

Hashemite Kingdom of Jordan

An International Peer-Reviewed Scientific Journal

Financed by the Scientific Research and Innovation Support Fund

http://jjbs.hu.edu.jo/

المجلة الأردنية للعلوم الحياتية Jordan Journal of Biological Sciences (JJBS) http://jjbs.hu.edu.jo

Jordan Journal of Biological Sciences (JJBS) (ISSN: 1995–6673 (Print); 2307-7166 (Online)): An International Peer- Reviewed Open Access Research Journal financed by the Scientific Research and Innovation Support Fund, Ministry of Higher Education and Scientific Research, Jordan and published quarterly by the Deanship of Scientific Research , The Hashemite University, Jordan.

Editor-in-Chief

Assistant Editor

Professor Atoum, Manar F. Molecular Biology and Genetics, The Hashemite University **Dr. Muhannad, Massadeh I.** Microbial Biotechnology, The Hashemite University

Editorial Board (Arranged alphabetically)

Professor Amr, Zuhair S. Animal Ecology and Biodiversity Jordan University of Science and Technology

Professor Hunaiti, Abdulrahim A.

Biochemistry

The University of Jordan

Professor Khleifat, Khaled M.

Microbiology and Biotechnology

Mutah University

Professor Lahham, Jamil N.
Plant Taxonomy
Yarmouk University
Professor Malkawi, Hanan I.
Microbiology and Molecular Biology
Yarmouk University

Associate Editorial Board

Professor Al-Hindi, Adnan I.

Parasitology The Islamic University of Gaza, Faculty of Health Sciences, Palestine

Dr Gammoh, Noor

Tumor Virology Cancer Research UK Edinburgh Centre, University of Edinburgh, U.K.

Professor Kasparek, Max Natural Sciences Editor-in-Chief, Journal Zoology in the Middle East, Germany

Editorial Board Support Team

Language Editor Dr. Shadi Neimneh

Submission Address

Professor Atoum, Manar F

The Hashemite Universit y P.O. Box 330127, Zarqa, 13115, Jordan Phone: +962-5-3903333 ext.4147 E-Mail: jjbs@hu.edu.jo

Professor Krystufek, Boris Conservation Biology Slovenian Museum of Natural History, Slovenia

Dr Rabei, Sami H. Plant Ecology and Taxonomy Botany and Microbiology Department, Faculty of Science, Damietta University,Egypt

Professor Simerly, Calvin R. Reproductive Biology Department of Obstetrics/Gynecology and Reproductive Sciences, University of Pittsburgh, USA

Publishing Layout Eng.Mohannad Oqdeh

المجلة الاردنية للعلوم الحياتية Jordan Journal of Biological Sciences (JJBS)

http://jjbs.hu.edu.jo

International Advisory Board (Arranged alphabetically)

Professor Ahmad M. Khalil Department of Biological Sciences, Faculty of Science, Yarmouk University, Jordan

Professor Anilava Kaviraj Department of Zoology, University of Kalyani, India

Professor Bipul Kumar Das Faculty of Fishery Sciences W. B. University of Animal & Fishery Sciences, India

Professor Elias Baydoun Department of Biology, American University of Beirut Lebanon

Professor Hala Gali-Muhtasib Department of Biology, American University of Beirut Lebanon

Professor Ibrahim M. AlRawashdeh Department of Biological Sciences, Faculty of Science, Al-Hussein Bin Talal University, Jordan

Professor João Ramalho-Santos Department of Life Sciences, University of Coimbra, Portugal

Professor Khaled M. Al-Qaoud Department of Biological sciences, Faculty of Science, Yarmouk University, Jordan

Professor Mahmoud A. Ghannoum Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, Case Western Reserve University and University Hospitals Case Medical Center, USA

Professor Mawieh Hamad Department of Medical Lab Sciences, College of Health Sciences , University of Sharjah, UAE

Professor Michael D Garrick Department of Biochemistry, State University of New York at Buffalo, USA

Professor Nabil. A. Bashir Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Jordan

Professor Nizar M. Abuharfeil Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Jordan

Professor Samih M. Tamimi Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan

Professor Ulrich Joger

State Museum of Natural History Braunschweig, Germany

Professor Aida I. El Makawy Division of Genetic Engineering and Biotechnology, National Research Center. Giza, Egypt

Professor Bechan Sharma Department of Biochemistry, Faculty of Science University of Allahabad, India

Professor Boguslaw Buszewski Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University Poland

Professor Gerald Schatten Pittsburgh Development Center, Division of Developmental and Regenerative Medicine, University of Pittsburgh, School of Medicine, USA

Professor Hala Khyami-Horani Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan

Professor James R. Bamburg Department of Biochemistry and Molecular Biology, Colorado State University, USA

Professor Jumah M. Shakhanbeh Department of Biological Sciences, Faculty of Science, Mutah University, Jordan

Dr. Lukmanul Hakkim Faruck Department of Mathematics and Sciences College of Arts and Applied Sciences, Dhofar, Oman

Professor Md. Yeamin Hossain Department of Fisheries, Faculty of Fisheries, University of Rajshahi, Bangladesh

Professor Mazin B. Qumsiyeh Palestine Museum of Natural History and Palestine Institute for Biodiversity and Sustainability, Bethlehem University, Palestine

Professor Mohamad S. Hamada Genetics Department, Faculty of Agriculture, Damietta University, Egypt

Professor Nawroz Abdul-razzak Tahir Plant Molecular Biology and Phytochemistry, University of Sulaimani, College of Agricultural Sciences, Iraq

Professor Ratib M. AL- Ouran Department of Biological Sciences, Faculty of Science, Mutah University, Jordan

Professor Shtaywy S. Abdalla Abbadi Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan

Professor Zihad Bouslama

Department of Biology, Faculty of Science Badji Mokhtar University, Algeria

Volume 14, Number 5,December 2021 ISSN 1995-6673

CONTENTS

Original Articles

881 - 887	Antioxidant and antibacterial activities of <i>Coix lacryma-jobi</i> seed and root oil potential for meningitis treatment Diky Setya Diningrat, Novita Sari Harahap, Marsal Risfandi, Zulfahri, Ayu Nirmala Sari, Kusdianti				
889 - 897	Further studies on evaluation of the toxicity potential of <i>Terminalia catappa</i> Lin. Combretaceae leaf extract: effects on the histology, liver enzymes, and haematology profile of albino rats <i>Chika B. Ikele , Elijah Okwuonu and Anya N. Ijem</i>				
899 - 903	Green Synthesis of Silver Nanoparticles using Neem and Collagen of Fish Scales as a Reducing and Stabilizer Agents Mustafa Mudhafar, Ismail Zainol, H.A. Alsailawi and C. N. Aiza Jaafar				
905 - 910	Antioxidant effect of Beta-D-glucan-polysaccharide fractionate of <i>Auricularia polytricha</i> on Hyperglycaemia-Induced Kidney Dysfunction in Experimental Diabetic Nephropathy <i>Agbor C A and Anyanwu G E</i>				
911 - 918	Effect of Stress on Ontogeny of Humoral Immunity in Catla Purandara Ballyaya Abhiman, Md. Abdullah-Al Mamun , Manjulesh Pai, Shamima Nasren, Sanjay Singh Rathore and Kalkuli Mariappa Shankar				
919 - 923	Covid-19: Viral Pathogenesis and The Host Immune Response Nasiru Usman Adabara, Sherifat Ozavize Enejiyon, Faruk Adamu Kuta, Ayanwale Oluwatobi Abraham and Samia Alkhalil				
925 - 931	The Role of Calcium Ions to Improve Activity of Chitinase Isolated from <i>Vibrio</i> sp. <i>Noor Harini, Ya Xi Han, and Johan Sukweenadhi</i>				
933 - 937	Callus-mediated Somatic Embryogenesis and Plant Regeneration in <i>Vanda tricolor</i> Lindl. var. Pallida <i>Popy Hartatie Hardjo</i> , <i>Wina Dian Savitri, Ida Bagus Made Artadana, Sulistyo Emantoko Dwi Putra,</i> <i>Elizabeth Pio Parac and Asad Jan</i>				
939 - 944	Growth and Productivity of Four Cassava Cultivars on Several Levels of Mixed Fertilizers Sri Wahyuningsih, Febria Cahya Indriani, Joko Restuono1, Kartika Noerwijati ,Abdullah Taufiq, Yuliantoro Baliadi, Rohmad Budiono, Nguyen Van Minh and Peeyush Soni				
945 - 951	Utilization of "Uwi" Plant (<i>Dioscorea</i> sp.) as a Renewable Bioenergy Resource Wuryantoro Wuryantoro, Praptiningsih Gamawati Adinurani,Ratna Mustika Wardhani, Sutrisno Sutrisno, Bohari Mohammad Yamin and Syukri Muhammad Nur				
953 - 958	Metabolite Profiling of Black Rice (<i>Oryza sativa</i> L.) Following Xanthomonas oryzae pv. Oryzae Infection Ema Nur Hidayah, Febri Adi Susanto, Tri Joko, Yekti Asih Purwestri, Tri Rini Nuringtyas, Manar Fayiz Mousa Atoum, and Asad Jan				
959 - 964	Evaluation of Efficiency of <i>Echinodorus palaefolius</i> (J.F. Macbr.) Involved in the <i>Clarias gariepinus</i> (Burchell, 1822) Culture for Water Quality Recovery and Fish Growth Support <i>Hany Handajani, Ganjar Adhywirawan, Soni Andriawan, Dony Prasetyo and Boy Ronald Mavuso</i>				
965 - 968	Effect of Bioagent-added Organo-mineral Nitrogen Fertilizer on Total Nitrogen, pH, and Chrome Content in Lowland Paddy <i>Rija Sudirja</i> , <i>Indra Oktavianus Lubis, Nadia Nuraniya Kamaluddin, Santi Rosniawaty</i>				
968 - 974	The Effect of Bathing Length Time to Axillary Temperature and Dry Heat Loss on Newborns; A Comparative Analysis <i>Hotma Sauhur Hutagaol</i>				
975 - 981	Identification of Consumers' Motives in Buying Organic Luwak Coffee in terms of Agri- Touirism Yosini Deliana , Lucyana Trimo, Sri Fatimah, Mai Fernando N and Mohamad Djali				

983 - 989	Combination of Hyaluronic Acid with Advance-Platelet Rich Fibrin to Reduce Chronic Inflammation: a study in IL-6 and Granulation Index
	Ronald W. Kartika, Idrus Alwi, Mirta Hediyati Reksodiputro, Em Yunir, Sarwono Waspadji, Suzzana Immanuel,Todung Silalahi, Saleha Sungkar, Jusuf Rachmat, Saptawati Bardosono, Franciscus D. Suyatna
991 - 997	Value Chain Model for Straw Mushroom (Volvariella volvacea) Agribusiness Performance in Karawang, Indonesia
	Suhaeni, Winda Rianti and Yuyun Umaidah
999 - 1008	Integrative survey for ant diversity: exhaustive deployment of several ant collection methods in Biological Education and Research Forest of Universitas Andalas, Indonesia <i>Henny Herwina , Rijal Satria, Yaherwandi, Yositaka Sakamaki, Mairawita, Diyona Putri, Ahmad</i> <i>Efendi, Yusuke Kusuhata, Muhammad N. Janra</i>
1009 - 1014	Combined Test of Jatropha Biodiesel Based on Altitude Towards Arbuscular Mycorrhizal Fungi (AMF) Combination with Cultivars and Cytokinins <i>R. Budiasih, Kovertina Rakhmi Indriana, Reni Nurhayatini, Roni Assafaat Hadi, Noertjahyani,</i> <i>Karyana K.S.</i>
	Effect of Mangosteen Peel Extract (Garcinia mangostana l.) with Supplemental Zinc and
1015 - 1020	Copper on Performance and Egg Quality of Sentul Laying Chicken
	Tuti Widjastuti , Lovita Adriani, Indrawati Yuda Asmara, Iwan Setiawan, Abun, Leni Nurlaeni
1021 - 1024	Improving Blood Protein and Albumin Level Using Dried Probiotic Yogurt in Broiler Chicken
	Lovita Adriani , Andi Mushawwir, Chitra Kumalasari, Leni Nurlaeni Ronny Lesmana, Urip Rosani
1025 - 1029	Physiological Analysis of Orchid Chlorophyll against <i>Odontoglossum ringspot virus</i> Infection
	Mahfut, Irni Yuni Minarni, Sri Wahyuningsih, Tundjung Tripeni Handayani
1031 - 1034	Morphological Identification of Mycorrhizal Fungi Isolated from Native Orchid in Indonesia <i>Mahfut</i>
1035 - 1043	Transcriptional Impact of E-cadherin Loss on Embryonic Stem Cells Hani Alotaibi
1045 - 1050	Mathematical evaluation of chromosomal anomalies induced by xylol in <i>Vicia faba</i> L. regarding application time and concentration <i>Ali Özdemir and Canan Özdemir</i>

The Role of Calcium Ions to Improve Activity of Chitinase Isolated from *Vibrio* sp.

Noor Harini¹, Ya Xi Han², and Johan Sukweenadhi^{3,*}

¹Department of Food Science and Technology, Faculty of Agriculture-Animal Science, University of Muhammadiyah Malang, Jl. Raya Tlogomas No 246, Malang 65114, Indonesia; ²Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea; ³Department of Bionutrition and Food Innovation, Faculty of Biotechnology, University of Surabaya, Jl. Ngagel Jaya Selatan No 169, Surabaya 60294, Indonesia.

Received: May 15, 2021; Revised: June 18, 2021; Accepted: June22, 2021

Abstract

Chitinase (EC 3.2.1.14) plays a crucial role in chitin degradation, specifically breaking down the $1\rightarrow4$ β -glycosidic bonds of N-acetyl-D-glucosamine (GlcNAc) to produce its mono- or oligomers. This study aims to study the characteristics of chitinase from *Vibrio* sp. (isolated from tiger shrimp in Indonesia) and explore the role of calcium ions (Ca²⁺) in increasing chitinase activity. The optimum condition for chitinase activities is pH 7.5, 45 °C of temperature, and 120 min of incubation time. The enzyme activity parameters such as K_m and V_{max} values were calculated by varying the concentration of Ca²⁺, namely: 0 % ; 0.2 % ; 0.4 %; 0.6% ; 0.8 %. The final product of the chitinase reaction, the GlcNAc, is then used to measure the enzyme activity based on the Somogyi-Nelson method. The results showed that chitinase isolated from *Vibrio* sp. has increasing activity with the addition of Ca²⁺. Without the addition of Ca²⁺, the K_m and V_{max} of chitinase were 7.781 µmol mL⁻¹ and 0.066 µmol min⁻¹, respectively. The treatment of 0.4 % Ca²⁺ shows optimum activity with the K_m and V_{max} at 6.723 µmol mL⁻¹ and 0.079 µmol min⁻¹, respectively. The results showed the potential use of Ca²⁺ as a chitinase activator to fulfill demands for energy-efficient and economically profitable chitinase usage.

