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Phonemes based detection 
of parkinson’s disease 
for telehealth applications
Nemuel D. Pah1,2, Mohammod A. Motin2,3 & Dinesh K. Kumar2*

Dysarthria is an early symptom of Parkinson’s disease (PD) which has been proposed for detection and 
monitoring of the disease with potential for telehealth. However, with inherent differences between 
voices of different people, computerized analysis have not demonstrated high performance that is 
consistent for different datasets. The aim of this study was to improve the performance in detecting 
PD voices and test this with different datasets. This study has investigated the effectiveness of three 
groups of phoneme parameters, i.e. voice intensity variation, perturbation of glottal vibration, and 
apparent vocal tract length (VTL) for differentiating people with PD from healthy subjects using two 
public databases. The parameters were extracted from five sustained phonemes; /a/, /e/, /i/, /o/, and 
/u/, recorded from 50 PD patients and 50 healthy subjects of PC-GITA dataset. The features were 
statistically investigated, and then classified using Support Vector Machine (SVM). This was repeated 
on Viswanathan dataset with smartphone-based recordings of /a/, /o/, and /m/ of 24 PD and 22 age-
matched healthy people. VTL parameters gave the highest difference between voices of people with 
PD and healthy subjects; classification accuracy with the five vowels of PC-GITA dataset was 84.3% 
while the accuracy for other features was between 54% and 69.2%. The accuracy for Viswanathan’s 
dataset was 96.0%. This study has demonstrated that VTL obtained from the recording of phonemes 
using smartphone can accurately identify people with PD. The analysis was fully computerized and 
automated, and this has the potential for telehealth diagnosis for PD.

Parkinson’s disease (PD) is the second most common neurodegenerative  disorder1 and its prevalence is 
expected to increase with an aging population. It is multisymptomatic with a number of motor and non-motor 
 impairments2,3. Its diagnosis is based on clinical assessment and the presence of two or more motor symptoms 
of tremor, rigidity, bradykinesia, or postural impairment or non-motor symptoms such as dysarthria, functional 
impairment or cognitive impairment are indicative of the  disease4.

One of the early symptoms of PD is speech impairment, termed as Parkinsonian hypokinetic dysarthria. 
Speech symptoms are reported by 90% of people with  PD5,6. The evaluation of Parkinsonian speech reveals a 
variety of disturbances such as reduced voice intensity, increased voice nasality, increased acoustic noise, reduced 
speech prosody, imprecise articulation, significantly narrower pitch range, mono loudness, longer pauses, vocal 
tremor, harsh and breathy voice quality, and  disfluency7,8. Many of these are based on speech, which are lim-
ited by factors such as language skills or poor visual and auditory functions. Voice-based assessments have the 
advantage that these are more  universal9,10.

Hypokinetic dysarthria is caused by poor activation and coordination of the speech production  muscles8,11. 
The stiffness and tremor of the larynx muscle harden the vocal cords affects the vibration of the vocal cords and 
causes changes to the fundamental frequency, inadequate closed phases, and irregular or asymmetrical vocal 
motion during  phonation8,12. The reduced controllability of the diaphragm muscles causes unstable phonatory 
airflow and pneumatic pressure to the  larynx8,13,14. People with PD also have reduced control of other vocal tract 
muscles such as the tongue and lips.

The standard clinical method for classifying parkinsonian voice is by perceptual evaluation, which however 
is  subjective15. Computerized voice analysis has been proposed for a more accurate, objective, and quantifiable 
alternative, which could also have the potential for telehealth and remote monitoring of the patients.

Studies on the effective Parkinsonian speech and voice biomarkers are clustered into four aspects: phona-
tory, articulatory, prosodic, and  linguistic16. The study based on articulatory, prosodic, and linguistic  aspects17 
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involves broad factors such as the psychology, linguistics, and cognitive conditions of patients. On the other 
hand, phonatory aspects of a sustained phoneme are less influenced by the above factors.

Studies have investigated the effectiveness of sustained phoneme parameters in representing the phenomenon 
of Parkinsonian hypokinetic  dysarthria16,18–21. Most of the studies were focused on the parameters that are closely 
related to impairments in vocal cord vibration. The pitch frequency variation, number of pulses, jitter (pertur-
bation of the glottal vibration period), shimmer (amplitude perturbation of glottal vibration), autocorrelation, 
and harmonics to noise ratio (HNR/NHR) were used in the authors previous  work22, as well as in the work of 
Orozco-Arroyave23, Behroozi et al.24, Tsanas and  Little25, Ali et al.26, Sakar et al.19, and Rusz et al.6.

