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PREFACE 

 

WELCOME FROM InCITE 2021 ORGANIZING COMMITTEE 

 

Welcome to InCITE 2021! The third bi-annual international conference on engineering 

domain conducted by the Faculty of Engineering, The University of Surabaya (UBAYA). 

Due to the COVID-19 pandemic, InCITE 2021 is held as an online conference. Online 

conference opens the opportunity for many researchers around the globe to share their 

findings and learn from other global researchers with less restrictions. 

 

InCITE 2021 invites three keynote speakers, well reputable global researchers in their 

research domain from Australia and Taiwan. Following each keynote session are two 

presentation sessions run in parallel.  

This year, we received 66 papers submitted by researchers from four distinct countries 

(i.e., first author’s country of origin): Indonesia, Australia, Taiwan, and Kazakhstan.  

 

We employed a double-blind review to ensure a high standard and a minimum level of 

bias in the reviewing processes. This resulted in 56% of the submissions were accepted 

and will be published to the AIP Conference Proceedings.  

 

Authors of all accepted papers are to disseminate their findings during InCITE 2021 

conference between 25 to 26 of August 2021. This presents a great opportunity for 

everyone, including the researchers, to discuss and further improve current achievements. 

 

We thank all keynote speakers, presenters, and reviewers/scientific committees for the 

generous supports. We thank the University of Surabaya, the Faculty of Engineering 

UBAYA, and all InCITE 2021 committees that enable InCITE 2021.  

 

We wish you a very pleasant and rich conference experience in InCITE 2021 and looking 

forward to seeing you again on InCITE 2023! Thank you.  

 

 

Yours sincerely, 

Asst. Prof. Dr. Jimmy 

InCITE 2021 Organizing Committee 
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KEYNOTE SPEAKERS 

 

Dr. Ahmed Mourad 

Dr. Ahmed Mourad is a Postdoctoral Research Fellow at 

the Information Engineering Lab (ielab), University of 

Queensland. His current research focuses on 

Conversational Systems in the context of Agricultural 

domain. AgAsk is a conversational agent that will provide 

access to agricultural R&D output (which is currently 

locked away into project reports, communications and 

scientific publications) leading directly to better, data-

driven growing decisions. Through machine learning 

driven question-answering systems, AgAsk will elicit and 

understand growers information needs and preferences, providing contextualised 

access to insights in agricultural R&D. 

 

He completed his PhD in Computer Science at RMIT University in 2019 under 

the supervision of Professor Mark Sanderson, Professor Falk Scholer and 

Associate Professor Walid Magdy. His research focused on the Influence of 

geographic biases on geolocation prediction in Twitter. Before the PhD, He 

worked as a Research Assistant at Qatar Computing Research Institute (QCRI) 

focusing on Information Retrieval and Sentiment Analysis on Arabic datasets. He 

also worked as a Software Engineer at large corporates including Microsoft and 

Mentor Siemens. 
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for the department of information management, National 

Taiwan University of Science and Technology, Taiwan, 
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 Dr. Anton van der Vegt 

Anton completed his PhD in Information Retrieval from 

The University of Queensland, co-sponsored by CSIRO.  

His reserach investigated the impact of time and 

knowledge constraints on the ability of clinicians to make 

high quality clinical decisions in the context of using a 

search engine to support this task. Anton proposed a 

minimal interaction framework, as an alternative to the 

traditional SERP (Search Engine Results Page) approach 

to clinical search. As a result of his research, numerous 

papers have been published in high ranking journals such 

as JASIST, JMLA and JDOC.   

Prior to his PhD studies, Anton spent four years working in the UK, supporting 

the implementation of the National Programme for IT into the NHS; this included 

development and installation of clinical and administrative software systems to 

connect patient care across the UK. Through this work he developed a much 

better understanding of the unique challenges faced by clinicians and public 

healthcare organisations when implementing such systems. This experience, 

together with his thesis research informs his current role as PostDoctoral Research 

Fellow with EMPOWER, a Joint Venture between Queensland Health and the 

University of Queensland.  The purpose of this JV is to create a scalable platform 

for clinicians to access intelligent information to improve clinical outcomes 

across Queensland. 
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PAPER ID: PAPER 31 

Student Performance Prediction in Higher Education:  

A Comprehensive Review 

Ellysa Tjandra
1, 2, a)

, Sri Suning Kusumawardani 
2, b)