Keywords: Eco-friendly waste management, Enzyme activity, Marine waste, Profitable chitinase, Utilization of Agro-industrial waste.

1. Introduction

Chitinase is an enzyme that catalyzes the hydrolysis reaction of N-acetyl-D-glucosamine (GlcNAc) polymers. It can be used in the decomposition and re-utilization of chitin, one of the major marine waste problems (Atalla et al., 2020). GlcNAc itself has been widely applied in the health sector, including reducing blood pressure and blood fat levels, suppressing cancer cell development, malignant tumors, and other inflammation, low-calorie sweeteners, cosmetics, biocontrol agents, and packaging materials (Awad et al., 2014; Krolicka et al., 2018; Rathore and Gupta, 2015; Van den Broek et al., 2015; Veliz et al., 2017). Thus, looking for the chitinase can be key to reducing environmental hazards through eco-friendly waste management and generating an added-value product that is important to the industry (Hamed et al., 2015; Jahromi and Barzkar, 2018; Sadik et al., 2021).

Chitinase is a chitinolytic enzyme in cell organisms and can be synthesized from various sources such as bacteria, fungi, and various other types of microorganisms. Chitinase synthesized by animals and plants has several functions, including helping the metabolic process and preventing infections, such as preventing the growth of fungi or bacteria that can damage the individual's tissues. Chitinase, which is produced by bacteria, has the function to degrade chitin into compounds that can fulfill the nutritional needs of these bacteria (Adrangi and Faramarzi, 2013). Recent chitinase isolated from several species of *Vibrio sp.* has optimum enzyme activity at pH 5 to pH 7 with incubation temperature at 45 °C to 50 °C (He *et al.*, 2020).

Vibrio sp. is a bacterium often found in prawns bred in brackish water or from the water itself (Felix *et al.*, 2011; Kharisma and Manan, 2012; Kusmarwati *et al.*, 2017). It can infect and cause diseases, namely Vibriosis, which can cause huge loss in shrimp culture. This disease is caused by bacteria *Vibrio* genera such as *V. harveyi*, *V. alginolyticus*, *V. parahaemolyticus*, and *V. penaeicida* (Utami, 2016). Some cofactors such as Na⁺, Ca²⁺, Mn²⁺, Fe²⁺, Fe³⁺, Cu²⁺ and Zn²⁺ can function as chitinase activators (Jahromi and Barzkar, 2018). The presence of calcium ions in brackish

^{*} Corresponding author e-mail: sukwee@staff.ubaya.ac.id.

water is normal due to efforts to regulate salinity conditions, which later relate to the *Vibrio* survivability, osmoregulation, and post-larval metabolic ability of shrimp (Taqwa *et al.*, 2014). Based on these problems, it is necessary to examine the effect of Ca^{2+} in addition to increasing chitinase activity. After finding the chitinase optimum parameter, chitinase activity with and without the addition of Ca^{2+} will be compared. This can be known by measuring K_m (Michaelis-Menten coefficient) and V_{max} (maximum V value). The study aims to determine the role of Ca^{2+} ions in increasing isolated chitinase activity from *Vibrio* sp.

2. Materials and Method

2.1. Research materials

The research was conducted in the Laboratory of Parasites and Fish Diseases, Department of Aquaculture, Faculty of Fisheries; Biochemistry Laboratory, Biomolecular Laboratory, Microbiology Laboratory, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang; Agricultural Product Technology Laboratory, Agricultural Biotechnology Center, Science and Technology of Food Laboratory, University of Muhammadiyah Malang; and Bionutrition and Food Innovation Laboratory, Faculty of Biotechnology, University of Surabaya. The materials and tools used include a tool to characterize chitinase and test the enzyme activity. The Vibrio sp. used in this research was obtained from previous work (Zafran et al., 2017) located at Provincial Fish Seed Center (Balai Benih Ikan Provinsi-BBIP), Gondol, Bali. The strain was isolated from tiger shrimp (Penaues monodon Fabricius, 1798), and the only one which is non-pathogenic was used in this research.

2.2. Preparation of Vibrio culture

The solid medium was made for the propagation of Vibrio bacteria in a petri dish (Pyrex 3160-100), wherein how to make it followed previous work by Zarkasi et al. (2019) with some modification. Nutrient composition so that TCBSA (Thiosulfate-citrate-bile salts-sucrose agar, Oxoid, United Kingdom) for 1 L was needed as much as 88 g so that for making solid medium as much as 20 mL it was needed TCBSA as much as 1.76 g and chitin (Oxoid, United Kingdom) as much as 0.4 g. Nutrients to be dissolved in distilled water to a volume of 20 mL, heated to boiling for 10 min then put 10 mL each into petri dish that has been sterilized in an autoclave (All-American 25×, USA) at 121 °C, pressure 1.5 atm for 15 min (1 atm = 101) 325 Pa). Furthermore, it was desirable for cooling it down at room temperature (25 °C) to harden. In another way, a liquid medium was used for Vibrio growth medium on growth curves and enzyme production. The medium used for making liquid medium was TSB (Tryptone Soya Broth, Oxoid, United Kingdom). To make 100 mL of liquid TSB medium, 3 g TSB, 0.5 g NaCl (Oxoid, United Kingdom), and 2 g chitin were dissolved in 100 mL distilled water and then sterilized in an autoclave at 121 $^{\circ}$ C, 1.5 atm for 15 min.

2.3. Isolation of crude chitinase

Vibrio sp. cultures that had been rejuvenated for 2 d (day) were taken using a loop wire and suspended in 20 mL of the sterile liquid medium in 125 mL Erlenmeyer flask (Pyrex 4450-125) and placed in a shaking incubator at room temperature (25 °C) for 16 h (half logarithmic phase). The 20 mL inoculum solution was inoculated into 200 mL of sterile liquid medium and grown at room temperature (25 °C) on a shaking incubator (Bionics, BST/MIS-100B, India) at speeds of 125 rpm (1 rpm = 1/60 Hz) to 32 h (stationary phase). Then it was centrifuged at 4 °C for 10 min at 3 000 rpm (Denley BR401, United Kingdom) and the supernatant was immediately tested for its enzyme activity. The enzyme was purified by the saturated ammonium sulfate (Oxoid, United Kingdom) precipitation method followed by dialysis and Sephadex 75G (Oxoid, United Kingdom) column chromatography method. Each enzyme fractionation was tested for chitinase activity (Harini and Indranila, 2006).