Machine-based analysis can be correlated with perceptual features such as voice quality, loudness, pitch, and 
resonance. Some of the characteristics that have been assessed and found suitable for Parkinsonian voice are 
vocal intensity, jitter (frequency variability), shimmer (amplitude variability), harmonics to noise ratio (HNR), 
fundamental frequency (F0), and formant frequency  profiles19,23,25–29.

Speech production features extracted from the glottal waveform remove the effect of articulation on the 
acoustic signal. They approximate the volume velocity of the air flowing through the vocal folds and may have 
an advantage for the analysis of the pathological voice.

Physiologically, these glottic source features are associated with (1) the frequency, amplitude, symmetry, and 
periodicity of vocal fold vibration; (2) the competency of glottic closure, and (3) speed of the vibratory cycle and 
the ratio of its open to closed phases. Breathiness, the hallmark perceptual voice quality of parkinsonian speech, 
is associated with incomplete closure of the vocal folds leading to air escape, and thus the presence of relatively 
higher noise in the voice, lowered the intensity and a predominance of the open phase of glottic  pulse8,30. People 
with PD have higher jitter and lower HNR, associated with aperiodicity of vocal fold vibration and perceived as 
roughness. Connected speech of people with PD is monotonous and has reduced pitch and loudness variation.

Perez31 combined the above parameters with thirteen Mel Frequency Cepstral Coefficients (MFCCs) that 
represent the energy and articulatory positions. Fractal dimension (FD) features that measure the complexity 
of the signal was used by Viswanathan et al.32. More recently, multivariate deep-features have been found to be 
 effective33.

Even though the above studies have demonstrated some significant differences between the voice parameters 
of controls and people with PD, their implementation in a generalized automatic system is not  straightforward34. 
There is also evidence of inconsistent results between different  studies32.

Gillivan-Murphy35 published preliminary findings based on nasolaryngoscopy which shows that PD voice 
tremor is not associated with the vocal folds. PD voice tremor is likely to be related to oscillatory movement in 
structures across the vocal tract rather than just the vocal folds. Furthermore, pronouncing a phoneme is a vol-
untary activity while PD tremors exist during rest. This may result in an inconsistent appearance of voice tremor 
in sustained and steady phoneme recordings which is essential for glottal vibration parameters.

The parameters other than the glottal vibration parameters that may potentially be used in PD identification 
are the parameters related to phonatory airflow and pneumatic pressure to the larynx such as voice intensity and 
the parameters related to vocal tract muscles such as formants and Vocal Tract Length (VTL)36,37.

This study has investigated and compared the effectiveness of three groups of parameters to differentiate the 
voice of people with PD from that of age-matched healthy participants. These are related to three domains of 
speech production control: (i) the stability of lung control, (ii) the periodicity and stability of glottal vibration 
control, and (iii) the stability of vocal tract control. Standard deviation (SD) and range of phonemes intensity were 
used to measure the lung stability while the shimmer, jitter, SD of pitch, and harmonics parameters were used 
for the stability of glottal vibration. The vocal tract stability was represented by the SD of the first four formants 
and the apparent Vocal Tract Length (VTL).

The comparison was examined using a statistical hypothesis test, followed by classification using the Support 
Vector Machine (SVM). The parameters were extracted from the recordings of sustained phonemes /a/, /e/, 
/i/, /o/, and /u/. Public database PC-GITA was used for this study. To evaluate the consistency of the method 
between different datasets, the SVM classifications were also applied to Viswanathan’s  dataset38 which contains 
the recordings of /a/, /o/, and /m/.

Methods
Database of recordings. Two databases of recordings were used in this study. The first is the publicly 
available database, PC-GITA, provided by Rafael Orozco et al.23. It contains the recordings of 100 Columbian-
Spanish native speakers, 50 of them were diagnosed with PD, and the other 50 were age and gender-matched 
participants with no PD or any other neurological disease symptoms. Table 1 presents participants’ demographic 
and clinical information. The p-values in the table confirm that there was no significant age difference between 
the groups as well as showing the matched clinical stage between male and female groups of PD subjects. The 
speech recording of the PD subjects was conducted within 3-h after their morning medication and hence has 
been in pharmacological ON-state. The procedure complied with the Helsinki Declaration and was approved by 
the Ethics Committee of the Clinica Noel, in Medellin, Colombia.

