 which seems Akt-independent, ultimately promotes degradation of FoxO1 by ubiquitination (Accili & Arden, 2004; Biggs et al., 1999; Guo, 2013; Matsuzaki et al., 2003; Nakae et al., 2001a, 2001b; Rena et al., 1999). However, its degradation is apparently regulated by 14-3-3 protein, in which 14-3-3 protein binding to the FoxO1 is promoted by phosphorylation, exporting FoxO1 out from the nucleus while subsequently promotes FoxO1 from ubiquitination-mediated degradation (Saline et al., 2019; Tzivion et al., 2011). Other phosphorylation site is recently identified in S276 by protein kinase A (PKA), which is induced by glucagon (Wu et al., 2018). In contrast, phosphorylation of FoxO1 by MST-1 hinders binding of 14-3-3 protein toward phosphorylated FoxO1 at S212, thereby promoting nuclear localization and in turns can be dephosphorylated and activated in nucleus by PP2A (Lehtinen et al., 2006; Yan et al., 2008; Yuan et al., 2009) which promotes FoxO1-mediated cell death and modulates longevity. Additionally, FoxO1 can be activated through phosphorylation by AMP-activated protein kinase (AMPK) although with a preference to FoxO3 (Greer et al., 2007, 2009).

FoxO1 can be modified by acetylation through CREB-binding protein (CBP)/p300 which can reduce its activity as transcription factor and promotes degradation through phosphorylation (Matsuzaki et al., 2005). On the contrary, FoxO1 can also be deacetylated by sirtuin (SIRT) proteins, both SIRT1 and SIRT2. It is generally known that deacetylation of lysine increase the amount of positive charge of the protein, thereby creating a condition of nuclear trapping and promoting the binding to the DNA although the degree of the effect is dependent on the acetylation of the protein DNA-binding interface (Matsuzaki et al., 2005). As such, the consensus is deacetylation of FoxO1 by sirtuin protein positively regulates FoxO1 activity as transcription factor, thereby further promoting gluconeogenesis in which in long terms may promotes diabetic condition,
for example, by repressing PPAR (Wang & Tong, 2009). On the contrary, FoxO1 is also related to the expression of genes, which seems to be important for the protection from cell death due to oxidative stress. Increased activity of FoxO1 by SIRT1 deacetylation apparently reduces the effect of diabetic nephropathy by autophagy (Xu et al., 2019, 2020).

Acetylation dynamic effects are rather conflicting and seem to be quite dependent on genes and cells, level of acetylation and acetylated protein and closely related to alleviating oxidative stress and promoting cell longevity (Brunet et al., 2004; Motta et al., 2004). One example in muscle cells was that SIRT1 overexpression reduced FoxO1 activity and results in the protection and muscle atrophy (Lee & Goldberg, 2013). Acetylation of FoxO1 also creates a site competition for subsequent ubiquitination (Kitamura et al., 2005). It is worth to be mentioned that sirtuin itself asserts its effect to lots of protein, which are critical to metabolism and survival. Dynamics of FoxO1 acetylation is well discussed by Daitoku et al. (2011).

FoxO1 expression can be regulated by methylation both in protein and mRNA level. Methylation of FoxO1 in position K273 by G9a (known as euchromatic histone lysine N-methyltransferase) promotes its recruitment to S-phase kinase-associated protein-2 (SKP2), an E3 ubiquitin ligase and its degradation (Chae et al., 2019). In contrast, methylation at arginine position 248 and 250 by protein arginine N-methyltransferase 1 (PRMT1) turns out to block Akt binding to FoxO1, hinders its degradation, and subsequently activates its activity. Methylation by PRMT1 can be promoted by oxidative stress and resulted in the FoxO1-mediated cell death (Yamagata et al., 2008). Methylation of FoxO1 mRNA by m(Altomonte et al., 2003) A methyltransferase possibly by METTL3 (methyltransferase 3) and its demethylation by fat mass and obesity-associated protein (FTO) affects the dynamic of its translation, in which the later promotes FoxO1 production (Dominissini et al., 2012; Peng et al., 2019). Additionally, FoxO1 can be glycosylated by N-acetylglucosamine via O-linked β-N-acetylglucosamine transferase (OGT), which apparently increases its activity for gluconeogenesis (Kuo et al., 2008a, 2008b). O-glycosylation of FoxO1 by glucosamine can also be induced by high-glucose intake and apparently leads to an increase of hepatic G6Pase expression, thereby releasing glucose into blood circulation and creating a vicious cycle of glucotoxicity. The effect of glycosylation can also be found in mutant FoxO1 protein in which the phosphorylation sites are mutated by alanine, which hints to an independent regulation from phosphorylation. Overview of post-translational modifications of FoxO1 and its impact on FoxO1 activity is summarized in Figure 2 and Table 1.

2.3 | PPAR (Peroxisome proliferator-activated receptor gamma)

Peroxisome proliferator-activated receptor (PPAR) is a group of transcription factors and attached to PPAR response element (PPRE). PPAR itself comprises of PPARα, PPARγ, and PPAR/β. PPARα and PPAR/β play a role in adipogenesis, while PPAR-α is involved in lipolysis. PPAR agonists, such as thiazolidinedione (TZD) or chiglitazar, are believed to improve glucose tolerance and obesity (Li et al., 2006). PPAR has three isoforms and mainly distributed in different tissues. Isoforms 2 and 3 are mainly expressed in adipose, and isoform two is usually found in the obese subject. Its activity is heavily dependent on various ligands, growth factors, protein complexes, and modifications on the protein.