2.4. Chitinase Activity Test

The chitinase activity was tested by using Somogyi-Nelson assay. As much as 1 mL of 30 mg L⁻¹ N-acetyl-Dglucosamine (Sigma-Aldrich, Germany) standard solution was taken and added with 1 mL of the Somogyi-Nelson cooper reagent (Sigma-Aldrich, Germany). The mouth of the tube was covered with aluminum foil, then heated in boiling water for 10 min. The tube was cooled in ice water and added with 1 mL of arsenomolybdate reagent, shaken, and allowed to stand for several minutes until the foam disappeared. After that, the distilled water was added up to 10 mL in volume and then shaken and measured the absorbance in the wavelength range of 500 nm to 800 nm by UV-vis spectrophotometer (Shimadzu-1601A, Japan), which maximum wavelength (λ_{max}) was 750 nm (Shalaby et al., 2019). The arsenomolybdate reagent was made of 25 g of ammonium molybdate (Sigma-Aldrich, Germany) dissolved in 450 mL distilled water, 21 mL of concentrated H_2SO_4 (JT Baker, United States), and 3 g of Na₂HAsO₄.7H₂O (Sigma-Aldrich, Germany) dissolved in 25 mL of H₂O, mix then place in an incubator (Heraeus B5042, Germany) at 37 °C for 24 h to 48 h. The standard N-acetyl-glucosamine curves were prepared by testing several N-acetyl-glucosamine concentrations [10, 20, 30, 40, 50, and 60) mg L⁻¹] following exactly Somogyi-Nelson assay which written above.

A total of 1 mL of 2.5 % (w/v) chitin in 0.1 M phosphate buffer pH 7.5 was added to 1 mL of chitinase solution. Then the mixture was incubated at 45 °C and after 120 min of incubation time, it was centrifuged at 5 000 rpm for 10 min. The enzyme activity was stopped by heating it in boiling water for 15 min before it was mixed with the reagent. Furthermore, the supernatant obtained was taken

as much as 1 mL to be tested by Somogyi-Nelson assay. The solution was diluted with distilled water to a final volume of 10 mL and read the absorbance at λ_{max} with a phosphate buffer blank which was treated the same as the sample. Enzyme activity value was measured by the levels of N-acetyl-D-glucosamine obtained from the plot results against the standard curve of N-acetyl-D-glucosamine. The measurement of enzyme activity was done by converting the absorbance value to the concentration of N-acetyl-D-Glucosamine (Yang *et al.*, 2016) and calculating it following equation (1):

Enzyme Activity =
$$\frac{[N - \text{Acetyl} - D - \text{Glucosamine}] \times V}{\text{Mr } N - \text{Acetyl} - D - \text{Glucosamine}} \times \frac{df}{E \times t}$$
(1)

Note: V = total sample volume (mL), E = amount of crude enzyme (mL), t = incubation time (min), df = dilution factor, Enzyme Activity (unit) = μ mol N-acetyl-D-glucosamine which is produced by each mL of the enzyme each one minute under certain conditions. The N-acetyl-D-glucosamine obtained was measured absorbance by the UV-Vis spectrophotometer at λ_{max} 750 nm.

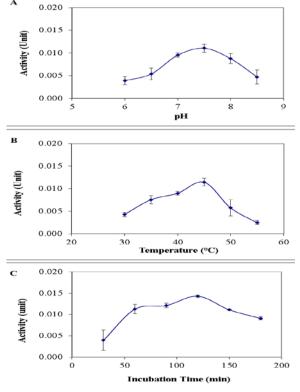
2.5. Determination of the optimum pH, temperature and incubation time

The determination of the optimum pH of chitinase was carried out with a variation of pH 6; pH 6.5; pH 7.0; pH 7.5; pH 8; and pH 8.5. Each test tube was provided with 1 mL chitin 2 % (w/v) in a phosphate buffer with variation of pH 6; pH 6.5; pH 7.0; pH 7.5; pH 8; and pH 8.5. Then 0.5 mL of enzyme filtrate was added and incubated at 45 °C for 60 min. The solution was centrifuged at 5 000 rpm for 10 min, then the filtrate obtained was taken 1 mL and added 1 mL of Somogyi-Nelson reagents and shaken. The mouth of the tube was covered with aluminum foil and heated for 20 min in boiling water. After chilling, 2 mL of arsenomolybdate reagent was added, mixed, and allowed to stand for 4 min. Subsequently, the solution was diluted with distilled water to a volume of 10 mL and the absorption was read at the $\lambda_{\text{max}}.$ Then the activity was determined, where the optimum pH was determined from the graph of the relationship between changes in pH of the enzyme activity.

Determination of the optimum temperature was done by the same procedure as the method used to determine the optimum pH, while the incubation temperature was varied at (30, 35, 40, 45, 50, 55) °C for 60 min at pH 7. Then the activity was determined based on the absorbance value of the molybdenum blue complexes which is equivalent to the amount of N-acetyl-D-glucosamine produced from the enzymatic reaction of chitinase. The optimum temperature was determined from a graph of the relationship between temperature changes and enzyme activity.

The optimum incubation time was determined by the same procedure as the method used to determine the optimum pH and temperature, while the incubation time variations were (30, 60, 90, 120, 150, 180) min, at 45 $^{\circ}$ C and pH 7. Then the activity was determined based on the absorbance value of the molybdenum blue complexes

which is equivalent to the amount of N-acetyl-Dglucosamine produced from the enzymatic reaction of chitinase. The optimum incubation time was determined from a graph of the relationship between time changes to enzyme activity.


2.6. Effect of Ca2+ ions

Addition of Ca^{2+} ions to increase chitinase activity was done by checking the chitinase reaction with variations in Ca^{2+} concentration, as follows: (0; 0.2; 0.4; 0.6; 0.8) %. For each kind of treatment, K_m and V_{max} were measured. The enzyme activity and the K_m and V_{max} values were determined employing the linear regression from the graph of the relationship between V^{-1} and $[S]^{-1}$ (or called Lineweaver-Burk curve). Those enzyme reactions were done using the optimum parameter (pH, temperature, incubation time) which was first tested.

3. Results

3.1. Optimum Condition of Chitinase Activity

Based on sequential trials on each reaction parameter, such as pH, temperature, and incubation time, it is shown that chitinase from *Vibrio* sp. has optimum reaction condition at pH 7.5 (Figure 1A), the temperature of 45 $^{\circ}$ C (Figure 1B), and 120 min incubation time (Figure 1C).

Figure 1. Optimum Condition Chitinase Activity at various pH (A), temperature (B), and incubation time (C).

3.2. Determination of Km and Vmax

In this study, the determination of K_m and V_{max} of chitinase were carried out with variations in substrate (chitin) concentration as follows: (1; 1.5; 2; 2.5; 3; 3.5) % (w/v). The relationship of enzyme activity to substrate concentration is shown in Figure 2. It shows that the greater concentration of chitin, the greater the speed of the enzymatic reaction to a point where an increase in substrate concentration does not significantly increase the reaction speed.

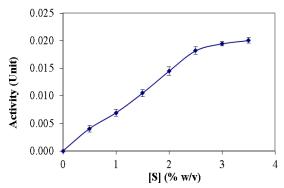


Figure 2. Relationship Curve of Chitinase Activity by Various Chitin Concentrations

Based on the Lineweaver-Burk curve shown in Figure 3 the values of K_m and V_{max} can be determined from the equation Y = aX + b. The value of V_{max}^{-1} is 15.145 and K_m V_{max}^{-1} is 117.84, so the V_{max} is 0.066 µmol min⁻¹ and K_m is 7.781 µmol mL⁻¹.