The recordings were captured in noise-controlled conditions and sampled at 44,100 Hz with 16 resolution 
bits, using a dynamic omnidirectional microphone (Shure, SM 63L). In this study, we use the recording of the 
five vowels /a/, /e/, /i/, /o/, and /u/. The participants produced three repetitions of the sustained vowel, each done 
as long as possible in one breath, at their natural pitch and loudness. Figure 1 illustrates the waveforms of the 
five vowels recorded from control and PD patients.

The second is the Viswanathan’s  dataset32 available publicly on request. This has the recordings from 24 
people with PD and 22 people with no neurological disease and age-matched with PD, referred to as Controls. 
The people with PD were recruited from the Movement Disorders Clinic at Monash Medical Centre, Australia. 
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All people with PD have been diagnosed within the last ten years. Three sustained phonemes /a/, /o/, and /m/ 
were recorded from each participant in a noise-restricted environment using Samson-SE50 microphone. The 
recordings were stored in a single-channel WAV format with a sampling rate of 48 kHz and a 16-bit resolution. 
The sustained phonemes of people with PD in the database were recorded in on-state and off-state medication. 
However, for this study, only the on-state recordings were used. Table 2 provides the demographics of the subjects. 
The detailed information can be found  in22,32.

Parameter extraction. A publicly available speech analysis software,  Praat39, was used to extract speech 
features from the recordings. Before features extraction, the recordings were trimmed to a uniform duration of 
0.5 s based on the assumption that vowels correspond to largely stationary signals. The recordings were filtered 
with an IIR 4th order Butterworth band-pass filter of 50 Hz to 4 kHz.

Table 1.  Participants’ demographics of PC-GITA database. *Calculated using ANOVA with 95% confidence 
level. + Calculated using unpaired T-test with 95% confidence level.

PD subjects Control subjects

p-valueMale Female Male Female

# Subjects 25 25 25 25

Age (years) 61.56 ± 11.63 60.72 ± 72.66 60.36 ± 11.56 61.44 ± 6.98 0.966*

UPDRS 35.92 ± 22.77 37.56 ± 14.03 0.760+

H&Y 2.30 ± 0.94 2.28 ± 0.54 0.927+

Years diagnosed 8.86 ± 5.88 12.58 ± 11.52 0.157+

Figure 1.  The waveforms of the five vowels recorded from the control subjects and the PD subjects.

Table 2.  Participants’ demographics of Viswanathan’s database.

Control Subjects PD Subjects p-value

Number of subjects 22 24

Age 66.30 ± 6.20 71.92 ± 7.07 0.008

PD-off MDS-UPDRS-III score N/A 25.54 ± 8.78
1.42e−05 (PD-off vs PD-on)

PD-on MDS-UPDRS-III score N/A 19.33 ± 9.30

MoCA 28.30 ± 1.34 27.25 ± 2.67 0.118

Duration of disease (years) N/A 5.29 ± 2.99
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Voice intensity parameters. The voice intensity is controlled by the subglottal pressure, which is controlled 
by the respiratory muscles and the lung  volume40 and thus, it is hypothesized that people with PD will have 
increased variation and reduced range of the voice intensity. The standard deviation and range of intensity are 
proportional to the fluctuation of lung pressure during the pronunciation of the sustained phoneme that may 
capture the tremor or rigidity due to Parkinson’s disease.

The standard deviation and range of voice intensity were obtained for each recording. The parameters meas-
ure the ability of the subject to keep the stability of air pressure produced by the lung. The intensity, I (in dB), 
of an input voice s(t) with a duration of T, were calculated using Praat’s function with energy averaging method 
as in Eq. (1).

Periodicity and stability of glottal vibration. It is commonly assumed that Parkinsonian dysarthria is affected 
by the abnormal vibration of the vocal cords, such as the inadequate or excessive closing of the vocal cords and 
irregular or asymmetrical vocal fold, as well as a tremor in its  muscles8,34,35. A total of 6 parameters related to 
the periodicity and stability of glottal vibration were extracted from each recording. The parameters were jitter 
absolute (abs), jitter relative (rel), the absolute shimmer (in dB), the relative shimmer, the standard deviation of 
pitch frequency (f0), the HNR, and the NHR.

