

PROCEEDINGS

11th Electrical Power, Electronics, Communications, Control, and Informatics Seminar (EECCIS 2022)

IEEE Conference Number #54468 IEEE Catalog Number CFP2232Z-ART ISBN : 978-1-6654-0648-2

Department of Electrical Engineering Faculty of Engineering Universitas Brawijaya

Malang-East Java, Indonesia

August 23rd – 25th, 2022

EECCIS 2022 Title List

A01_001-005
A02_006-011
A03_012-016
A04_017-021
A05_022-027
A06_028-033
A07_034-039
A08_040-044
A09_045-050
A10_051-05
A11_056-06

A12_061-064
A13_065-070
A14_071-075
A15_076-081
A16_082-087
A17_088-093
A18_094-099
A19_100-103
A20_104-108
A21_109-113
A22_114-118
A23_119-122

B. Electronic Systems

 [1570823983] Design and Build an Environmental Conditioning System on a Smart Growth Box for Microgreens Nurussa'adah; Sapriesty Nainy Sari; Rusmi Ambarwati; Taufiqur Rohman; Muhammad Alfanny; Agung Wicaksono [1570814179] FPGA Displays Real Time Video Camera on VGA Monitor Effendi Dodi A.; Nugroho Widi Jatmiko; Agus Hendra Wahyudi; Faisa Lailiyul M.; Kurdianto; Wahyu Widada [1570821005] Hybrid Delay-based Routing Protocol for Wireless Body Sensor Networks Ali Samer Saleem; Saad Talib Hasson [1570798345] Analyzes of Chirps Spread Spectrum of ES920LR LoRa 920 MHz Puput Dani Prasetyo Adi; Yuyu Wahyu; Akio Kitagawa [1570820782] Nonlinear Model Predictive Control for Longitudinal and Lateral 	B01_123-128 B02_129-132 B03_133-138 B04_139-144 B05_145-148
Effendi Dodi A.; Nugroho Widi Jatmiko; Agus Hendra Wahyudi; Faisa Lailiyul M.; Kurdianto; Wahyu Widada [1570821005] Hybrid Delay-based Routing Protocol for Wireless Body Sensor Networks Ali Samer Saleem; Saad Talib Hasson [1570798345] Analyzes of Chirps Spread Spectrum of ES920LR LoRa 920 MHz Puput Dani Prasetyo Adi; Yuyu Wahyu; Akio Kitagawa	B03_133-138 B04_139-144
NetworksAli Samer Saleem; Saad Talib Hasson[1570798345] Analyzes of Chirps Spread Spectrum of ES920LR LoRa 920 MHzPuput Dani Prasetyo Adi; Yuyu Wahyu; Akio Kitagawa	B04_139-144
Puput Dani Prasetyo Adi; Yuyu Wahyu; Akio Kitagawa	
[1570820782] Nonlinear Model Predictive Control for Longitudinal and Lateral	B05_145-148
Dynamic of Autonomous Car Sutra Wardatul Jannah; Ari Santoso	
[1570814113] Effect of Radar- Drone Elevation stability on Soil Water Content Estimation Murman Dwi Prasetio; Aloysius Adya Pramudita; Agung Nugroho Jati	B06_149-153
[1570812846] A Method for Estimating Soil Water Content in The Presence of Vegetation Using FMCW Radar Fildha Ridhia; Aloysius Adya Pramudita	B07_154-159
[1570820892] Multi-Point Small Displacement Detection of Bridge using FMCW Radar Azizka Ayu Dhiyani; Aloysius Adya Pramudita	B08_160-164
[1570820833] Implementation of High Voltage Converter Circuit Based on Transformer Switching Method for Biphasic and Monophasic External Defibrillator Muhammad Yogi Nurrohman; Zainul Abidin; Ponco Siwindarto	B09_165-169
C. Telecommunication	
[1570820350] Through-wall UWB Communications with Limited Transmit Power Xiangjian Gao; Hamid R. Sadjadpour; Farid U. Dowla; Faranak Nekoogar	C01_170-175
[1570798101] Dual Band Absorber Based on Multilayer SSR Alief Kusumaningtyas Krishnanti; Levy Olivia Nur; Bambang Setia Nugroho	C02_176-180
[1570814142] Configuration of Inverted-V Dipole NVIS HF Antenna for Offshore Fast Patrol Boat	C03_181-184