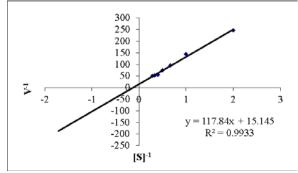
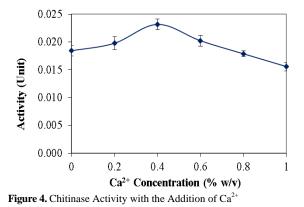



Figure 3. Lineweaver-Burk Curve of Chitinase Activity Isolated from *Vibrio sp.*

3.3. The Role of Calcium Ions on Chitinase Enzyme Activity

Figure 4. shows that Ca^{2+} increases enzyme activity until the addition of 0.4 % (w/v), whereas above 0.4 %, the enzyme activity starts to decline. The enzyme can be saturated with Ca^{2+} because the ability of the allosteric site to bind Ca^{2+} decreases. Thus, the addition of excess Ca^{2+} may cause denaturation on the enzyme which is characterized by decreased enzyme activity (Kumari *et al.*, 2010).

The effect of chitinase activity in the presence of Ca^{2+} ions on various variations is shown in Figure 5. Changes in activity caused the price of K_m and V_{max} to change. The value of K_m obtained is 6.723 µmol mL⁻¹ and V_{max} is 0.079 µmol min⁻¹ (Figure 6).

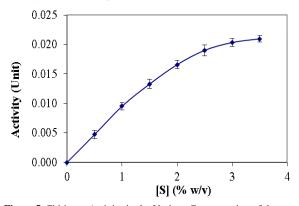


Figure 5. Chitinase Activity in the Various Concentration of the Substrate with Ca^{2+} Addition

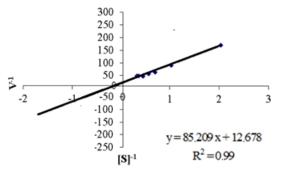


Figure 6. Lineweaver-Burk Curve Chitinase Activity by Addition of Ca^{2+}

4. Discussion

The optimization results of chitinase activity (Figure 1) are concurrent with the previously reported study of He *et al.* (2020), which showed optimum chitinase activity at pH 5 to pH 7 with incubation temperature at 45 °C to 50 °C. However, it quite a different condition compared to other

work of Nguyen and Nguyen (2020), which stated warm temperature (30 °C or 35 °C) and mildly alkaline pH (8.0) are the best conditions of chitinase from *V*. *parahaemolyticus*, one of the pathogenic species which infect shrimp.

One of the important things to know about the characteristics of an enzyme is the determination of K_m and V_{max}. The Michaelis-Menten constant (K_m) is a certain substrate concentration when the enzyme reaches half the maximum speed. Whereas Vmax is the maximum speed of an enzyme. To determine the value of K_m and V_{max} , measurement of enzyme activity was done at various concentrations of substrate, under optimum conditions (pH 7.5, temperature 45 °C, and 120 min incubation time). Thus, the K_m indicates the amount of substrate needed to obtain high chitinase activity as indicated by V_{max} , which is the fastest enzyme reaction achieved at the optimum concentration (Nakamura et al., 2018). According to Robinson (2015), the speed of enzymatic reactions will increase with increasing substrate concentration until finally reaching a stationary point. After exceeding that point, although the substrate amount is increased, the increase of enzyme reaction speed is very small (almost constant), but will never reach the maximum condition. This condition limit is called the maximum speed (V_{max}) where the enzyme becomes saturated by its substrate, as shown in Figure 2.

The Michaelis-Menten equation for precisely determining K_m and V_{max} is quite difficult. For this reason, the Michaelis-Menten equation is transformed into the Lineweaver-Burk equation. The Lineweaver-Burk equation is the opposite of the Michaelis-Menten equation which can determine K_m and V_{max} precisely, as shown in Figure 3. Thus the substrate concentration added was equal to the value of K_m . Whereas the V_{max} value shows that the speed of the formation of the final product (N-acetyl-D-glucosamine) and the speed of returning to the enzyme chitinase must be the same as the speed of the breakdown of chitin that is equal to 0.066 μ mol min⁻¹.

Calcium ions can form bridge complexes with enzymes and substrates according to their role in enzymatic reactions. Ca²⁺ can function as an enzyme inhibitor but can also be an enzyme activator. Enzymes that require Ca^{2+} as activators especially in extracellular enzymes (Bilecen and Yildiz, 2009; Garrison-Schilling et al., 2011). It plays an important role in modifying the structure needed for their catalytic activity. With the addition of substrate concentration, chitinase activity also increases with a fairly high increase in the concentration of 2.5 % (w/v). Calcium ion acts as an activator for enzymes that work to hydrolyze a macromolecule. The Ca^{2+} ions change the conformation and orientation of the active site of the enzyme, also increase the activeness of the enzyme to bind to the substrate to form an Enzyme-Substrate complex. The added Ca²⁺ influences chitinase activity because Ca²⁺ act as cofactors so that they can increase chitinase activity. The effect of Ca^{2+} on the chitinase isolated from *Vibrio* sp. is shown in Figure 4.

The presence of Ca²⁺ ions causes an increasing number of enzymes that bind to the substrate. This causes a greater level of substrate saturation as indicated by changes in the values of K_m and V_{max}. Determination of K_m and V_{max} values was carried out by measuring chitinase activity with an optimum Ca²⁺ concentration of 0.4 % in each variation of substrate concentration (Figure 5). The value of K_m and V_{max} (Figure 6) provides information that the substrate concentration needed to reach half of the maximum speed becomes smaller (13.5 % fewer) and the enzymatic reaction becomes faster (19.7 % faster) at the optimum concentration with the addition of Ca²⁺ ions. In the other words, additional Ca²⁺ up to 0.4 % can provide benefits of larger chitinase activity and lesser required chitin.

Hydrolysis of chitin by chitinase with Ca^{2+} shows that the Calcium on the allosteric site (Asp-140) binds the substrate which can then change the active site conformation (Asp-142) to become active and bind to the substrate. When the conformation Asp-142 corresponds to the substrate and there is an interaction between those two, Ca^{2+} ions are released. The release of Ca^{2+} causes Asp-142 to rotate so that it is oriented closer to Glu-144 and hydrogen bonds occur. The interaction between Glu-144 and chitin causes the breakdown of glycosidic bonds and N-acetyl-D-glucosamine is formed. The interaction between Asp-142 and the amine group chitin and chitin with water also causes the formation of N-acetyl-Dglucosamine (Paknisa, 2014).

The presence of Ca^{2+} ions causes an increasingly enzymatic reaction which is characterized by an increase in chitinase activity after adding Ca^{2+} ions. The increase in chitinase enzyme activity is still relatively smaller compared to the research of Park *et al.* (2000) after adding Ca^{2+} ions. This is allegedly due to the concentration of the addition of Ca^{2+} ions which are relatively small and the use of chitin substrate in the form of powder, so that chitinase work is less optimal than the use of chitin substrate in the form of colloids and the addition of greater Ca^{2+} ion concentrations. The presence of Ca^{2+} causes conformation changes that make enzymes bind easier with the substrate, thereby increasing the saturation of the enzyme to the substrate as indicated by the increase in K_m and V_{max} values.