The jitter  parameters41 were related to time perturbation glottal pulses, Ti. The equation to calculate the two 
jitter  parameters41 are shown in Eqs. (2) and (3):

The shimmer  parameters41 were related to amplitude perturbation of the glottal cycles. The parameters were 
calculated with Eqs. (4) and (5):

The standard deviation of the pitch was calculated based on the instantaneous pitch frequency f0 i = 1/Ti. The 
HNR and NHR were calculated based on the normalized autocorrelation function of the segment. Rxx[T0] is the 
peak next to the center of Rxx at a distance corresponding to the T0 of the recording. The HNR and NHR were 
calculated as described in Eqs. (6) and (7)42,43:

Formants parameters. The limitations of the control in the speech production process by the people with PD 
leads to some disturbances including the change in phonatory and resonant  characteristics34. The disturbances 
in the resonant characteristics are due to an inaccurate position of the articulators or a lack of control of vocal 
tract muscles. The accurate position and control of vocal tract muscles can be observed in the fluctuation of 
formants frequencies. The stability of vocal tract control in this study was measured with a standard deviation 
of the first four formants (F1, F2, F3, and F4) and the Vocal Tract Length (VTL). The formants of each recording 
were extracted from Praat using Burg’s  method44 with a maximum formant value of 5.5 kHz, a window length 
of 25 ms, a time step of 6.25 ms, and a pre-emphasis from 50 Hz. The mean and standard deviation were then 
calculated for each recording.

Vocal tract length. The other parameter that captures the resonant characteristic of the vocal tube model of 
voice production is the apparent vocal tract length (VTL). VTL is the estimation of the physical vocal tract 
length of a subject while pronouncing a specific voice based on formants frequency. VTL has been used in other 
voice analyses such as speaker  verification45, identifying body  measures36,46.

VTL of each recording was calculated (in cm) from the mean of the four formants, Fi, with the formula in 
Pisanski et al.36.
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The constant, c = 33,500 cm/s, is the speed of sound in a uniform tube with one end closed. A total of four 
VTL were calculated for each recording associated with each formant, Fi.

Statistical analysis. The mean and standard deviation of all the parameters were computed for the two 
groups of the PC-GITA database: PD and CO. The normality of the extracted parameters was examined with 
the Anderson–Darling  test47. Mann Whitney U-test48 was used to compare the group differences for speech 
parameters between PD and control subjects. The 95% confidence level was considered for the analysis and 
p-value < 0.05 to indicate that the mean of the groups was significantly different. All the statistical analyses were 
performed using MATLAB2018b (MathWorks).

Support vector machine classification. The effectiveness of the parameters to classify PD and control 
subjects was investigated with Support Vector Machines (SVM)49 classifier. The SVM was trained with a Gauss-
ian kernel and validated using “leave-one-out” cross-validation. The Gaussian kernel was selected anecdotally 
since it yielded the best result compared to the other kernels. The input to the SVM were the sets of voice param-
eters and the ten highest-ranked features, selected using the Relief-F  algorithm50 with 10 nearest neighbors 
(k = 10). The classification accuracy, sensitivity, and selectivity were evaluated based on the true-positive (TP), 
true-negative (TN), false-positive (FP), and false-negative (FN).

Ethics. This paper reports the analysis of two datasets: Viswanathan and PC-GITA. Viswanathan dataset 
was developed using the research protocol for analysis was approved by RMIT University human experiments 
Committee for Ethics in Human Research and the experiments were performed in accordance with Helsinki 
declaration for ethical experiments, revised 2013. PC-GITA dataset was developed based on the procedure that 
complied with the Helsinki Declaration and was approved by the Ethics Committee of the Clinica Noel, in 
Medellin, Colombia. Both database confirm that all participants provided written consent for the experiments.

Results
Statistical analysis. The Anderson–Darling test confirmed that except for some VTL parameters, the 
parameters were not normally distributed. Mann Whitney U-test, a non-parametric test, was thus used to test 
for group differences in each of the features. Table 3 provides the statistical distribution (mean ± SD) and p-value 
and effective size of Mann Whitney U-test between CO and PD for all the features. The table shows that the 
parameters of people with PD fluctuated more than CO. The voice intensity of people with PD has both higher 
SD and range, which indicates their diminished ability to produce sustained phonemes with stable air pressure. 
The p < 0.05 shows that the group difference was significant.

The statistical distribution of the glottal vibration parameters, i.e., jitter, shimmer, SD of pitch, was signifi-
cantly higher for people with PD compared to the CO, with p-value < 0.05. The HNR and NHR distribution show 
that PD voice had higher noise (non-periodic) components compared to healthy people.

For vocal tract parameters, except for phoneme /o/ and /u/, the first three formants (F1, F2, and F3) of PD 
patients have a significantly higher standard deviation compared to the normal subjects. The majority of VTL 
parameters did not show significant differences between PD and normal subjects. The p-value and effect size 
confirm that statistically, the mean of the groups was not significantly different.