, Ridi Ferdiana 
2, c)

 

1 
Department of Informatics Engineering, Universitas Surabaya, Surabaya, Indonesia  

2 
Department of Electrical Engineering and Information Technology, Universitas Gadjah 

Mada (UGM), Yogyakarta, Indonesia 

a)
Corresponding author: ellysa@staff.ubaya.ac.id 

b)
suning@ugm.ac.id  

c)
ridi@ugm.ac.id  

 

Student dropout still becomes a critical problem in education. Educational Data Mining 

(EDM) can bring potential impact to support academic institution’s goals in making 

academic decisions, such as regulation renewal, rule enforcement, or academic process 

improvement. The sooner at-risk students can be identified, the earlier institution 

members can provide necessary treatments, thus prevent them from dropout and increase 

the student retention rate. This study performs a comprehensive literature review of 

student performance prediction using EDM techniques, including various research from 

2002 to 2021. Our study is aimed to provide a comprehensive review of recent studies 

based on student performance prediction tasks, predictor variables, methods, accuracy, 

and tools used in previous works of student performance prediction. Performing student 

performance prediction in an academic institution can be helpful to provide the student 

performance mitigation mechanism because it can be managed earlier by the management 

to decrease the student dropout rate. 

Keywords: student performance, prediction, student dropout, Educational Data Mining, 

EDM review 
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Student Performance Prediction in Higher Education:  
A Comprehensive Review 

Ellysa Tjandra1, 2, a), Sri Suning Kusumawardani2, b), and Ridi Ferdiana2, c) 

1 Department of Informatics Engineering, University of Surabaya, Surabaya 60293, Indonesia  
 2Department of Electrical and Information Engineering, Gadjah Mada University, Yogyakarta, Indonesia 
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Abstract. Student dropout still becomes a critical problem in education. Educational Data Mining (EDM) can bring 
potential impact to support academic institution’s goals in making academic decisions, such as regulation renewal, rule 
enforcement, or academic process improvement. The sooner at-risk students can be identified, the earlier institution 
members can provide necessary treatments, thus prevent them from dropout and increase the student retention rate. This 
study performs a comprehensive literature review of student performance prediction using EDM techniques, including 
various research from 2002 to 2021. Our study is aimed to provide a comprehensive review of recent studies based on 
student performance prediction tasks, predictor variables, methods, accuracy, and tools used in previous works of student 
performance prediction. Performing student performance prediction in an academic institution can be helpful to provide 
the student performance mitigation mechanism because it can be managed earlier by the management to decrease the 
student dropout rate. 

Keywords: student performance, prediction, student dropout, Educational Data Mining, EDM review 

INTRODUCTION 

Student dropout and retention is a prominent issue in education at present. When the dropout rate increases, it 
means the institution loses the number of students, or the student retention rate decreases. According to the 
Indonesian academic minister of higher education (Kemenristekdikti), in 2017, there were 195.176 of 6.924.511 
(28.2%) students in higher education quitted from school [1]. Various procedures or processes can be conducted to 
prevent student dropout: student performance monitoring, academic rule enforcement, or academic improvement. To 
perform these activities, higher education institution needs supporting system, which can be established by 
Educational Data Mining (EDM). 

Educational Data Mining (EDM) is still being considered as a popular solution in education. EDM techniques 
provide potential impact for supporting academic institution goals to improve the quality and efficiency of learning 
activities and monitoring processes. Aldowah et al. (2019) summarized the previous works in the EDM field, 
specifically in computer-based student performance prediction, into three main objectives: evaluating learning 
materials (course contents, syllabus, etc.), monitoring learning activities/results (delivery methods, assignments, 
scoring, etc.), and preventing student dropout (performance measurement, early warning, survival index, etc.). They 
also categorized EDM into four domains based on its objective: Learning Analytics (LA), Predictive Analytics (PA), 
Behavioral Analytics (BA), and Visualization Analytics (VA) [2].  In their review, it could be concluded that 
predictive analytics still has the highest demand, which implies that predictive analytics is still being the most 
challenging subject in the EDM field. 

There were plenty of EDM techniques had been conducted by many researchers [3]–[8]. The previous literature 
reviews mainly concentrated on using EDM methods/techniques and student performance prediction, such as 

International Conference on Informatics, Technology, and Engineering 2021 (InCITE 2021)
AIP Conf. Proc. 2470, 050005-1–050005-9; https://doi.org/10.1063/5.0080187
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classification, clustering, rule-based methods, statistics, and user interfacing or visualization, but no comprehensive 
review of student performance prediction had been conducted. This research is aimed to provide a comprehensive 
review of recent studies based on student performance prediction tasks, predictor variables, predictive variables, 
methods, accuracy, and tools used in previous works of student dropout prediction.  