5. Conclusion

The optimum reaction parameters for the chitinase isolated from *Vibrio sp.* are pH 7.5, temperature 45 °C, and 120 min incubation time. The chitinase activity increases until the addition of Ca^{2+} 0.4 % and decreases with an increasing concentration of Ca^{2+} above 0.4 %. The value of K_m and V_{max} before adding Ca^{2+} was 7.781 µmol mL⁻¹ and 0.066 µmol min⁻¹, respectively. After adding Ca^{2+} , the value of K_m and V_{max} was 6.723 µmol mL⁻¹ and 0.079

 μ mol min⁻¹. In conclusion, chitinase kinetic parameters with the addition of Ca²⁺ affects K_m (13.5 % fewer substrate) and V_{max} (19.7 % faster), which means its reaction efficiency is improved.

6. Competing interest statement

The authors have declared that no competing interest exists in the manuscript.

Acknowledgments

Appreciation was sincerely conveyed to the Head of Laboratory for Fish Health and Environment Assessment, Muntilan, Central Java, Indonesia who has supported the place to carry out the research. We also thank the Head of the Laboratory from all related affiliations for providing the means for the implementation of this research.

Funding disclosure

The researchers would like to thank several parties who helped in this research, namely the UMM Rector and staff who have helped fund this research; Director of Directorate of Research and Community Service (DPPM) of the University of Muhammadiyah Malang (UMM), and staff (contract Number. 1322/SK-BAA/XII/2016), who facilitated the implementation of this research.

References

Adrangi S and Faramarzi MA. 2013. From bacteria to human: A journey into the world of chitinases. *Biotechnol Adv*, **31(8)**: 1786–1795.

Atalla SM, Gamal NG and Awad HM. 2020. Chitinase of marine *Penicillium chrysogenum* MH745129: isolation, identification, production and characterization as controller for citrus fruits postharvest pathogens. *Jordan J Biol Sci*, **13**(1): 19–28.

Awad HM, El-Enshasy HA, Hanapi SZ, Hamed ER and Rosidi B. 2014. A new chitinase-producer strain *Streptomyces glauciniger* WICC-A03: isolation and identification as a biocontrol agent for plants phytopathogenic fungi. *Nat Prod Res*, **28**(**24**): 2273–2277.

Bilecen K and Yildiz FH. 2009. Identification of a calcium-controlled negative regulatory system affecting *Vibrio cholerae* biofilm formation. *Environ Microbiol*, **11(8)**: 2015–2029Felix F, Nugroho TT, Silalahi S and Octavia Y. 2011. Screening of Indonesian original bacteria *Vibrio sp.* as a cause of shrimp diseases based on 16s ribosomal DNA-technique. *Jurnal Ilmu dan Teknologi Kelautan Tropis*, **3(2)**: 85–99.

Garrison-Schilling KL, Grau BL, McCarter KS, Olivier BJ, Comeaux NE and Pettis GS. 2011. Calcium promotes exopolysaccharide phase variation and biofilm formation of the resulting phase variants in the human pathogen *Vibrio vulnificus*. *Environ Microbiol*, **13**(3): 643–654.

Hamed ER, Awad HM, Ghazi EA, El-Gamal NG and Shehata HS. 2015. *Trichoderma asperellum* isolated from salinity soil using

rice straw waste as biocontrol agent for cowpea plant pathogens. J Appl Pharm Sci, 5(2): 091–098.

Harini N and Indranila TH. 2006. Purification of crude extract of kinitase enzyme from *Vibrio cumpbelli* by multilevel precipitation method with ammonium sulfate. *Prosiding Seminar Nasional Tahunan III Hasil Penelitian Perikanan dan Kelautan*. Balitbang Kelautan dan Perikanan. Yogyakarta. pp. 267–276.

He X, Yu M, Wu Y, Ran L, Liu W and Zhang XH. 2020. Two highly similar chitinases from marine Vibrio species have different enzymatic properties. *Mar Drugs*, **18**(**139**): 1–14.

Jahromi ST and Barzkar N. 2018. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. *Int J Biol Macromol*, **120**: 2147–2154.

Kharisma A and Manan A. 2012. The Abundance of *Vibrio sp.* bacteria on enlargement water of Whiteleg shrimp (*Litopenaeus vannamei*) as the early detection of Vibriosis. *Jurnal Ilmiah Perikanan dan Kelautan*, **4**(2): 129–134.

Krolicka M, Hinz SW, Koetsier MJ, Eggink G, van den Broek LA and Boeriu CG. 2018. β-N-Acetylglucosaminidase Mth NAG from *Myceliophthora thermophila* C1, a thermostable enzyme for production of N-acetylglucosamine from chitin. *Appl Microbiol Biotechnol*, **102(17)**: 7441–7454.

Kumari A, Rosenkranz T, Kayastha AM and Fitter J. 2010. The effect of calcium binding on the unfolding barrier: A kinetic study on homologous α -amylases. *Biophys Chem*, **151(1-2)**: 54–60.

Kusmarwati A, Hermana I, Yennie Y and Wibowo S. 2017. Presence of potentially human pathogenic *Vibrio parahaemolyticus* of fresh shrimp in ponds of the northern coast of Java. *Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan*, **11(1)**: 41– 54.

Nguyen PN and Nguyen TT. 2020. Effects of pH, temperature and oxygen-limited condition on the virulence of *Vibrio* parahaemolyticus. Sci Tech Dev J, **23**(3): 569–575.

Paknisa S. 2014. Studies on chitinolytic enzymes from *Vibrio Harveyi*: Transglycosylation reaction and inhibition kinetics of sodium salts. Doctoral dissertation, School of Biochemistry Institute of Science, Suranaree University of Technology, Thailand.

Park SH, Lee JH and Lee HK. 2000. Purification and characterization of chitinase from a marine bacterium, *Vibrio sp.* 98CJ11027. *J Microbiol*, **38**(**4**): 224–229.

Rathore AS and Gupta RD. 2015. Chitinases from bacteria to human: properties, applications, and future perspectives. *Enzyme Res*, **791907**: 1–8. Sadik MW, Zohair MM, El-Beih AA, Hamed ER and Sedik MZ. 2021. Utilization of Agro-industrial wastes as carbon source in solidstate fermentation processes for the production of value-added byproducts. *Jordan J Biol Sci*, **14**(1): 157–161.

Shalaby HM, Abo-Sdera SA, Easa SM and Ismail AM. 2019. Biosynthesis of biologically active chitinase utilizing some Egyptian chitinaceous wastes and the properties of the synthesized enzyme. *Egypt Pharm J*, **18**(**4**): 320–331.

Taqwa FH, Sasanti AD, Haramain K, Kusrini E and Gaffar AK. 2014. Addition of calcium to swamp water as a diluent for salinity media for post-larvae maintenance of giant prawns on survival, osmotic work rate, and oxygen consumption. Jurnal Riset Akuakultur, 9(2): 229–236.

Utami W. 2016. Effect of salinity on *Vibrio harveyi* infection in Whiteleg Shrimp (*Litopenaeus vannamei*)]. J Aqua Manag Technol, **5(1)**: 82–90.

Van den Broek LAM, Knoop RJI, Kappen FHJ and Boeriu CG. 2015. Chitosan films and blends for packaging material. *Carbohydr Polym*, **116**: 237–242.

Veliz EA, Martínez-Hidalgo P and Hirsch AM. 2017. Chitinaseproducing bacteria and their role in biocontrol. *AIMS Microbiol*, **3(3)**: 689–705. Yang S, Fu X, Yan Q, Guo Y, Liu Z and Jiang Z. 2016. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium *Paenibacillus barengoltzii*. *Food Chem*, **192**: 1041–1048.