Adi Purwono; Varuliantor Dear; Khoirul Huda; Irham Setyawan

[1570819181] Experimental Study of USRP N210 as Simple GSM OpenBTS 5.0 for Remote Areas Fakhriy Hario Partiansyah; Sigit Kusmaryanto; Rusmi Ambarwati; Sholeh Hadi Pramono	C04_185-190
[1570801960] 5G NR Network Planning in Malang City East Java Using Atoll Software Sigit Kusmaryanto; Dwi Fadilla; Fakhriy Hario Partiansyah; Gaguk Asmungi; Wahju Adi Priyono	C05_191-196
[1570812305] Optical Fiber Network Design in Enggano Island for Tourism Development Purposes Andrew Poda Jeremy; Annisa Anastya Arifa; Baskoro Arif Rianto; M. Rizqi Naufal Saragih; Nabila Ramadhani; Sulthan Abdul Hafizh Allam; Catur Apriono	C06_197-200
[1570820899] Improvement of Performance Availability of Cellular by Analyzing the Preventive Maintenance and Trouble Ticket Data Agus Wibowo; Marsul Siregar; Lanny Panjaitan	C07_201-206
[1570817248] Cache Size Effects and Content Request in Spatially Dispersed Caching Strategy Sarah Chairul Annisa; Sigit Haryadi; Fithri Muliawati	C08_207-210
[1570794367] Modeling and Optimization of Surface Plasmon Resonance Sensors Using Metamaterials Izzan Radhi Mafazi; Brian Yuliarto; Gilang Gumilar; Levy Olivia Nur	C09_211-214
[1570814118] Automatic Garbage Classification System using Arduino-Based Controller and Binary Tree Concept Ginas Alvianingsih; Tri Wahyu Oktaviana Putri; Danu Azhar Hidayat	C10_215-220
[1570820956] Modified Antipodal Vivaldi Antenna to Gain Enhancement for Ultrawideband Applications Hepi Ludiyati; Farrel Raditya Eduardi Eduardi; Hanny Madiawati; Vitrasia Vitrasia; Aulia Farah Meswari	C11_221-224
[1570820982] Analysis Patch Stack Microstrip Antenna for Low Elevation of Mobile Satellite Communications Muhammad Fauzan Edy Purnomo; Vita Kusumasari; Rahmadwati Rahmadwati; Akhmad Zainuri	C12_225-228
[1570821133] Optimization of 5G NR Network Based on Performance of 4G LTE Network in Area of Universitas Brawijaya Malang Ali Mustofa; Muhammad Fauzan Edy Purnomo; Talcha Krusbeek Orrilia Audre A.P.S.	C13_229-233
[1570821086] A Review of Various Quantum Routing Protocol Designed for Quantum Network Environment Shahad A. Hussien; Alharith A. Abdullah	C14_234-237