SVM classification. The SVM classification results of recordings from the PC-GITA database for the four 
groups of input parameters are shown in Table 4. It presents the accuracy, sensitivity, and selectivity when con-
sidering each vowel independently and with the combination of the five vowels. For the sake of presentation 
simplicity and without loss to the outcome of this work, the table only presents the results of the vowel combi-
nation with significant accuracy. The results show that the classification accuracy of 84.3% was obtained with 
the combination of all the vowels when the SVM input were VTL(Fi); the overall observation is that VTL is the 
most effective feature to distinguish between voice of PD and CO. The SVM classification accuracy was 71.2% 
when it was given the ten highest-ranked features selected by the Relief-F algorithm. The ten highest-ranked 
features selected by Relief-F algorithm were dominated by the VTL (VTL(F4) of/o/; VTL(F1) of /i/;VTL(F2) 
of /o/; VTL(F3) of /u/; std(F1) of /o/; std(F2) of /o/; VTL(F1) of /e/; VTL(F1) of /a/; VTL(F2) of /i/; VTL(F2) 
of /u/). Comparing the vowels, the VTL of /i/ was the most effective parameter with an accuracy of 73.0%. The 
percentage of sensitivity and selectivity was about at the same level as the accuracy for almost all the input con-
figurations.

To evaluate the consistency of SVM classification using VTL(Fi) in different databases, the SVM classifica-
tions using VTL(Fi) were also applied to Viswanathan’s  dataset38 which contains the recordings of /a/, /o/, and 
/m/. Table 5 provides the classification results of the recordings in the database. The table shows that the SVM 
classification using VTL(Fi) as input parameters performs consistently with different databases. The highest 
accuracy was 96.0% with the combination of VTL(Fi) of /a/ and /m/, while an accuracy of 94.0% was obtained 
with the combination of /a/, /o/, and /m/.

Discussion
Several earlier studies that have proposed the use of voice-based diagnosis and assessment of Parkinson’s 
 disease16,18–22. These studies used the vocal cord vibration parameters such as pitch frequency variation, num-
ber of pulses, jitter, shimmer, autocorrelation, and harmonics to noise ratio (HNR/NHR). While these studies 

(8)VTL(Fi) = (2i − 1)
c

4Fi
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showed the potential of voice-based biomarkers for Parkinson’s disease, these show inconsistent results in differ-
ent  databases6,23. As an example, the vocal cord vibration parameters based analysis gave classification accuracy 
of 78.1% in Viswanathan’s  dataset22 but performed poorly for PC-GITA dataset as shown in Table 4 (70.9% of 
accuracy).

This study has identified VTL as a potential parameter to be used in the classification of PD patients based on 
sustained phoneme recordings. The parameters have achieved 84.3% accuracy, 84.0% sensitivity, 84.7% specificity 
when used in PC-GITA database with five vowels /a/, /e/, /i/, /o/, and /u/. This study showed the consistency of 
the parameters when applied in different datasets. Table 5 shows that when applied in Viswanathan’s datasets, 
VTL parameters could classify PD patients from healthy subjects with an accuracy of 96.0%.

Table 3.  Statistical distribution and the result of Mann Whitney U-test.

Parameters Phoneme

Mean ± SD

p-value
Effect 
Size Parameters Phoneme

Mean ± SD

p-value
Effect 
sizeControl PD Control PD

Intensity 
(SD)

a 1.62 ± 0.85 1.95 ± 1.25 0.051 − 0.387

F1(SD)

a 4.87E+1 ± 4.93E+1 7.41E+1 ± 8.22E+1 0.000 − 0.515

e 1.66 ± 1.03 2.21 ± 1.35 0.000 − 0.528 e 2.87E+1 ± 5.03E+1 3.20E+1 ± 3.66E+1 0.001 − 0.065

i 1.84 ± 1.03 2.25 ± 1.36 0.018 − 0.394 i 4.08E+1 ± 1.16E+2 5.48E+1 ± 1.26E+2 0.001 − 0.120

o 1.79 ± 1.01 2.15 ± 1.26 0.020 − 0.353 o 4.29E+1 ± 3.57E+1 4.87E+1 ± 3.63E+1 0.018 − 0.163

u 1.69 ± 1.05 2.35 ± 1.40 0.000 − 0.633 u 4.83E+1 ± 3.92E+1 5.13E+1 ± 4.23E+1 0.412 − 0.078