The importance of PPAR can be extracted from several animal and transgenic studies. A high-glucose profile also showed overexpression of PPAR pancreatic β-cell-specific (Hough et al., 2014). Meanwhile, mice lack PPAR result in hypotension, insulin resistance, and higher plasma-free fatty acid (Duan et al., 2007; Norris et al., 2003; Odegaard et al., 2007). Mice with PPAR deficient in adipose-specific bone marrow and liver-specific suffer from hepatomegaly and steatosis (Greenstein et al., 2017; He et al., 2003; Kanda et al., 2009). Furthermore, agonists applied to mice with obesity and insulin resistance have better results in improving conditions.

It is of note that PPAR signaling is also interrelated to adipogenesis and development of cancer. This is due to the signaling via MAPK-ERK kinase (MEK) pathway, which is related to cell division. In this case, phosphorylation of PPAR by MAPK/ERK (and janus kinases) inhibits its activity, which induces its export toward cytoplasm and its degradation by proteasome (Burgermeister & Seger, 2007; Kaplan et al., 2010) (Figure 3a). It is phosphorylated at position S84 in which its mutation to alanine increases the transcriptional activity of this protein (Adams et al., 1997). In mice, mutation S112A that inhibits PPAR phosphorylation indeed promotes weight gain but also manages to alleviate insulin resistance (Rangwala et al., 2003). PPAR exerts its activity by activating glucose transporter expression, mainly GLUT4 which further stimulate glucose uptake (Liao et al., 2007; Michael et al., 2001; Wu et al., 1998).

It is to be noted that PPAR activities depend on the bound ligands. Some contrasting studies were reported in which activation of PPAR inhibits GLUT4 transcription in skeletal muscle cells (Miura et al., 2003) while PPAR knockout mice displayed better insulin sensitivity (Kubota et al., 1999; Miles et al., 2000). It turns out that retinoid X receptor (RXR) acted as ligands to
unphosphorylated S112 PPARG which suppress GLUT4 transcriptional activity while combination of PPARG agonist such as rosiglitazone displays the opposite phenotype (Armoni et al., 2003).

2.4 PPARG entanglement with FoxO1 signaling

FoxO1 and PPARG itself are interrelated and also center proteins which bridges and can modulate or be modulated Akt and MAPK signaling that affects the activity of GLUT4 which is downstream of the insulin signaling pathway (Liao et al., 2007; Wu et al., 1998). Early reports about FoxO1 relationship with PPARG are quite contrasting (Daitoku et al., 2003; Dowell et al., 2003). However, further studies showed that FoxO1 reported to repress PPARG2 isoform production through binding to IRS promoter (Armoni et al., 2006) or direct inhibition (Fan et al., 2009). This would indicate that both proteins modulate cell sensitivity toward insulin in the order of PPARG ligand-dependent activity. PPARG also displays crosstalk toward insulin signaling directly, in which administration of thiazolidinediones as PPARG agonist managed to increase IRS2 gene expression (Smith et al., 2001). PPARG itself can possibly indirectly modulate FoxO1 by its interrelation to SIRT1. Apparently, PPARG is negatively modulated by SIRT1 in which SIRT1 can acted as corepressor of PPARG in the promoter (Picard et al., 2004) or through the dynamic of acetylation by SIRT1 (Han et al., 2010). Interestingly, SIRT1 itself can also be back regulated by PPARG by reducing SIRT1 transcription level, thereby creating self-loop regulation (Han et al., 2010).