[1570820855] Wireless Sensor Networks Connectivity based on Sensors Transmission Power Maryam Ayad Gabbar; Saad Talib Hasson	C15_238-242
[1570823993] Performance Comparison Analysis of Wireless Access Point and Virtual Access Point Based on Mikrotik at SD Negeri 01 Jambearjo Sapriesty Nainy Sari; Muhammad Fauzan Edy Purnomo; Carissa Miranda	C16_243-248
[1570797880] Soft Decision Decoding for Massive Sensor in Visible Light Communication Brian Pamukti; Akhmad Hambali; Nachwan Mufti Adriansyah	C17_249-253
[1570820943] A Bibliometric Analysis of Unmanned Aerial Vehicles (UAV) Implementation in Cellular Network Mia Galina; Muhamad Asvial; Muhammad Suryanegara	C18_254-259
[1570812073] A 30-Pointed Star-Shaped Patch Wideband Antenna for WLAN and WiMAX Applications Azizurrahman Rafli; Muhammad Fauzan Edy Purnomo; Rahmadwati Rahmadwati	C19_260-263
D. Controls System	
[1570820962] Parameter Estimation of Li-Polymer Battery Using Non-Linear	D01_264-269
Feedback Structure Aproximation Mochammad Rusli; Unggul Wibawa; Rini Nur Hasanah; Akhmad Zainuri	
[1570798991] Tuning LQR Parameters using Neuro Evolution of Augmenting Topologies (NEAT) on a Double Pendulum Cart Fahmizal; Hanung Adi Nugroho; Adha Imam Cahyadi; Igi Ardiyanto	D02_270-275
[1570817011] Predictive Control Model for Identify Failure Between Sensor and Actuator on Engine Turbofan Imron Rosadi; Freddy Franciscus	D03_276-280
[1570818903] Comparison of 4 DOF Arm Robot for Trajectory Planning with 3rd and 5th Polynomial Orders Gunawan Rudi Cahyono; Nurmahaludin; Muhammad Farouk Setiawan; Yusie Rizal; Joni Riadi	D04_281-286
[1570796483] Quadcopter Design with Waypoint Mission Using PID Control System Dyah Lestari; Sujito; Siti Sendari; Mohamad Rodhi Faiz; Hung-Yu Wang; Made Radikia Prasanta	D05_287-291
[1570812340] IoT Monitoring and Control System for Smart Cage Turtledove Bird Mochammad Machmud Rifadil; Putu Agus Mahadi Putra; Oktafian Sultan Hakim; Ahmad Firyal Adila	D06_292-297

E. Computer and Informatics

[1570784140] An Efficient Load Balancing Using Genetic Algorithm in Cloud Computing Vriza Wahyu Saputra; Della Wibowo; Baskoro Adi Pratomo; Ravi Vendra Rishika;	E01_298-303
Aditya Bagaskara; Ary Mazharuddin Shiddiqi; Mirotus Solekhah; Ahmad Ayatullah	
[1570820451] Deep Learning for Native Advertisement Detection in Electronic News: A Comparative Study	E02_304-309
Brian Rizqi Paradisiaca Darnoto; Daniel Siahaan; Diana Purwitasari	
[1570814160] Knowledge-Enriched Domain Specific Chatbot on Low-resource Language Rizal Setya Perdana; Putra Pandu Adikara; Indriati; Diva Kurnianingtyas	E03_310-315
	F04 216 221
[1570799382] Comparison of Bankruptcy Prediction Models Using Support Vector Machine and Artificial Neural Network Ita Sulistiani; Widodo; Murien Nugraheni	E04_316-321
[1570794846] Perception modeling of in-pipe robot based on machine learning Xingyuan Miao; Hong Zhao; Yinghan Ma	E05_322-327
[1570794850] Recognition of radiographic weld defects based on combining ResNet18 and Q-learning for imbalanced train dataset Boxuan Gao; Hong Zhao; Xingyuan Miao	E06_328-332
[1570820932] YOLO Method Analysis and Comparison for Real-Time Human Face Detection Wahyu Pebrianto; Panca Mudjirahardjo; Sholeh Hadi Pramono	E07_333-338
[1570820583] Innovative Virtual Museum Conceptual Model for Learning Enhancement During the Pandemic Shinta Puspasari; Ermatita Ermatita; Zulkardi Zulkardi	E08_339-344
[1570814144] Expert Annotation Tools for Labeling Student Capstone Project Based on ACM CCS Ontology Andre Andre; Nanik Suciati; Hadziq Fabroyir	E09_345-350
[1570800649] A Fast Electrical Distribution Fault Predictor using Knowledge Growing System (KGS) Ika Noer Syamsiana; Puspa Ayu Yohana; Indrazno Siradjuddin; Arwin Datumaya Wahyudi Sumari; Andhika Sulistio	E10_351-356
[1570820870] Design of Automated Exam Proctoring for User Authentication Through Face Augmentation and Verification Ahmad Yusuf; Nanik Suciati; Ahmad Saikhu	E11_357-361
[1570817954] Classifying Known/Unknown Information in The Brain using Electroencephalography (EEG) Signal Analysis Ahmad Farizal; Adhi Dharma Wibawa; Yuri Pamungkas; Monica Pratiwi; Yuri Pamungkas; Arbintoro Mas	E12_362-367
	E13_368-373