PREVIOUS WORKS 

Many literature reviews of EDM had been conducted and provided further insight into EDM fields. Each review 
captured the different points of view of EDM works. In 2015, [6] performed SLR to find the most frequent attributes 
and methods used in predicting student performance. Afterward, a review of student performance factors, clustering 
algorithm, and EDM tools had been conducted by [3], [4], [9], [10], followed by a literature review of student 
retention factors [11], EDM using big data framework [5], and domains and student success factors in the first year 
of higher education [12]. After that, [2] provided a broad analysis of EDM domains and applications, while [13] 
portrayed a comprehensive review of predictors, predictive values, and EDM techniques used to predict academic 
performance. [14] conducted an SLR of Student Achievement Influencing Factors. In 2021, student performance 
SLR is still being conducted. [15] performed an SLR of Student Performance Prediction based on Outcome-Based 
Education using Student Outcomes and Learning Outcomes, while [16] conducted an SLR of Student Performance 
Prediction Model used by each educational level. Overall, about 250 studies of student performance prediction had 
been established from 2002 to 2021. However, no comprehensive review of student performance prediction, 
especially for student dropout prevention, had been established. 

These works of literature are categorized into three main objectives as shown in Table 1: categorizes student 
performance prediction objectives into three main categories: evaluating learning materials, such as course contents, 
syllabus, etc. (59 or 23.60%), monitoring learning activities/results, such as delivery methods, assignments, scoring, 
etc. (168 or 67.2%), and preventing student dropout, such as performance measurement, early warning, survival 
index, etc. (23 or 9.20%). It can be concluded that dropout and retention is still the least researched sub-field in 
student performance prediction, while the dropout and retention problem is still the crucial problem of education that 
needs to be resolved immediately. 

TABLE 1. Studies of Student Performance Prediction 

Objectives Number of Studies % 
Evaluating learning materials 59 23.60% 
Monitoring learning activities/results 168 67.20% 
Preventing student dropout 23 9.20% 
Total 250 100% 

METHODS 

Therefore, this study proposes five research questions:  
Q1: What are the student performance prediction tasks performed by the previous studies?  
Q2: What are the predictor variables (attributes) used in student performance prediction?  
Q3: What are the prediction methods used for students dropout prevention?  
Q4: How about the results (accuracy) in each prediction method? 
Q5: What are the frequently used tools to perform prediction tasks? 

To narrow the result search, this review was conducted using specific search keywords and criteria(s): 

Search Keywords 

This review was conducted using these keywords and combination terms: 
 Educational Data Mining OR Learning Analytics 
 Student Performance Prediction 
 Early Warning OR Early Prediction OR Early Detection OR Early Estimation 
 Higher Education OR College OR Undergraduate OR University OR Degree Program 
 Student Performance Index OR Student Performance Model 
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 Student Retention OR Persistence OR Survival 
 Student Dropout OR Student Failure OR At-Risk Student OR Student Difficulties 

We limit our search for any studies performed in 2002 until December 2020. Hence, any paper published after 
that time is not included in our review. 

Search Criteria 

After a strict screening of previous studies, only strong-related papers were selected in this review, as well as 
duplicate papers were excluded from this review, resulting in 34 papers (each paper can contain more than one 
research). All articles were chosen from reputable journals and conferences published by trusted publishers. 

RESULTS AND DISCUSSION 

At first, this review summarizes the number of previous works in the EDM field, specifically in computer-based 
student performance prediction. 

Student Performance Tasks 

Student performance prediction is categorized into five main tasks: Student Identification & Classification, 
Student Modeling and Enhancement, Recommendation System, Early Warning, and Survival Indexing. Table 2 
obviously describes the top three frequent tasks performed by recent studies are Student Identification & 
Classification (44.12%), Student Retention Modeling & Enhancement (23.53%), Early Warning (14.71%), 
Recommendation System (11.76%), and Survival Indexing (5.88%), while Table 3 explores details of the studies.   