It is to be noted that the activities of both proteins are quite dependent on the type of the cells. One well studied that link FoxO1 and PPARG is in the kidney through Klotho protein (Figure 3b), a protein related to alleviating oxidative stress and nephropathy mostly in streptozotocin-induced or db/db diabetic rat/mice models (Asai et al., 2012; Cheng et al., 2010; Kim et al., 2016; Takenaka et al., 2019). Klotho protein managed to protect kidney from further destruction through
<table>
<thead>
<tr>
<th>Post-translational modification</th>
<th>Modifying protein</th>
<th>Residues</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorylation</td>
<td>Akt</td>
<td>S256</td>
<td>Further phosphorylation which seems Akt-independent is at T24 and S319, promotes ejection of FoxO1 from nucleus, and subsequently degrades by proteasome in conjunction with ubiquitination.</td>
</tr>
<tr>
<td></td>
<td>PKA</td>
<td>S276</td>
<td>Induced by glucagon, promotes FoxO1 degradation.</td>
</tr>
<tr>
<td></td>
<td>MST-1</td>
<td>S212</td>
<td>Promotes nuclear localization and prevents FoxO1 ubiquitin-mediated degradation.</td>
</tr>
<tr>
<td></td>
<td>AMPK</td>
<td>–</td>
<td>Activate FoxO1.</td>
</tr>
<tr>
<td>Dephosphorylation</td>
<td>PP2A</td>
<td>–</td>
<td>Dephosphorylate phosphate groups that have been added by various phosphate-modifying proteins; activate FoxO1.</td>
</tr>
<tr>
<td>Ubiquitinylation</td>
<td>Ubiquitin</td>
<td>–</td>
<td>In conjunction usually with Akt-mediated phosphorylation to promote degradation of FoxO1 by proteasome.</td>
</tr>
<tr>
<td>Acetylation</td>
<td>CBP/p300</td>
<td>–</td>
<td>Reduces FoxO1 activity.</td>
</tr>
<tr>
<td>Deacetylation</td>
<td>SIRT1, SIRT2</td>
<td>Unknown lysine residue</td>
<td>Increase the activity of FoxO1, i.e. promotes gluconeogenesis but also protects cells from oxidative stress-related cell death.</td>
</tr>
<tr>
<td>Methylation</td>
<td>G9a</td>
<td>K273</td>
<td>Promotes FoxO1 ubiquitin-mediated degradation.</td>
</tr>
<tr>
<td></td>
<td>PRMT1</td>
<td>R248 R250</td>
<td>Blocks Akt-mediated phosphorylation, promotes FoxO1 activity.</td>
</tr>
<tr>
<td></td>
<td>METTL3</td>
<td>Adenine residue in FoxO1 mRNA</td>
<td>Decrease FoxO1 mRNA translation.</td>
</tr>
<tr>
<td>Demethylation</td>
<td>FTO</td>
<td>Adenine residue in FoxO1 mRNA</td>
<td>Increase FoxO1 translation.</td>
</tr>
<tr>
<td>Glycosylation</td>
<td>OGT</td>
<td>Unknown but different than Akt modification site</td>
<td>Modified with glucosamine, increase FoxO1 activity to promote gluconeogenesis.</td>
</tr>
</tbody>
</table>

*Protein abbreviations are given in the text.

its inhibition of MAPK and RelA, a protein related to the activation of inflammatory protein nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB) (Zhao et al., 2011). It is known although FoxO1 is positively related to the onset of diabetes, FoxO1 activity also protects cell from oxidative stress via activating various antioxidant enzymes or induced apoptosis and autophagy as described above. This indicates that PPARG indirectly activates FoxO1 activity by preventing its phosphorylation in kidney through klotho protein (Kuro-o, 2008; Yamamoto et al., 2005; Zhang et al., 2008). It is also true then overexpression of Klotho in transgenic mice displays moderate resistant to insulin (Utsugi et al., 2000).

To summarize, FoxO1 and PPARG as a regulatory protein play a critical factor in modulating expression and activation of protein both downstream and upstream of the signaling pathway. While GLUT4 localization on the membrane, for example in muscle tissue, can also be a biomarker to detect abnormality in the metabolism, aberrant FoxO1 and PPARG expression, especially high level of FoxO1 protein, can be a good indicator for the onset of diabetes and other metabolic disorder.

2.5 Chemical biology: Modulating FoxO1 activity by small molecules

One study made an opinion that targeting the expression or transient inactivation of FoxO1 by selective ligand may indeed be a promising technique for diabetes therapy and/or detection (Zhang, Li, et al., 2012). FoxO1 inhibitor such as AS1842856 remains a tool for molecular and chemical biologist for in vitro and in vivo study (Nagashima et al., 2010; Tanaka et al., 2010). It proves to be challenging to directly use FoxO1 inhibitor as drug since inhibition of FoxO1 can also induced cell death. Designing or derivating
inhibiting ligands for specific binding on FoxO1 may open new therapeutic FoxO1 inhibitor ligands strategy to combat diabetes.

On the contrary, many PPARG agonists (and antagonists) have been developed for drugs as PPARG is heavily dependent on ligands. Many reviews have discussed and compiled PPARG ligands (Lamers et al., 2012; Takada & Makishima, 2020). Those include also various metabolites natural products (Grygiel-Górnia, 2014; Wang et al., 2014) and a study about structure to function correlation study (Peng et al., 2010). Trends between agonists and antagonists are also mixture and conflicting, for example in the case of anticancer drug antagonist GW9662 that manage to covalently binds to PPARG (Leesnitzer et al., 2002). GW9662 was reported to inhibit growth of breast tumor cells and reporting that rosiglitazone (PPAR agonist) cannot reverse the antagonist effect given by GW9662, and thus, the effects are independent from PPAR activation (Seargent et al., 2004). Meanwhile, recent paper using bladder cancer said otherwise (Lv et al., 2019) in which PPARG activation inhibits Akt signaling pathway and thus detrimental to cancer cells. On the contrary, various ligands from the same class (thiazolidinediones) were reported to not affect Akt expression but increase IRS2 expression (Smith et al., 2001). Diverse effects can arise due to the multiple binding sites or structural arrangement upon ligand binding (Hughes et al., 2014; Sheu et al., 2005). Further discussion of PPARG ligands is out of the scope of this review. Excluding this topic, it is to be reminded that targeting PPARG for the modulation of Akt and ERK signaling pathway directly or indirectly (using rapamycin) can be one strategy to combat metabolic disorder (Goetze et al., 2002; Kim & Chen, 2004).