Zafran Z, Roza D and Koesharyani I. 2017. Resistance of Vibrio isolated from infected *Penaeus monodon* to antibiotics. *Jurnal Penelitian Perikanan Indonesia*, **3(1)**: 11–15.

Zarkasi KZ, Shukri AA, Nazari TF, Abdullah AA and Daud F. 2019. Molecular characterization of microbial community diversity associated with Blood Cockles (*Anadara granosa*) in Blood Cockle Farms. *Jordan J Biol Sci*, **12(3)**: 339-344.

Home || Volume 1 || Volume 2 || Volume 3 || Volume 4 || Volume 5 || Volume 6 || Volume 7 || Volume 8 || Volume 9 || Volume 10 || Volume 11 || Volume 12 || Volume 13 || Volume 14 || Volume

مندوق دعم البحث العامر كمندوق دعم البحث العامر

Sciences International Pier-Reviewed Scientific Journa International Pier-Reviewed Scientific Journa International Pier-Reviewed Science Fragment and International Pier-Reviewed And International

معامل التأثير العربي في المراجع العربي ا العربي ا العربي ا

The Jordanian Ministry of Higher Education and Scientific Research in corporation with the Hashemite University publish a new high-quality journal devoted to biological sciences:

Jordan Journal of Biological Sciences

The Editorial Board is very committed to build the Journal as one of the leading international journals in biological sciences in the next few years. With the support of the Ministry of Higher Education and Scientific Research and Jordanian Universities, it is expected that a heavy resource to be channeled into the Journal to establish its international reputation. The first issue of the journal appears in early 2008 with four issues per year.

Aims and Scope

Jordan Journal of Biological Sciences (JJBS) aims to provide a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the biological sciences. Mainly welcome are contributions dealing with cell biology, genomics, microbiology, immunology, molecular biology, biochemistry, embryology, immunogenetics, cell and tissue culture, molecular ecology, genetic engineering and biological engineering, bioremediation and biodegradation, bioinformatics, biotechnology regulations, gene therapy, organismal biology, microbial and environmental biotechnology, marine sciences. The JJBS welcomes the submission of manuscript that meets the general criteria of significance and academic excellence. All articles published in JJBS are peer-reviewed.

Publication Ethics

Instruction to authors

Editor-in-Chief

Prof. Atoum, Manar F. Hashemite University

Assistant Editor

Dr. Muhannad, Massadeh I. Hashemite University

Editorial board:

Prof. Amr, Zuhair S. Jordan University of Science and Technology Prof. Hunaiti, Abdulrahim A. The University of Jordan Prof. Khleifat, Khaled M. Mutah University Prof. Lahham, Jamil N. Yarmouk University Prof. Malkawi, Hanan I. Yarmouk University

Associate Editorial board:

Prof. Al-Hindi. Adnan I.

Parasitology ,The Islamic University of Gaza, Faculty of Health Sciences, Palestine **Dr Gammoh, Noor** Tumor Virology ,Cancer Research UK Edinburgh Centre, University of Edinburgh, U.K. **Prof. Kasparek, Max** Natural Sciences Editor-in-Chief, Journal Zoology in the Middle East. Germany

The International Advisory Board

Prof. Ahmad M. Khalil Department of Biological Sciences, Faculty of Science, Yarmouk University, Jordan Prof. Anilava Kaviraj Department of Zoology, University of Kalyani, India

Prof. Bipul Kumar Das Faculty of Fishery Sciences, West Bengal University of Animal & Fishery Sciences, India

Prof. Elias Baydoun Department of Biology, American University of Beirut Lebanon

Prof. Hala Gali-Muhtasib Department of Biology, American University of Beirut Lebanon

Prof. Ibrahim M. AlRawashdeh Department of Biological Sciences, Faculty of Science, Al-Hussein Bin Talal University, Jordan

Prof. João Ramalho-Santos Department of Life Sciences, University of Coimbra, Portugal

Prof. Khaled M. Al-Qaoud

Department of Biological sciences, Faculty of Science, Yarmouk University, Jordan Prof. Mahmoud A. Ghannoum

Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, Case Western Reserve University and University Hospitals Case Medical Center, USA **Prof. Mawieh A. Hamad**

Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, UAE Prof. Michael D Garrick

Department of Biochemistry, State University of New York at Buffalo, USA

Prof. Nabil. A. Bashir Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Jordan

Prof. Nizar M. Abuharfeil Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Jordan Prof. Samih M. Tamimi

Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan

Prof. Ulrich Joge

Prof. Krystufek, Boris

Conservation Biology , Slovenian Museum of Natural History, Slovenia Dr Rabei, Sami H. Plant Ecology and Taxonomy Botany and Microbiology Department, Faculty of Science, Damietta University,Egypt Prof. Simerly, Calvin R. Reproductive Biology Department of Obstetrics/Gynecology and Reproductive Sciences, University of Pittsburgh, USA

Prof. Aida I. El Makawy

Division of Genetic Engineering and Biotechnology, National Research Center. Giza, Egypt

Prof. Bechan Sharma Department of Biochemistry, Faculty of Science University of Allahabad, India

Prof. Bogusław Buszewski Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University Poland Prof. Gerald Schatten

Pittsburgh Development Center, Division of Developmental and Regenerative Medicine, University of Pittsburgh, School of Medicine, USA

Prof. Hala Khyami-Horani Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan Prof. James R. Bamburg

Department of Biochemistry and Molecular Biology, Colorado State University, USA

Prof. Jumah M. Shakhanbeh Department of Biological Sciences, Faculty of Science, Mutah University,

Dr. Lukmanul Hakkim Faruck Department of Mathematics and Sciences College of Arts and Applied Sciences, Dhofar, Oman Prof. Md. Yeamin Hossain

Department of Fisheries, Faculty of Fisheries, University of Rajshahi, Bangladesh

Prof. Mazin B. Qumsiyeh Palestine Museum of Natural History and Palestine Institute for Biodiversity and Sustainability, Bethlehem University, Palestine Prof. Mohamad S. Hamada

Genetics Department, Faculty of Agriculture, Damietta University, Egypt

Prof. Nawroz Abdul-razzak Tahir Plant Molecular Biology and Phytochemistry, University of Sulaimani, College of Agricultural Sciences, Iraq

Prof. Ratib M. AL- Ouran Department of Biological Sciences, Faculty of Science, Mutah University, Jordan Prof. Shtaywy S. Abdalla Abbadi