Intensity 
(range)

a 6.12 ± 3.11 7.34 ± 4.37 0.039 − 0.392

F2(SD)

a 7.89E+1 ± 9.20E+1 1.16E+2 ± 1.44E+2 0.005 − 0.403

e 6.28 ± 3.63 8.09 ± 4.50 0.000 − 0.498 e 5.73E+1 ± 5.03E+1 7.73E+1 ± 6.75E+1 0.000 − 0.397

i 6.62 ± 3.37 8.22 ± 4.56 0.004 − 0.473 i 6.93E+1 ± 8.55E+1 1.04E+2 ± 1.21E+2 0.000 − 0.411

o 6.70 ± 3.65 7.95 ± 4.33 0.010 − 0.343 o 1.77E+2 ± 2.76E+2 1.84E+2 ± 2.50E+2 0.002 − 0.023

u 6.28 ± 3.45 8.41 ± 4.60 0.000 − 0.615 u 2.91E+2 ± 3.24E+2 2.63E+2 ± 2.98E+2 0.789 0.086

Jitter (abs)

a 4.09E−5 ± 3.32E−5 5.70E−5 ± 5.10E−5 0.005 − 0.485

F3(SD)

a 1.09E+2 ± 1.18E+2 1.35E+2 ± 1.22E+2 0.029 − 0.221

e 3.56E−5 ± 2.96E−5 4.81E−5 ± 3.93E−5 0.001 − 0.424 e 8.97E+1 ± 7.35E+1 1.14E+2 ± 9.06E+1 0.002 − 0.325

i 3.54E−5 ± 2.98E−5 4.46E−5 ± 4.20E−5 0.037 − 0.308 i 1.12E+2 ± 7.80E+1 1.38E+2 ± 9.85E+1 0.017 − 0.334

o 3.70E−5 ± 3.83E−5 4.82E−5 ± 5.30E−5 0.100 − 0.292 o 1.21E+2 ± 1.38E+2 1.20E+2 ± 1.04E+2 0.030 0.008

u 2.90E−5 ± 2.02E−5 4.35E−5 ± 4.31E−5 0.005 − 0.716 u 1.87E+2 ± 1.74E+2 1.80E+2 ± 1.68E+2 0.812 0.041

Jitter (rel)

a 5.84E−3 ± 3.55E−3 8.62E−3 ± 7.11E−3 0.002 − 0.782

F4(SD)

a 1.66E+2 ± 1.48E+2 1.84E+2 ± 1.47E+2 0.308 − 0.119

e 5.07E−3 ± 3.21E−3 7.69E−3 ± 6.28E−3 0.000 − 0.815 e 1.91E+2 ± 1.72E+2 1.73E+2 ± 1.50E+2 0.581 0.105

i 5.27E−3 ± 3.18E−3 7.31E−3 ± 6.51E−3 0.006 − 0.641 i 1.71E+2 ± 1.59E+2 1.61E+2 ± 1.32E+2 0.828 0.064

o 5.30E−3 ± 4.21E−3 7.53E−3 ± 7.68E−3 0.011 − 0.530 o 1.64E+2 ± 1.69E+2 1.60E+2 ± 1.30E+2 0.194 0.027

u 4.60E−3 ± 2.43E−3 7.25E−3 ± 6.46E−3 0.000 − 1.094 u 2.37E+2 ± 2.13E+2 2.07E+2 ± 1.66E+2 0.733 0.143

Shimmer 
(abs)

a 4.72E−1 ± 2.33E−1 6.11E−1 ± 3.07E−1 0.000 − 0.596

VTL(F1)

a 10.73 ± 1.75 11.11 ± 1.88 0.101 − 0.216

e 4.45E−1 ± 2.07E−1 5.77E−1 ± 2.71E−1 0.000 − 0.638 e 17.59 ± 2.43 17.97 ± 2.48 0.291 − 0.157

i 4.30E−1 ± 2.06E−1 5.19E−1 ± 2.43E−1 0.000 − 0.436 i 23.66 ± 4.68 23.98 ± 4.56 0.436 − 0.068

o 4.02E−1 ± 1.84E−1 5.45E−1 ± 3.20E−1 0.000 − 0.772 o 16.27 ± 2.20 16.57 ± 2.75 0.447 − 0.140

u 3.86E−1 ± 2.05E−1 5.24E−1 ± 2.87E−1 0.000 − 0.671 u 19.92 ± 3.28 20.90 ± 4.02 0.090 − 0.300