2.6 | Small molecules modulated FoxO1 activities

Treating diabetes by targeting FoxO1 activity must be taken with great caution since FoxO1 is a central protein which regulates various metabolic processes, cell division, and longevity. Two big approaches are reported in various paper, which can also be biased on constructing the method to proof their initial hypothesis. A nice review that also includes various small molecules modulating FoxO1 activity is written by Calissi et al. (2021). Indeed, various ligands discussed in the aforesaid review act rather as anticancer drug. We focus our discussion on the ligands, which are relevant for diabetes treatment (Table 2).

Two common FoxO1 inhibitors that have been used in many studies are AS1842856 (Nagashima et al., 2010) and AS1708727 (Tanaka et al., 2010). Both small molecules proved to improve blood glucose level in db/db mice model by possibly inhibiting gluconeogenesis by PEPCK due to the inactivation of FoxO1. AS1842856 is also shown to selectively bind to FoxO1, but not the S256-phosphorylated one and shows considerably lower inhibition activity to FoxO3 and FoxO4. Antihypertriglyceridemia effects are also displayed by
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Effect</th>
<th>Remarks</th>
<th>Concentration-dependent parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI1842856</td>
<td>Binds and inactivates FoxO1</td>
<td>Direct binding</td>
<td>IC_{50} by reporter gene assay to insulin response element = 0.03 μM. IC_{50} for FoxO3 and FoxO4 is above 1 μM</td>
<td>Nagashima et al. (2010)</td>
</tr>
<tr>
<td>ASI1708727</td>
<td>Inactivates FoxO1</td>
<td>Unknown</td>
<td>EC_{50} = 0.48 μM for FoxO1 one-hybrid assay and 0.1 μM for reporter gene assay to insulin response element DNA</td>
<td>Tanaka et al. (2010)</td>
</tr>
<tr>
<td>Valproic acid</td>
<td>Inhibits FoxO1 activity</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Khan et al. (2016)</td>
</tr>
<tr>
<td>Decursinol derivative (compound 2β)</td>
<td>FoxO1 inhibitor</td>
<td>Unknown</td>
<td>Compound 2β exhibits ~40% of FoxO1 activity at 100 μM</td>
<td>Joo et al. (2019)</td>
</tr>
<tr>
<td>JV-2</td>
<td>FoxO protein inhibitor</td>
<td>Unknown</td>
<td>IC_{50} for FoxO1 transcriptional activity = 22 μM</td>
<td>Choi et al. (2021)</td>
</tr>
<tr>
<td>Carbenoxolone</td>
<td>FoxO proteins binder, including FoxO1 but mainly FoxO3</td>
<td>Direct binding</td>
<td>Found to directly bind to FoxO3 (K_{d} = 53.4 nM) but can also quench fluorophore completely at 10 μM</td>
<td>Salcher et al. (2021)</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>Activates Akt thereby promotes FoxO1 phosphorylation</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Wu et al. (2008)</td>
</tr>
<tr>
<td>Rg1</td>
<td>Activates Akt and promotes FoxO1 phosphorylation</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Liu et al. (2017)</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>Activates Akt thereby promotes FoxO1 phosphorylation</td>
<td>Indirectly modulates FoxO1</td>
<td>Unknown, observed from incubating human umbilical vein endothelial cells with 1 μM atorvastatin</td>
<td>Park et al. (2018)</td>
</tr>
<tr>
<td>Chemical</td>
<td>Effect</td>
<td>Remarks</td>
<td>Concentration-dependent parameters</td>
<td>References</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Hydroxylated tanzawaic acid D</td>
<td>Competitively inhibits FTO thereby increases FoxO1 mRNA methylation and inhibit transcription</td>
<td>Direct binding to FTO</td>
<td>IC_{50} = 3.5 μM</td>
<td>Peng et al. (2019)</td>
</tr>
<tr>
<td>Entacapone</td>
<td>Reduce transcription level of FoxO1</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Chen et al. (2012)</td>
</tr>
<tr>
<td>Docosahexaenoic acid</td>
<td>PP2A inhibitor, prevents FoxO1 dephosphorylation</td>
<td>Direct PP2A inhibitor</td>
<td>K_{i} = 30–40 pM</td>
<td>Takai et al. (1992)</td>
</tr>
<tr>
<td>Okadaic acid</td>
<td>PP2A inhibitor, more potent toward type 2A than type 1</td>
<td>Direct PP2A inhibitor</td>
<td>IC_{50} = 3.2 nM</td>
<td>Walsh et al. (1997)</td>
</tr>
<tr>
<td>Fostriecin</td>
<td>PP2A inhibitor</td>
<td>Indirectly inhibit PP2A activity</td>
<td>Unknown</td>
<td>Du et al. (2010)</td>
</tr>
<tr>
<td>Benfotiamine</td>
<td>Selective PTP-MEG2 inhibitor than other protein tyrosine phosphatase types</td>
<td>Competitive inhibitor</td>
<td>IC_{50} = 75 nM; K_{i} = 34 nM</td>
<td>Zhang, Liu, et al. (2012)</td>
</tr>
<tr>
<td>Compound 7</td>
<td>Induces insulin resistance, indirectly inhibits phosphorylation of FoxO1</td>
<td>Unknown, seems to be indirect modulation mode</td>
<td>Unknown, but cells were incubated with 750 μM of palmitate for 24 h</td>
<td>Kumar & Tikoo, 2015</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>Alleviates oxidative stress and increase cell survival through FoxO1 activation</td>
<td>Unknown</td>
<td>Unknown, various animal- and cells-based techniques were used rather to detect FoxO1 signaling pathway</td>
<td>Xu et al. (2019), Wang et al. (2018), Kalender et al. (2010), Zhou et al. (2001), Ren, Shao, et al. (2021)</td>
</tr>
</tbody>
</table>