TABLE 2. Number of Student Performance Prediction Studies 
Task Number of Studies % 

Student Identification & Classification 15 44.12% 
Student Modeling & Enhancement 8 23.53% 

Early Warning 5 14.71% 
Recommendation System 4 11.76% 

Survival Indexing 2 5.88% 
Total 34 100% 

 
As shown in Table 3, some student performance tasks were performed in higher education. EDM is often used to 

predict student performance, such as identifying and grouping Students (Student Identification & Classification) 
[17]–[31], measuring student performance for future development (Student Modeling & Enhancement ) [11], [32]–
[37], providing Early Warning [20], [31], [38]–[40], providing Recommendations [30], [41]–[43], and presents a 
student success index (Survival Indexing) [44], [45].  

TABLE 3. Student Performance Prediction Tasks 

Task Study 
Student Identification & 
Classification 

[17], [18], [27]–[31], [19]–[26] 

Student Modeling & Enhancement [11], [32]–[37], [46] 
Early Warning [20], [31], [38], [40], [47], [48] 
Recommendation System  [30], [41]–[43] 
Survival Indexing [44], [45] 
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Student Performance Attributes (Predictor Variables) 

At first, student performance factors must be analyzed to perform the best prediction. We categorize student 
performance predictor variables into internal and external attributes (factors). Internal factor is any factor(s) that 
happened inside the university (or belongs to the university), while external factors come from the outside (e.g., 
students' family condition or other environments outside the university). Internal factors are considered to be more 
flexible because the university members can change them via regulation renewal, rule enhancement, or process 
improvement, while external factors cannot. In this research, personal factors such as behavioral, psychological, and 
motivational factors also are examined as well as academic factors. 

Student performance factors have been already examined in previous studies, and most of them used specific 
academic fields [24], [29][44], [46]. Academic and personal attributes have a significant impact on student academic 
performance. In 2014, [49] tried to add more factors besides academic factors: gender, high school background 
(secondary school grade), a chosen priority of the program (first, second, or third), and the financial condition 
(government-financed or self-financed). However, these studies mainly focused on academic factors. Studies of 
student personal approaches had been emerged to provide a better representation of a student. [50] examined social 
behavior of the students, resulting in a significant increase in dropout prediction accuracy. [23] analyzed 
psychological factors related to the personality of students (called the bio-psycho-social level of development) and 
external factors, consist of students’ socio-economic (student demographic), cultural (ethnicity), and educational 
environments, and stated that psychological factors also provide a significant influence in student academic 
engagement. These studies also stated that personal factors also have a significant impact on student academic 
performance. 

From Table 4 we can conclude the most-widely used predictors are: student demographic (13.75%), internal 
assessment (12.50%), admission (8.75%) student achievement index (GPA) (6.25%), psychological factors (6.25%), 
and social behavior (6.25%). Internal assessment includes test scores and assignments (internal assessment), 
prerequisite course grades, and course engagement or course attendance.  

TABLE 4. Student Performance Prediction Attributes used in Studies 
Category Attributes/Predictor Number of Studies % 
External Student Demographic 11 13.75% 
Internal Internal Assessment 10 12.50% 
External Admission 7 8.75% 
Internal CGPA 5 6.25% 
External Financial Condition 5 6.25% 
External Psychological Factors 5 6.25% 
External Social Behaviour 5 6.25% 
Internal Attendance & Delivery Mode 4 5.00% 
External High School Background 4 5.00% 
External Ethnicity (Nationality) 3 3.75% 
External Parent Educational Level 3 3.75% 
Internal English Proficiency 2 2.50% 
External Gender 2 2.50% 
Internal Extra-Curricular Activities 2 2.50% 
Internal Soft Skills 2 2.50% 
External Student Habit 2 2.50% 
Internal Educational Environment 1 1.25% 
External External Assessment 1 1.25% 
Internal Institute Rank 1 1.25% 
External Job Time 1 1.25% 
Internal Number of Students 1 1.25% 
External Religion 1 1.25% 
Internal Scholarship 1 1.25% 
Internal Student Status 1 1.25% 

 TOTAL 80 100% 
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Student Performance Prediction Methods 

Student Performance Prediction Methods used in previous research can be seen in Table 5. One research may 
perform more than one method and vice versa. The top five frequently used methods are Decision Tree (27.27%), 
Naïve Bayes (18.18%), K-Nearest Neighbour (12.12%), Neural Network (12.12%), and SVM (12.12%). 