Shimmer 
(rel)

a 4.93E−2 ± 2.55E−2 6.47E−2 ± 3.44E−2 0.000 − 0.606

VTL(F2)

a 18.82 ± 2.40 18.01 ± 2.77 0.001 0.337

e 4.58E−2 ± 2.21E−2 5.91E−2 ± 3.03E−2 0.000 − 0.601 e 12.04 ± 1.22 12.05 ± 1.55 0.817 − 0.005

i 4.39E−2 ± 2.20E−2 5.28E−2 ± 2.74E−2 0.001 − 0.407 i 10.80 ± 1.05 11.15 ± 1.43 0.088 − 0.336

o 4.03E−2 ± 1.95E−2 5.51E−2 ± 3.60E−2 0.000 − 0.759 o 26.76 ± 5.18 25.42 ± 5.33 0.030 0.258

u 3.88E−2 ± 2.06E−2 5.26E−2 ± 3.28E−2 0.000 − 0.672 u 27.25 ± 8.78 25.91 ± 8.55 0.059 0.153

Pitch(SD)

a 8.56E+0 ± 9.51E+0 1.30E+1 ± 1.58E+1 0.076 − 0.470

VTL(F3)

a 15.89 ± 1.27 15.51 ± 1.43 0.024 0.293

e 8.59E+0 ± 1.38E+1 1.67E+1 ± 2.39E+1 0.000 − 0.590 e 15.74 ± 1.23 15.48 ± 1.37 0.043 0.209

i 8.54E+0 ± 1.10E+1 1.24E+1 ± 1.49E+1 0.045 − 0.346 i 14.56 ± 1.13 14.22 ± 1.16 0.002 0.299

o 1.07E+1 ± 1.48E+1 1.59E+1 ± 2.30E+1 0.035 − 0.350 o 15.45 ± 1.43 15.29 ± 1.62 0.376 0.117

u 8.74E+0 ± 1.09E+1 1.29E+1 ± 1.52E+1 0.003 − 0.386 u 14.91 ± 1.45 15.06 ± 1.61 0.430 − 0.102

HNR

a 1.89E+1 ± 4.01E+0 1.64E+1 ± 4.77E+0 0.000 0.643

VTL(F4)

a 16.08 ± 1.45 16.15 ± 1.30 0.379 − 0.053

e 1.98E+1 ± 3.96E+0 1.78E+1 ± 4.73E+0 0.000 0.493 e 16.07 ± 1.59 15.93 ± 1.48 0.535 0.085

i 2.10E+1 ± 4.23E+0 1.99E+1 ± 4.71E+0 0.070 0.257 i 15.76 ± 1.47 15.46 ± 1.51 0.017 0.205

o 2.41E+1 ± 4.19E+0 2.18E+1 ± 5.33E+0 0.000 0.553 o 15.95 ± 1.27 15.74 ± 1.28 0.128 0.163

u 2.62E+1 ± 4.42E+0 2.39E+1 ± 5.04E+0 0.000 0.524 u 15.24 ± 1.30 15.16 ± 1.45 0.467 0.062

NHR

a 5.11E−2 ± 4.32E−2 8.66E−2 ± 8.37E−2 0.000 − 0.823

e 3.69E−2 ± 3.00E−2 6.50E−2 ± 6.83E−2 0.000 − 0.937

i 3.12E−2 ± 2.92E−2 4.53E−2 ± 4.55E−2 0.007 − 0.486

o 3.02E−2 ± 3.19E−2 4.74E−2 ± 6.60E−2 0.015 − 0.541

u 1.80E−2 ± 1.97E−2 3.17E−2 ± 4.56E−2 0.002 − 0.697
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This study has shown that among the features reported in the literature, VTL features are most suitable for 
differentiating the voice of people with PD from that of Control. VTL is an approximate measure of the physical 
vocal tract length while producing voice. The shape and length of the vocal tract affect the value and space of 
formants. Longer vocal tracts produce lower, more closely spaced  formants36. Although the length of the vocal 
tract mainly depends on the physical body structure, the study of Piransky et al.37 found that a person may vol-
untarily modify the length of the vocal tract up to 25%. The result reported in this paper indicates the possible 
relation between the modification of vocal tract length by a subject with a symptom of PD. When a PD patient, 
due to the reduction in the ability to control speech muscle, modifies the length of the vocal tract, the properties 
of voice modulation in the vocal tract change. The relation is a higher-order relation. The linear separation by 
statistic test could not properly separate the PD from healthy subjects.