(Continues)
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Effect</th>
<th>Remarks</th>
<th>Concentration-dependent parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAKO-05</td>
<td>Inhibits Akt phosphorylation and its signaling</td>
<td>Unknown</td>
<td>Unknown, but cells were treated with a concentration of 10 μM</td>
<td>Yang et al. (2016)</td>
</tr>
<tr>
<td>2,2,4-trimethyl-1,2-dihydroquinolin-6-ol</td>
<td>Antioxidant activity through FoxO1 activation</td>
<td>Unknown</td>
<td>Observed from animal treatment methods</td>
<td>Krypskii et al. (2021)</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Activates SIRT1, FoxO1 but also Akt</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Ren, Zhang, et al. (2020)</td>
</tr>
<tr>
<td>Resveratrol</td>
<td>Activates SIRT1 and AMPK, indirectly promotes FoxO1 activity. Other reports include the activation of Akt pathway</td>
<td>Indirect modulation</td>
<td>Activates SIRT1 in vitro with a working concentration of 200 μM. As low as 1 μM can be used in cell-based studies. Other mode concentration parameters are unknown</td>
<td>Horra et al. (2005), Chen et al. (2009), Costa et al. (2011)</td>
</tr>
<tr>
<td>W2476</td>
<td>Dephosphorylate FoxO1, activating FoxO1 and subsequently repressing TXNIP</td>
<td>Unknown</td>
<td>Unknown, but cells were incubated with a concentration of 20 μM</td>
<td>Zhong et al. (2021)</td>
</tr>
</tbody>
</table>

These two ligands, similar activity is displayed by valproic acid, a drug usually subjected to treat neuronal disorders (Khan et al., 2016), planar decursinol derivatives particularly named compound 2b (Joo et al., 2019), and a non-planar aromatic heterocyclic compound named JY-2 (Choi et al., 2021). It is particularly intriguing that JY-2 is also the same compound that exhibits allosteric inhibition toward metabotropic glutamate receptor subtype 5 (mGluR5) (Raboisson et al., 2012). The IC_{50} to mGluR5 was found to be 10-fold lower than to FoxO1 although the difference in values might also be due to different kind of assays. An old ligand, carbenoxolone, which is initially reported as 11β-hydroxysteroid dehydrogenase inhibitor apparently also exerted antidiabetic activity (Andrews et al., 2003; Walker et al., 1995). It is recently reported that carbenoxolone can also bind to the several FoxO class protein DNA-binding domain including FoxO1 (Salcher et al., 2020) in which the main study is for FoxO3 inhibitors. While valproic acid might not interfere with FoxO1, the decursinol derivative, compound JY-2, and carbenoxolone intriguingly inhibits FoxO1 in concentration-dependent manner although both compounds have different electron distribution in the ring systems (chemical structures are provided in Table 2). Clearly, the binding modes, intermolecular interactions between ligand and protein, and possibly the binding sites as well might not be similar and cannot be easily generalized for rational drug design. Another approach may also activate Akt which increase FoxO1 phosphorylation and its degradation, for example by various drugs that combat high lipid level such as simvastatin and even natural products such as Rg1, a saponin ginsenoside from *Panax ginseng* (Liu et al., 2017; Wu et al., 2008). In addition to activating Akt, atorvastatin enhances FoxO1 degradation by promoting the binding of SKP2 (Park et al., 2018).

Similar results in inhibiting hepatic glucose production by reducing FoxO1 activity were reported as well in a small compounds library screening study (Langlet et al., 2017). Moreover, various natural products derived from marine organism exert FoxO1 DNA-binding domain binder as well in which the largest affinity (>10^{-7} M^{-1}) is displayed by hydroxylated tanzawaic acid D by fluorescence titration assay in the presence of DNA as competitor (Sun et al., 2017). Additionally, metabolite such as docosahexaenoic acid (DHA) also reduces the transcriptional level of FoxO1 (Chen et al., 2012).