Malang-East Java, Indonesia

August 23rd – 25th, 2022

EECCIS 2022 Author Index

Abdullah, Alharith A.	C14_234-237
Abidin, Zainul	B09_165-169
Adikara, Putra Pandu	E03_310-315
Adila, Ahmad Firyal	D06_292-297
Adriansyah, Nachwan Mufti	C17_249-253
Afandi, Arif Nur	A10_051-055
Afroni, Mohammad	A05_022-027
Agus Hendra Wahyudi	B02_129-132
Aji, Damar	A19_100-103
Akil, Yusri Syam	A18_094-099
Alfanny, Muhammad	B01_123-128
Allam, Sulthan Abdul Hafizh	C06_197-200
Alvianingsih, Ginas	C10_215-220
Ambarwati, Rusmi	DO1 100 100
Anibarwati, Kushi	B01_123-128 C04_185-190
Andre, Andre	—
	 C04_185-190
Andre, Andre	C04_185-190 E09_345-350
Andre, Andre Anggara Fitrah, Dicha Ridho	C04_185-190 E09_345-350 A08_040-044
Andre, Andre Anggara Fitrah, Dicha Ridho Annisa, Sarah Chairul	C04_185-190 E09_345-350 A08_040-044 C08_207-210
Andre, Andre Anggara Fitrah, Dicha Ridho Annisa, Sarah Chairul Apriono, Catur	C04_185-190 E09_345-350 A08_040-044 C08_207-210 C06_197-200 A13_065-070
Andre, Andre Anggara Fitrah, Dicha Ridho Annisa, Sarah Chairul Apriono, Catur Ardhenta, Lunde	C04_185-190 E09_345-350 A08_040-044 C08_207-210 C06_197-200 A13_065-070 A16_082-087
Andre, Andre Anggara Fitrah, Dicha Ridho Annisa, Sarah Chairul Apriono, Catur Ardhenta, Lunde Ardiyanto, Igi	C04_185-190 E09_345-350 A08_040-044 C08_207-210 C06_197-200 A13_065-070 A16_082-087 D02_270-275
Andre, Andre Anggara Fitrah, Dicha Ridho Annisa, Sarah Chairul Apriono, Catur Ardhenta, Lunde Ardiyanto, Igi Arifa, Annisa Anastya	C04_185-190 E09_345-350 A08_040-044 C08_207-210 C06_197-200 A13_065-070 A16_082-087 D02_270-275 C06_197-200
Andre, Andre Anggara Fitrah, Dicha Ridho Annisa, Sarah Chairul Apriono, Catur Ardhenta, Lunde Ardiyanto, Igi Arifa, Annisa Anastya Aripriharta	C04_185-190 E09_345-350 A08_040-044 C08_207-210 C06_197-200 A13_065-070 A16_082-087 D02_270-275 C06_197-200 A10_051-055