The novelty of this study is the high performance in differentiating between voices of PD from Controls, and 
which is consistent for two different databases. We are the first study that investigated the use of VTL to identify 
voices of people with PD and found that VTL parameters outperformed the features reported in the literature that 
are related to perturbation of glottal vibration, such as jitter, shimmer, pitch frequency, and harmonics ratio. The 
finding in this study suggests and supports the argument  in35 that the neuro-physiology change in PD patients 
is manifested more in the change of vocal tract control compared to glottal vibration or air pressure control by 
the lung. This opens the potential for computerized and remote monitoring of people with PD.

Table 4.  The SVM classification results of PC-GITA database. Significant values are in bold.

Input parameter to SVM Phoneme Accuracy (%) Sensitivity (%) Specificity (%)

[SD(Intensity), range(Intensity)]

/a/ 53.3 56.7 50.0

/e/ 49.7 60.0 39.3

/i/ 56.7 64.0 49.3

/o/ 48.3 58.0 38.7

/u/ 50.3 54.7 46.0

/e/ + /o/ + /u/ 77.3 81.3 73.3

[Jitt(abs), Jitt(rel), Shim(abs), Shim(rel), SD(pitch), HNR, NHR]

/a/ 59.9 64.4 55.3

/e/ 61.5 63.1 60.0

/i/ 65.2 69.8 60.7

/o/ 61.2 63.8 58.7

/u/ 62.5 72.5 52.7

/e/ + /i/ + /o/ 70.9 74.5 67.3

[SD(F1), SD(F2), SD(F3), SD(F4)]

/a/ 61.3 72.7 50.0

/e/ 62.0 71.3 52.7

/i/ 59.0 70.7 47.3

/o/ 57.3 72.0 42.7

/u/ 54.3 46.7 62.0

/a/ + /e/ + /i/ + /o/ + /u/ 68.0 72.7 63.3

[VTL(F1), VTL(F2), VTL(F3), VTL(F4)]

/a/ 69.3 70.7 68.0

/e/ 65.3 64.7 66.0

/i/ 73.0 76.0 70.0

/o/ 66.3 70.7 62.0

/u/ 63.7 67.3 60.0

/a/ + /e/ + /i/ + /o/ + /u/ 84.3 84.0 84.7

Ten highest-ranked features selected by Relief-F: VTL(F4) of /o/; VTL(F1) of /i/; VTL(F2) of /o/; VTL(F3) of /u/; std(F1) of /o/; 
std(F2) of /o/; VTL(F1) of /e/; VTL(F1) of /a/; VTL(F2) of /i/; VTL(F2) of /u/ 71.2 70.5 72.0

Table 5.  The SVM classification results of Viswanathan’s database. Significant values are in bold.

Input parameter to SVM Phoneme Accuracy (%) Sensitivity (%) Specificity (%)

[VTL(F1), VTL(F2), VTL(F3), VTL(F4)]

/a/ 85.8 87.0 84.5

/o/ 79.0 77.5 80.5

/m/ 87.8 87.5 88.0

/a/ + /o/ 90.0 90.5 89.5

/a/ + /m/ 96.0 96.5 95.5

/o/ + /m/ 91.3 91.0 91.5

/a/ + /o/ + /m/ 94.0 93.5 94.5
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The limitation of this study is we have only investigated two databases; Columbian-Spanish native speakers 
and Australian native speakers. Further study needs to be conducted of people from other demographics and 
ethnicity to validate the findings for global use. While the size of the datasets are sufficient, larger datasets are 
required that will allow the examination of the various confounding factors. There is also the need to investigate 
the effect of PD medication such as Levodopa on these parameters and to test this over repeated voice recordings.

Conclusion
This study has investigated the effectiveness of using three sets of voice features of sustained phonemes to dif-
ferentiate people with PD from age-matched healthy participants using two independent and different sets of 
publicly available databases. It has found that the most effective feature set was using apparent vocal tract length 
(VTL). The classification accuracy in identifying PD from control was 84.3% when combining the VTL features 
of all the five vowels /a/, /e/, /i/, /o/, and /u/. The classification accuracy when using /a/, /o/ and /m/ using 
Viswanathan dataset obtained using smartphone was 96%. This performance was significantly higher than the 
accuracy obtained when using the glottal vibration parameters (jitter, shimmer, pitch, and harmonics) and voice 
intensity. Another advantage of VTL parameters is that there were obtained automatically and thus suitable for 
computerized analysis of the voice recordings using smartphones. Unlike deep-learning approach, this method 
has the benefit because it has identified the specific voice parameters which allows the clinician to understand 
the differences. This has the potential for telephone-based diagnosis for PD.

Data availability
We have used publicly available datasets. GITA dataset is available on request from Orzoco et al.  (reference23). 
Viswanathan dataset is available from contact of  reference32.
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