Indirectly, FoxO1 can also be down-regulated by inhibiting FTO with entacapone by preventing adenine demethylation of FoxO1 mRNA (Peng et al., 2019, 2020).
Entacapone was found to act as competing substrates for FTO with IC_{50} of 3.5 μM in which the hydroxyl groups bound to the phenyl seem important for inhibitory activity as also has been proven by crystal structure (PDB 6AK4). Insulin resistance and high-glucose-related drawbacks can also be alleviated by blocking PP2A, which hinders Akt activity (Galbo et al., 2011). Small molecules that are known to inhibit PP2A activities are okadaic acid, fostriecin, and benfotamine (Cheng & Li, 2020; Du et al., 2010; Takai et al., 1992; Walsh et al., 1997). Similar FoxO1 inhibition activity is also shown by synthetic compound 7 that was found to competitively inhibit PTPN9 (protein tyrosine phosphatase non-receptor type 9/PTP-HEG2), which again in turn reduce the dephosphorylation of FoxO1 and promotes its destruction (Zhang, Liu, et al., 2012). This compound 7 is found to bind specifically to PTPN9 in particular in terms of inhibition constant and not the other protein tyrosine phosphatases (PTPs) protein. In opposite, palmitate rather induces insulin resistance not only by inhibiting the phosphorylation of Akt but also potentially through modification of mTOR activity (Kumar & Tikoo, 2015).

Opposite polar point of view is also proposed in which activating FoxO1 prevent diabetes-induced cell death. For example, metformin itself is a very common diabetes drug to improve insulin resistance conditions (Giannarelli et al., 2003). Metformin promotes the activation of FoxO1 via activation of AMPK, promoting deacetylation by SIRT1 or inhibition mTOR kinase (both mTORC1 and mTORC2) which in turn also inhibits Akt to promote longevity of cells and relieve oxidative stress (Kalender et al., 2010; Ren, Shao, et al., 2020; Wang et al., 2018; Xu et al., 2019, 2020; Zhou et al., 2001). Inhibition of Akt phosphorylation is also shown by shikonin derivative DMAKO-05 (Yang et al., 2016).

Similar to metformin result in alleviating oxidative stress through FoxO1 activation are 2,2,4-trimethyl-1,2-dihydroquinolin-6-ol (Krylski et al., 2021) and curcumin (Ren, Zhang, et al., 2020). However, two contradicting results were reported in curcumin study in which curcumin managed to activate not only SIRT-FoxO1 pathways but also Akt in which phosphorylated FoxO1 by Akt is subsequently destroyed by proteasome. Specific discussion can also be directed to SIRT1-binder using natural product. It is also clear that SIRT1 promotes deacetylation of FoxO1, thereby activating its axis. In that case, resveratrol, a stilbened phenolic compound, activates SIRT1 (Borra et al., 2005) or AMPK (Yun et al., 2014) and subsequently FoxO1 which alleviates oxidative stress and promotes wound healing in various diabetes mice model such as with STZ treatment or db/db model (Chen et al., 2009; Huang et al., 2019; Kitada et al., 2011; Wu et al., 2012) and in turn decrease PPARG expression (Costa et al., 2011). Apparently, resveratrol was also found to promote Akt pathway, which also alleviate insulin resistance (Brasnýová et al., 2011; Chen et al., 2015). Such unspecific effect might be the reason on the balance activity of FoxO1 in displaying its activity as cell survival gene and hyperglycemic-related critical gene. Comparable effect was also displayed in Xanthigen, a diet product derived from pomegranate seed and brown seaweed which contain punica acid and fucoxanthin. Administration of Xanthigen increases the activity of SIRT1 and AMPK and down-regulates PPARG. However, Xanthigen also stimulate insulin signaling and promote Akt-dependent phosphorylation of FoxO1 (Lai et al., 2012). Additionally, compound W2476 also manages to dephosphorylate FoxO1 at Ser319 and promotes FoxO1 association with (carbohydrate response element-binding protein (ChREBP). However, the activity to alleviate diabetes was rather due to subsequent repression of thioleaporan-interacting protein (TXNIP) (Zhong et al., 2021).

It is clear that there is a large gap in the treatment of diabetes by targeting FoxO1. One concept by promoting FoxO1 activity is directed toward wound healing and cell longevity point of view on the treatment of diabetes. In general, blocking FoxO1 activity shows more decisive conclusion to reduce high plasma glucose and alleviate insulin resistance. However, long-term study must be done on FoxO1 inhibitor, for example, its effect on the cell survival in hyperglycemic condition. Additionally, chronic study must also be done in which promoting cell survival by activating FoxO1 will not induce insulin resistance. For example, curcumin is famously known to disrupt Akt pathway for anticancer activity (Choi et al., 2008), which might also promote insulin resistance.

Furthermore, the chemical structures of various drugs that target or directly bind to FoxO1 protein (Table 2) seem very diverse ranging from small molecules, which freely rotate to cyclic aliphatic and/or aromatic. Many drugs that were found to modulate (activate / inhibit) FoxO1 were subjected rather from its effect for blood glucose-lowering activity or from its impact on FoxO1 transcriptional activity. As such, it might happen that the modulation of FoxO1 activity can be not due to direct interaction to FoxO1 but rather via binding to other macromolecule(s) that further modify FoxO1 activity. One example about the predicted binding modes was found rather only by molecular docking (Abuzenadah et al., 2018) to the previously established crystal of the free structures that only contain the DNA-binding domain of FoxO1 (Breit et al., 2008). The reported binding modes might not reflect the real binding sites to the whole FoxO1 protein. Moreover, results extracted by molecular docking without support from biophysical and structural studies are uncertain.
Biophysical assays to proof the binding of the ligands to FoxO1 protein seem scarce (Table 2). Out of all studied articles, compound AS1842856 was screened by mass spectrometry that indicates direct binding (Nagashima et al., 2010). While AS1842856 inhibitory activity is selective to FoxO1, carbeneoxalone was also proven to directly bind to the DNA-binding domain, however, of various FoxO proteins by fluorescence titration assay (Salcher et al., 2020). One example about complementation of molecular docking with biophysical studies can be found in a study that screen natural products which selects one compound called tanazawaic acid D which also hints that the $\Delta G_{\text{binding}}$ obtained from molecular docking cannot be interpreted directly into the experimentally obtained K_d (Sun et al., 2017). Therefore, the need to establish high-resolution structure for ligand-FoxO1 interaction cannot be evaded which is still absent to this date for better rational drug design and more specific protein targeting.