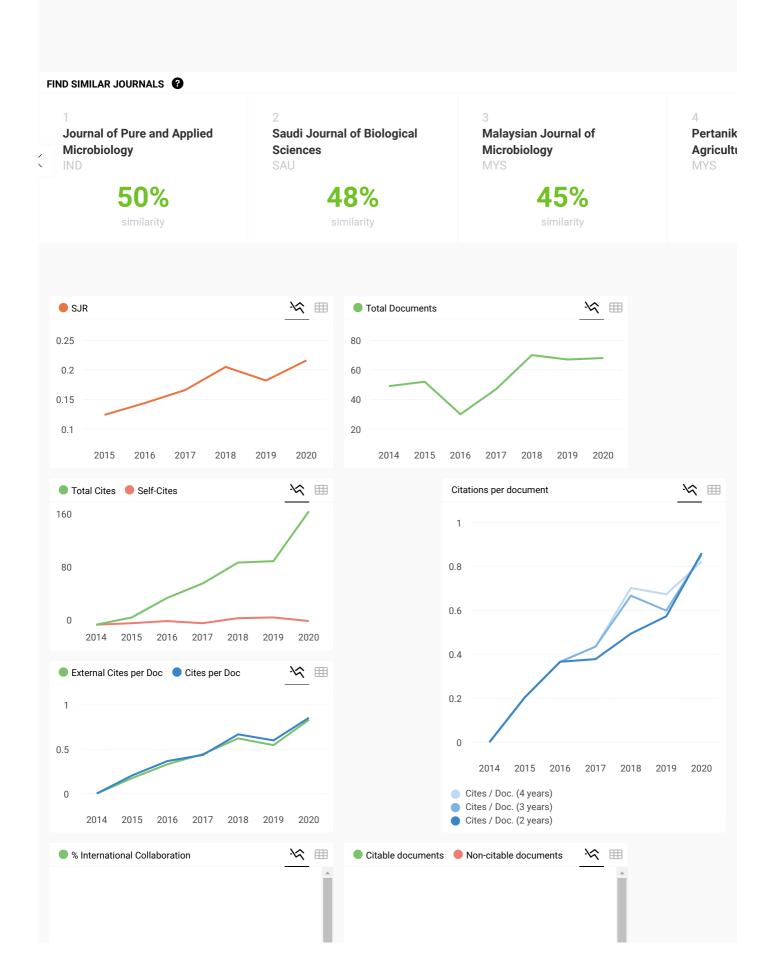
Department of Biological Sciences, Faculty of Science, The University of Jordan, Jordan Prof. Zihad Bouslama

Mailing address:

Wailing adoress: Prof Atoum, Manar F. Editor- in- Chief Molecular Biology and Genetics The Hashemite University P.O. Box 330127, Zarqa 13115, Jordan Tel. No. + 962 5 3903333 ext.4147 Fax No. + 962 5 3903349 E-mail:jibs@hu.edu.jo

Forms

- Subscription
- Cover Letter
- JJBS-COPYRIGHT


			also develop	ed by scimago:	Ⅲ	SCIMAGO INSTITUTIONS	RANKINGS
SJR	Scimago Journal & Country Rank			Enter Journal Title, ISSN or Publisher Name			Q
	Home	Journal Rankings	Country Rankings	Viz Tools	Help	About Us	

COUNTRY Jordan Universities and research institutions in Jordan	SUBJECT AREA AND CATEGORY Agricultural and Biological Sciences Agricultural and Biological Sciences (miscellaneous) Biochemistry, Genetics and Molecular Biology Biochemistry,	PUBLISHER Hashemite University Image Institutions Rankings	H-INDEX 11
	Genetics and Molecular Biology (miscellaneous)		
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	19956673, 23077166	2014-2020	Homepage How to publish in this journal JJBS@hu.edu.jo


SCOPE

Jordan Journal of Biological Sciences (JJBS) aims to provide a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the biological sciences. Mainly welcome are contributions dealing with cell biology, genomics, microbiology, immunology, molecular biology, biochemistry, embryology, immunogenetics, cell and tissue culture, molecular ecology, genetic engineering and biological engineering, bioremediation and biodegradation, bioinformatics, biotechnology regulations, gene therapy, organismal biology, microbial and environmental biotechnology, marine sciences. The JJBS welcomes the submission of manuscript that meets the general criteria of significance and academic excellence. All articles published in JJBS are peer-reviewed

 \bigcirc Join the conversation about this journal

₿

Α

Ahmed Alzbeede 12 months ago

Dear SCImago Team

I would like to ask whether this journal (Jordan Journal of Biological Sciences) still in coverage status for the years 2020 and 2021.

Why it is stopped in 2019 according to your current coverage status?

Regards

reply

Melanie Ortiz 11 months ago

Scillago reali

Dear Ahmed,

Thank you very much for your comment.

All the metadata have been provided by Scopus /Elsevier in their last update sent to SCImago, including the Coverage's period data. The SJR for 2019 was released on 11 June 2020. We suggest you consult the Scopus database directly to see the current index status as SJR is a static image of Scopus, which is changing every day. For further information, please contact Scopus support:

Trs: Galley proof (paper no. 7)

3 messages

roy hendroko <roy_hendroko@hotmail.com> To: Johan Sukweenadhi <sukwee@staff.ubaya.ac.id>

Ysh P Johan

Shalom aleichem Saya kirim sesuai pembicaraan kita per telpun. Maturwun.

Aleichem shalom Roy

Dari: Jordan Journal Biological <jjbs@hu.edu.jo> Dikirim: Minggu, 19 Desember 2021 02.29 Kepada: roy hendroko <roy_hendroko@hotmail.com> Subjek: Galley proof (paper no. 7)

Jordan Journal of Biological Sciences (JJBS)

ISSN 1995- 6673 (Print), 2307- 7166 (Online)

http://jjbs.hu.edu.jo

Dear Dr. Johan

December 18, 2021

Manuscript Title: The Role of Calcium Ions to Improve Activity of Chitinase Isolated from Vibrio sp.

Thank you for submitting your manuscript to Jordan Journal of Biological Sciences (JJBS). Please read the galley proof carefully and retain within 48 hr. Our Language editor did not pass the parts that are marked in red. Please improve them

If you have any corrections please mark in RED color. Please make sure that all References are according to JJBS format, and they are in the text.

Please after correction use save icon only (don't use save as icon it will change the document and we cannot get it back)

Looking forward to your continuous cooperation with JJBS.

Thank you for your interest in our journal.

Kindly acknowledge the receipt of this mail.

Sincerely yours,

Professor Manar Atoum, Hashemite university, Zarqa, Jordan

E. mail: jjbs@hu.edu.jo

2. instruction- 2021.rtf 1441K

Paper Number 7 (6).doc 4343K 19 December 2021 at 17:25

Dear Pak Roy

Saya kirimkan terlebih dahulu paper JJBS. Beberapa perubahan saya beri warna merah.

Paper SJA mungkin agak belakangan, karena mesti saya minta approval juga dari mitra industri yang terlibat co-author. Mohon petunjuk dan bantuannya untuk JJBS ini. Terima kasih

Best regards,

Johan Sukweenadhi, Ph.D

University of Surabaya (UBAYA) Faculty of Biotechnology Phone: +6231-2981399 | +6281232818580 UBAYA Profile | Research Gate | LinkedIn | ORCID ID Google Scholar ID | Science and Technology Index (SINTA) | Scopus Index

[Quoted text hidden]

Paper Number 7 (6).doc 4335K

roy hendroko <roy_hendroko@hotmail.com> To: Jordan Journal Biological <jjbs@hu.edu.jo> Cc: Johan Sukweenadhi <sukwee@staff.ubaya.ac.id>, "harini@umm.ac.id" <harini@umm.ac.id>

Respected Prof. Manar Atoum Respected Assoc. Prof. Muhannad Massadeh

Assalam mulaikum wr wb.

Alhamdulillah, the corresponding author, and I have completed the correction in manuscript GP No. 7. I have edited it in a clean format to speed up and simplify your work. Please accept my thank you for your patience in serving us. Insha Allah, our mutually beneficial collaboration is useful for many parties and blessed by Allah.

Wassalam mulaikum wr wb.

Roy

[Quoted text hidden]

Paper Number 7_Roy-201221.doc 4337K

20 December 2021 at 12:09