LIJ	Malang-East Java, Indonesia	August 23 rd – 25 th , 2022	
Ashari, M	ochamad	A08_040-044 A21_109-113	
Asmungi,	Gaguk	C05_191-196	
Asvial, Mu	uhamad	C18_254-259	
Ayatullah	, Ahmad	E01_298-303	
Ayvaz, Em	nrah	A20_104-108	
Aziz Musl	im, Muhammad	A16_082-087	
Bachri, Ka	arel Octavianus	A03_012-016	
Bagaskara	a, Aditya	E01_298-303	
Barruna, I	Elang	A23_119-122	
Bayatmak	xoo, Arsalan	A20_104-108	
Bektas, M	lutlu	A20_104-108	
Bhaskara,	, Reza	A23_119-122	
Brafianto	, Dary Rafi	A15_076-081	
Cahyadi, /	Adha Imam	D02_270-275	
Cahyono,	Gunawan	D04_281-286	
Cetin, Alp	er	A20_104-108	
Dani Pras	etyo Adi, Puput	B04_139-144	
Darnoto,	Brian Rizqi Paradisiaca	E02_304-309	
Darwanto	o, Djoko	A01_001-005	
Daud, Kar	narulazhar	A04_017-021	
Dear, Var	uliantor	C03_181-184	
Dhiyani, A	Azizka Ayu	B08_160-164	
Dhofir, M	och	A01_001-005	
Dowla, Fa	irid U.	C01_170-175	
Eduardi, F	Farrel Raditya Eduardi	C11_221-224	
Emtimant	a, Hernando Efrata	A09_045-050	
Ermatita,	Ermatita	E08_339-344	

4	.13	Malang-East Java, Indonesia	August 23 rd – 25 th , 2022	
	Fabroyir, Hadz	iq	E09_345-350	
	Fahmizal		D02_270-275	
	Faisa Lailiyul N	1utho'affifah	B02_129-132	
	Faiz, Mohama	d Rodhi	A07_034-039 D05_287-291	
	Farizal, Ahmac	1	E12_362-367	
	Firdaus, Idam		A22_114-118	
	Franciscus, Fre	eddy	D03_276-280	
	Gabbar, Marya	am Ayad	C15_238-242	
	Galina, Mia		C18_254-259	
	Gao, Boxuan		E06_328-332	
	Gao, Xiangjian		C01_170-175	
	Gumilar, Gilan	g	C09_211-214	
	Gumilar, Langl	ang	A07_034-039 A10_051-055	
	Habibi, Muhar	nmad Afnan	A10_051-055	
	Hadiyanti, Lidi	a	A02_006-011	
	Hakim, Oktafia	an Sultan	D06_292-297	
	Hambali, Akhn	nad	C17_249-253	
	Hamdani, Den	У	A01_001-005	
	Handayani, Ok	taria	A02_006-011	
	Haryadi, Sigit		C08_207-210	
	Hasanah, Rini	Nur	A01_001-005 A11_056-060 D01_264-269	
	Hasson, Saad 7	Falib	B03_133-138 C15_238-242	
	Hidayat, Danu		C10_215-220	
	Huda, Khoirul		C03_181-184	
	Hussien, Shaha	ad A.	C14_234-237	

Lis	Malang-East Java, Indonesia	August 23 rd – 25 th , 2022	
Indria	iti	E03_310-315	
Isdaw	vimah, Isdawimah	A19_100-103	
Jaferi	, Muhammad Syarafuddin	A04_017-021	
Janna	h, Sutra Wardatul	B05_145-148	
Jati, A	gung Nugroho	B06_149-153	
Jatmi	ko, Nugroho Widi	B02_129-132	
Kaya,	Kerim	A20_104-108	
Kitaga	awa, Akio	B04_139-144	
Krishı	nanti, Alief Kusumaningtyas	C02_176-180	
Kurdi	anto	B02_129-132	
Kurni	aningtyas, Diva	E03_310-315	
Kurni	awan, Dwi	C05_191-196	
Kusm	aryanto, Sigit	C04_185-190 C05_191-196	
Kusur	nasari, Vita	C12_225-228	
Kusur	nawardana, Arya	A10_051-055	
Lesta	ri, Dyah	D05_287-291	
Ludiy	ati, Hepi	C11_221-224	
Ma, Y	ïnghan	E05_322-327	
Madia	awati, Hanny	C11_221-224	
Mafa	zi, Izzan R	C09_211-214	
Maha	idi Putra, Putu Agus	D06_292-297	
Manja	ang, Salama	A18_094-099	
Manu	ırung, Andrew Poda Jeremy	C06_197-200	
Marb	un, Musa Partahi	A22_114-118 A17_088-093	
Marti	neac, Corina	A01_001-005	
Mas,	Arbintoro	E12_362-367	