ACKNOWLEDGMENTS

The writing of this paper was funded by the Indonesia Ministry of Research, Technology, and Higher Education (024/SP-Lit/LLPM-01/Kistek/BRIN/Mono/ITB/III/2021).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ETHICAL APPROVAL

The studies conducted in this article do not involve human participants or animals.

REFERENCES

tion promotes cell proliferation in colon cancer. Nucleic Acids Research, 47, 1692-1708.

Takai, A., Ohno, Y., Yasumoto, T., & Mieskes, G. (1992). Estimation of the rate constants associated with the inhibitory effect of

Wang, Y., Xu, W., Yan, Z., Zhao, W., Mi, J., Li, J., & Yan, H. (2018). Metformin induces autophagy and GO/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. Journal of Experimental & Clinical Cancer Research, 37, 63.

How to cite this article: Nathanael, J., Suardana, P., Vianney, Y. M., & Dwiputra, S. E. (2021). The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review. Chemical Biology & Drug Design, 00, 1–18. https://doi.org/10.1111/cbdd.13989
<table>
<thead>
<tr>
<th>Rank</th>
<th>Source</th>
<th>Type</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>www.jbas.juw.edu.pk</td>
<td>Internet Source</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td>Submitted to Surabaya University</td>
<td>Student Paper</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>materiais.dbio.uevora.pt</td>
<td>Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>4</td>
<td>oui.c.dntb.gov.ua</td>
<td>Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>5</td>
<td>www.jbc.org</td>
<td>Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>6</td>
<td>Amy R. Cameron. "Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a", Aging Cell, 02/2008</td>
<td>Publication</td>
<td><1%</td>
</tr>
<tr>
<td>7</td>
<td>www.tandfonline.com</td>
<td>Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>8</td>
<td>www.theses.fr</td>
<td>Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>Rank</td>
<td>Source</td>
<td>Type</td>
<td>Contribution</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>9</td>
<td>pdfs.semanticscholar.org</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>10</td>
<td>www.science.gov</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>11</td>
<td>d-nb.info</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>12</td>
<td>purehost.bath.ac.uk</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>13</td>
<td>wjgnet.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>14</td>
<td>Submitted to Harper Adams University College</td>
<td>Student Paper</td>
<td><1 %</td>
</tr>
<tr>
<td>15</td>
<td>mts.intechopen.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>16</td>
<td>web.wi.mit.edu</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>17</td>
<td>www.cambridge.org</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>18</td>
<td>www.techscience.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>19</td>
<td>Submitted to Dundalk Institute of Technology</td>
<td>Student Paper</td>
<td><1 %</td>
</tr>
<tr>
<td>#</td>
<td>Author(s)</td>
<td>Title</td>
<td>Journal/Source</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>21</td>
<td>Maaged Abdullah, Lalitha Guruprasad.</td>
<td>"Identification of 3D motifs based on sequences and structures for binding to CFI - 400945, and deep screening - based design of new lead molecules for PLK - 4", Chemical Biology & Drug Design, 2021</td>
<td>Publication</td>
</tr>
<tr>
<td>22</td>
<td>erc.endocrinology-journals.org</td>
<td></td>
<td>Internet Source</td>
</tr>
<tr>
<td>23</td>
<td>ir.lib.uwo.ca</td>
<td></td>
<td>Internet Source</td>
</tr>
<tr>
<td>24</td>
<td>journals.plos.org</td>
<td></td>
<td>Internet Source</td>
</tr>
<tr>
<td>Page</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>journal.unair.ac.id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>www.wjgnet.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>arcabc.ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>diposit.ub.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>eartharxiv.org</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>ejournal.stipwunaraha.ac.id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>library.unisel.edu.my</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fatih Mehmet Kandemir, Mustafa Ozkaraca, Sefa Küçükler, Cuneyt Caglayan, Basak Hanedan. "Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage", Toxin Reviews, 2017

Yanmei Tan, Hai Zhang, Dongming Guo, Jiangbo Wang, Xu Yuan, Zhonghua Yuan. "Adipophilin Involved in Lipopolysaccharide-
Induced Inflammation in RAW264.7 Cell via Extracellular Signal-Regulated Kinase 1/2-Peroxisome Proliferator-Activated Receptor Gamma Pathway", DNA and Cell Biology, 2017

Yun-Fei Xu, Xu Chen, Zhao Yang, Peng Xiao et al. "PTP-MEG2 regulates quantal size and fusion pore opening through two distinct structural bases and substrates", Cold Spring Harbor Laboratory, 2020

arxiv.org
estudogeral.sib.uc.pt
ir.uiowa.edu
jme.bioscientifica.com
onlinelibrary.wiley.com
pericles.pericles-prod.literatumonline.com
ueaprints.uea.ac.uk
uhra.herts.ac.uk
Internet Source

Advances in Experimental Medicine and Biology, 2010.