TABLE 5. Student Performance Prediction Methods used in Previous Studies 
Methods Number of Studies % 

Decision Tree 9 27.27% 
Naïve Bayes 6 18.18% 
K-Nearest 4 12.12% 

Neural Network 4 12.12% 
SVM 4 12.12% 

Random Forest 3 9.09% 
Ruled-Based 2 6.06% 
Regression 1 3.03% 
TOTAL 33 100% 

 
Methods accuracy results for each prediction method used in previous works are shown in Table 6. The top 

five methods with best accuracy were performed using Neural Network (97.00%) [34], Random Forest (96.01%) 
[40], Decision Tree (92.80%) [25], Decision Tree (90%) [35], [43], and Random Forest (88.00%) [28]. 

TABLE 6. Accuracy of Prediction Methods 
Method Accuracy Study Year 

Neural Network 81.00% [41] 2002 
K-Nearest 82.00% [17] 2003 

SVM 80.00% [18] 2006 
Regression 70.60% [32] 2006 

Decision Tree 92.80% [25] 2007 
Naïve Bayes    

Decision Tree 73.00% [26] 2008 
Naïve Bayes 76.00%   

Neural Network 71.00%   
Neural Network 97.00% [34] 2013 
Decision Tree 66.00% [27] 2014 

K-Nearest 83.00%  
Naïve Bayes 73.00%  

SVM 80.00%  
Decision Tree 90.00% [35] 2014 
Decision Tree 90.00% [43]  2014 
Decision Tree 88.00% [28] 2014 

Random Forest  
K-Nearest 70% [45] 2014 

Decision Tree 69.23% [20] 2017 
Neural Network 62.50%   

K-Nearest 74.04%   
Ruled-Based 55.77%   
Naïve Bayes 83.65%   

Random Forest 71.15%   
Naïve Bayes 83.20% [51] 2018 
SVM (SMO) 81.00%   
Decision Tree 80.00%   
Ruled-Based 79.00%   
Decision Tree 85.75% [40] 2019 

Random Forest 96.01% 
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Method Accuracy Study Year 
SVM (SMO) 86.03% 
Naïve Bayes 85.51% 

Student Performance Prediction Tools 

Many researchers use tools to conduct prediction analyses in EDM [1]. Based on its objective, the student 
performance prediction tool is categorized into three categories: Data Manipulation, Analysis of Algorithm, and 
Data Visualization [10]. The frequently used tools in this research are elaborated from EDM tools reviews by [10], 
[52]–[54]. Tools for Data Manipulation are Microsoft Excel (Google Sheets), EDM Workbench, Phyton & Jupyter 
Notebook, SQL, SAP HANA, eLAT, while analysis of algorithm tasks using Rapid Miner, WEKA, SPSS, KNIME, 
Orange, KEEL, Spark MLLib, EDAIME, MMT (Moodle Mining Tool). For Data Visualization, they use Tableau, 
D3.js, EPRules, GISMO, TADA-Ed, Synergo/CoIAT, PDinamet, and SNAPP. Frequently tools used by EDM 
analysts and researchers to perform student performance prediction can be seen in Table 7. 

TABLE 7. Frequently Used Tools in Student Performance Prediction 
Objective Tools 

Data Manipulation Microsoft Excel (Google Sheets) 
 EDM Workbench 
 Phyton & Jupyter Notebook 
 SQL 
 SAP HANA 
 eLAT 
Analysis of Algorithm Rapid Miner 
 WEKA 
 SPSS 
 KNIME 
 Orange 
 KEEL 
 Spark MLLib 
 EDAIME 
 MMT (Moodle Mining Tool) 
Data Visualization Tableau  
 D3.js 
 EPRules 
 GISMO 
 TADA-Ed 
 Synergo/CoIAT 
 PDinamet 
 SNAPP 

CONCLUSION 

This review finds that student academic prediction played an essential role in providing opportunities and 
solutions to various academic institution problems, mainly student dropout mitigation. In general, most data mining 
techniques are well suited to perform student academic prediction. According to the review result, we suggest 
Random Forest, Neural Network, Decision Tree, and Naïve Bayes methods to perform student performance 
prediction because the techniques have high accuracy results. Furthermore, we find that academic factors are 
frequently used in EDM fields. There is still limited research using personal characteristics - such as psychological 
and social/behavioral factors - to conduct student performance predictions. Hence, it needs to be explored in the 
future so that the dropout rate can be decreased as well. 
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