Malang-East Java, Indones	ia August 23 rd – 25 th , 2022	
Mat Isa, Siti Sarah	A04_017-021	
Melfazen, Oktriza	A05_022-027	
Meswari, Aulia Farah	C11_221-224	
Miao, Xingyuan	E05_322-327 E06_328-332	
Miranda, Carissa	C16_243-248	
Misbahuddin, Azizah Fauziah	A18_094-099	
Mohamad Zakaria, Nurul Aini Binti	A04_017-021	
Mohd Hussain, Mashitah	A04_017-021	
Mohd Hussain, Mohd Najib	A04_017-021	
Muchlishah, Muchlishah	A19_100-103	
Mudjirahardjo, Panca	E07_333-338	
Muliawati, Fithri	C08_207-210	
Mustofa, Ali	C13_229-233	
Nekoogar, Faranak	C01_170-175	
Nugraheni, Murien	E04_316-321	
Nugroho, Bambang Setia	C02_176-180	
Nugroho, Hanung Adi	D02_270-275	
Nur, Levy Olivia	C02_176-180 C09_211-214	
Nurmahaludin	D04_281-286	
Nurrohman, Muhammad Yogi	B09_165-169	
Nurussa'adah	B01_123-128	
Nurwati, Tri	A15_076-081	
Oktariza, Lingga	A19_100-103	
Ozen, Caner	A20_104-108	
Pamukti, Brian	C17_249-253	
Pamungkas, Yuri	E12_362-367	

LIJ	Malang-East Java, Indonesia	August 23 rd – 25 th , 2022	
Panjaitan,	Lanny	C07_201-206	
Partiansya	h, Fakhriy Hario	C04_185-190 C05_191-196	
Pebrianto,	Wahyu	E07_333-338	
Perdana, F	Rizal Setya	E03_310-315	
Poespawa	ti, Nji Raden	A23_119-122	
Pramono,	Sholeh Hadi	C04_185-190 E07_333-338	
Pramudita	, Aloysius Adya	B06_149-153 B07_154-159 B08_160-164	
Prasetia, H	likmah	A22_114-118	
Prasetio, N	Aurman Dwi	B06_149-153	
Pratiwi, M	onica	E12_362-367	
Pratomo, I	Baskoro Adi	E01_298-303	
Priyono, V	Vahyu Adi	C05_191-196	
Purnomo,	Muhammad Fauzan Edy	C12_225-228 C13_229-233 C16_243-248 C19_260-263	
Purwitasa	ri, Diana	E02_304-309	
Purwono,	Adi	C03_181-184	
Puspasari,	Shinta	E08_339-344	
Putra, Pris	tian Dwi	A17_088-093	
Putri, Tri V	Vahyu Oktaviana	C10_215-220	
Radikia Pra	asanta, Made	D05_287-291	
Rafli, Azizu	ırrahman	C19_260-263	
Rahmadw	ati	C12_225-228 C19_260-263	
Rahman, I	hza Aulia	A01_001-005	
Rahman, S	iiti Fauziyah	A23_119-122	

-	Malang-East Java, Indonesia	August 23 rd – 25 th , 2022	
	Ramadhani, Nabila	C06_197-200	
	Ramadhani, Prio Adi	E13_368-373	
	Riadi, Joni	D04_281-286	
	Rianto, Baskoro Arif	C06_197-200	
	Ridhia, Fildha	B07_154-159	
	Rifadil, Mochammad Machmud	D06_292-297	
	Rishika, Ravi Vendra	E01_298-303	
	Rizal, Yusie	D04_281-286	
	Rohman, Taufiqur	B01_123-128	
	Rosadi, Imron	D03_276-280	
	Rusli, Mochammad	D01_264-269	
	Sadjadpour, Hamid R.	C01_170-175	
	Saikhu, Ahmad	E11_357-361	
	Saleem, Ali Samer	B03_133-138	
	Saniah, Atya	A23_119-122	
	Santoso, Ari	B05_145-148	
	Saputra, Vriza Wahyu	E01_298-303	
	Saragih, Muhammad Rizqi Naufal	C06_197-200	
	Sari, Sapriesty Nainy	B01_123-128 C16_243-248	
	Sastromiharjo, Muhajir	A22_114-118	
	Sendari, Siti	D05_287-291	
	Senen, Adri	A02_006-011	
	Setiawan, Muhammad Farouk	D04_281-286	
	Setya Budi, Avian Lukman	A08_040-044	
	Setyabudi, Talcha Krusbeek	C13_229-233	
	Setyawan, Irham	C03_181-184	
	Shiddiqi, Ary Mazharuddin	E01_298-303	