Publication

Altea Rocchi, Congcong He. "Emerging roles of autophagy in metabolism and metabolic disorders", Frontiers in Biology, 2015

Publication

AtlasGeneticsOncology.org

Internet Source

Publication

Shiying Shao, Yan Yang, Gang Yuan, Muxun Zhang, Xuefeng Yu. "Signaling Molecules Involved in Lipid-Induced Pancreatic Beta-Cell Dysfunction", DNA and Cell Biology, 2013

Publication

Wei Hu, Zhi Yang, Wenwen Yang, Mengzhen Han, Baoping Xu, Zihao Yu, Mingzhi Shen, Yang Yang. "Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view", Progress in Neurobiology, 2019
<table>
<thead>
<tr>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Abigail K. Brown, Ashley E. Webb. "Regulation of FOXO Factors in Mammalian Cells", Elsevier BV, 2017

Sonja K. Soo, Paige D. Rudich, Annika Traa, Namasthéé Harris-Gauthier, Hazel J. Shields, Jeremy M. Van Raamsdonk. "Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders", Mechanisms of Ageing and Development, 2020

Usman Sabir, Hafiz Muhammad Irfan, Alamgeer, Ihtisham Umer, Zahid Rasul Niazi, Hafiz Muhammad Mazhar Asjad. "Phytochemicals targeting NAFLD through modulating the dual function of forkhead box O1 (FOXO1) transcription factor signaling
Fernando Hernández-Sánchez, Silvia Guzmán-Beltrán, María Teresa Herrera, Yolanda Gonzalez et al. "High glucose induces -GlcNAc glycosylation of the vitamin D receptor (VDR) in THP1 cells and in human macrophages derived from monocytes", Cell Biology International, 2017

Reinhard Brunmeir, Feng Xu. "Functional Regulation of PPARs through Post-Translational Modifications", International Journal of Molecular Sciences, 2018

Shyam Lal Jinagal, Pragati Shekhar, Kailash Chandra, Srinivas Abhishek Mutnuru et al. "Prolactin-induced AMPK stabilizes alveologenesis and lactogenesis through regulation of STAT5 signaling", Cold Spring Harbor Laboratory, 2022

<table>
<thead>
<tr>
<th>FINAL GRADE</th>
<th>GENERAL COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>/0</td>
<td>Instructor</td>
</tr>
</tbody>
</table>
Your article has been accepted! Here’s what comes next

Article: The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review
Journal: Chemical Biology & Drug Design

Congratulations on the acceptance of your article for publication in Chemical Biology & Drug Design.

Your article has been received and the production process is now underway. We look forward to working with you and publishing your article. Using Wiley Author Services, you can track your article’s progress.

Not registered on Wiley Author Services?

If applicable, a list of available actions will appear below – check out your Author Services Dashboard for all actions related to your articles.

Sign your license agreement (REQUIRED) -- you will receive an email when this task is ready on your dashboard.
Track your article’s progress to publication
Make your article open access. Your institution or funder may help you publish your article open access, making it immediately and freely available to read, download, and share. Learn more here.
Access your published article
Share your published article with colleagues

If you need any assistance, please click here to view our Help section.

Sincerely,

Wiley Author Services

P.S. – This journal accepts artwork submissions for Cover Images. This is an optional service you can use to help increase article exposure and showcase your research. Pricing and placement may vary by journal. For more information, including artwork guidelines, pricing, and submission details, please visit the Journal Cover Image page.
You have actions to complete in Author Services

Article ID: CBDD13989
Article DOI: 10.1111/cbdd.13989
Internal Article ID: 17270466
Article: The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review
Journal: Chemical Biology & Drug Design

For the above article, you have the following open tasks:

Sign your license agreement in order to publish your article. Simply click the Manage Article button on your Wiley Author Services Dashboard.

Confirm your affiliations and research funders for this article. Simply click the Complete Required Actions button on your Wiley Author Services Dashboard.

Need any help? Please visit our Author Support Center.

Sincerely,

Wiley Author Services
Dear Sulistyo Emantoko Dwiputra,

Your article The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review in Chemical Biology & Drug Design has the following publication status: Online.

To access and share your article, please click the following link to register or log in:

https://authorservices.wiley.com/index.html#register

You can also access your published article via this link: http://doi.org/10.1111/cbdd.13989

If you need any assistance, please click here to view our Help section.

Sincerely,

Wiley Author Services

To unsubscribe from these emails, click here.
The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review

December 2021 · Chemical Biology & Drug Design 99(8)
DOI:10.1111/cbdd.13989

Authors:
Joshua Nathanael
Universitas Surabaya

Putu Suardana

Yoanes maria vianney
University of Greifswald

Sulistyo Emantoko
Universitas Surabaya