LIJ	Malang-East Java, Indonesia	August 23 rd – 25 th , 2022	
Siahaan	, Daniel	E02_304-309	
Siradjud	ddin, Indrazno	E10_351-356	
Siregar,	Marsul	A03_012-016 C07_201-206	
Siregar,	Yulianta	A06_028-033 A09_045-050	
Siwinda	rto, Ponco	B09_165-169	
Soediby	vo, Soedibyo	A08_040-044	
Solekha	h, Mirotus	E01_298-303	
Suciati,	Nanik	E09_345-350 E11_357-361	
Sujito		D05_287-291	
Sulistiar	ni, Ita	E04_316-321	
Sulistio,	. Andhika	E10_351-356	
Sulistiyo	owati, Indah	A08_040-044	
Sumari,	Arwin Datumaya Wahyudi	E10_351-356	
Supriati	na, Wendy	A03_012-016	
Surya, A	Alexander Octavianus	A07_034-039 A10_051-055	
Suryane	egara, Muhammad	C18_254-259	
Suryoat	mojo, Heri	A21_109-113	
Suyono	, Hadi	A16_082-087	
Syafii		A12_061-064	
Syamsia	ana, Ika Noer	E10_351-356	
Syibram	nulis, Raihan	A19_100-103	
Tarigan	, Elieser	A14_071-075	
Utami,	Ratna Purnama	E13_368-373	
Vitrasia	, Vitra	C11_221-224	
Wahyu,	Үиуи	B04_139-144	

	Malang-East Java, Indonesia	August 23 rd – 25 th , 2022	
Wang, Hun	g-Yu	D05_287-291	
Wibawa, A	dhi Dharma	E12_362-367 E13_368-373	
Wibawa, U	nggul	A13_065-070 A16_082-087 D01_264-269	
Wibowo, A	gus	C07_201-206	
Wibowo, D	ella	E01_298-303	
Wicaksono	, Agung	B01_123-128	
Wicaksono	, Ricto Yudi	A21_109-113	
Widada, W	ahyu	B02_129-132	
Widodo		E04_316-321	
Widyastuti	, Christine	A02_006-011	
Wijono		A11_056-060 A15_076-081	
Wirateruna	a, Efendi S	A05_022-027	
Yohana, Pu	spa Ayu	E10_351-356	
Yuliarto, Br	ian	C09_211-214	
Yusuf, Ahm	ad	E11_357-361	
Zainuri, Akl	nmad	C12_225-228 D01_264-269	
Zhao, Hong	Ş	E05_322-327 E06_328-332	
Zulafa, Rifd	illah	A13_065-070	
Zulfia, Anno	2	A23_119-122	
Zulkardi		E08_339-344	
Zulkarnain,	Hendra	A09_045-050	

Malang-East Java, Indonesia

August 23rd – 25th, 2022

EECCIS 2022 Reviewer

Taufik Taufik California Polytechnic State University (USA) Ichijo Hodaka Mitsuhiro Yokota Mohd Ashraf Ahmad Mohammad Faiz Liew Abdullah Rosli Omar Jafferi Jamaludin Vikash Bhardwaj Anggun Isnawati Fauza Khair Suroso Suroso Cahya Santosa PLN (Indonesia) Handrea Tambunan Marwan Marwan Brian Pamukti Amirullah Amirullah Dwi Ajiatmo Fitri Zulkifli Gunawan Wibisono Teti Zubaidah Yudhi Gunardi Elta Sonalitha A. Aripriharta Ilham Ari Zaeni Muladi Muladi Vera Suryani **Gigih Priyandoko** Adharul Muttagin Akhmad Zainuri Angger Abdul Razak Fakhriy Hario Lunde Ardhenta Mochammad Rusli Muhammad Aziz Muslim Muhammad Fauzan Edy Purnomo **Onny Setyawati** Panca Mudjirahardjo Ponco Siwindarto Primatar Kuswiradyo Raden Arief Setyawan Rahmadwati Rahmadwati Rini Hasanah **Rudy Yuwono** Rusmi Ambarwati Sapriesty Nainy Sari

University of Miyazaki (Japan) University of Miyazaki (Japan) Universiti Malaysia Pahang (Malaysia) Universiti Tun Hussein Onn Malaysia (Malaysia) Universiti Tun Hussein Onn Malaysia (Malaysia) University of Malaya (Malaysia) **DEWAN VS Group of Institutions (India)** Institut Teknologi Telkom Purwokerto (Indonesia) Institut Teknologi Telkom Purwokerto (Indonesia) Jenderal Soedirman University (Indonesia) National Research and Innovation Agency (Indonesia) Polytechnic State of Ujung Pandang Makassar (Indonesia) Telkom University (Indonesia) Universitas Bhayangkara Surabaya (Indonesia) Universitas Darul Ulum (Indonesia) Universitas Indonesia (Indonesia) Universitas Indonesia (Indonesia) Universitas Mataram (Indonesia) Universitas Mercu Buana (Indonesia) Universitas Merdeka Malang (Indonesia) Universitas Negeri Malang (Indonesia) Universitas Negeri Malang (Indonesia) Universitas Negeri Malang (Indonesia) Universitas Telkom (Indonesia) Universitas Widyagama, Malang (Indonesia) Universitas Brawijaya (Indonesia)

2022 11th Electrical Power, Electronics, Communications, Controls, and Informatics Seminar (EECCIS)

Malang-East Java, Indonesia August 23rd – 25th, 2022

Sholeh Pramono Sigit Kusmaryanto Tri Kurniawan Tri Nurwati Wijono Wijono Zainul Abidin Universitas Brawijaya (Indonesia) Universitas Brawijaya (Indonesia)

Loading [MathJax]/extensions/MathZoom.js

achieved, as well as assist the resolution process of labeling disagreements among experts.

Published in: 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS)

Date of Conference: 23-25 August 2022	INSPEC Accession Number: 22114255
Date Added to IEEE Xplore: 04 October 2022	DOI: 10.1109/EECCIS54468.2022.9902931
▶ ISBN Information:	Publisher: IEEE
	Conference Location: Malang, Indonesia

E Contents

I. Introduction

Data pre-processing involves transforming raw data into a structured and easy-to-understand form. This procedure creates accurate and reliable datasets which ready to be analyzed in an algorithm, such as machine learning. One of the pre-processing data methods involves expert judgments to assess the data. For instance, in the problem of clustering and classification, especially in big data within education domain with unstructured data, the involvement of experts has been investigated extensively [1]-[4], which produces improved accuracy and reliability. The manual annotation process is challenging-the proclivity includes error labeling, ambiguous decisions, and Sign in to Continue Reading tremendous complex effort in term of tedious and timeconsuming job. However, several studies indicate that expert labeling has superior benefits to non-expert methods. For example, in research [5]-[7] combining manual annotation by expert and crowdsourcing to produce an accurate dataset viewed from the aspect of annotation discrepancy between expert and crowd. While in the other publication [8], [9] developed a multiple expert annotation framework with superior results than the standard. Moreover, besides manual labeling, the expert also contributes to validating automatic labeling by the system [10]-[12].

Authors	~
Figures	~
References	~
Keywords	~

IEEE Personal Account

CHANGE USERNAME/PASSWORD Purchase Details

PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS **Profile Information**

COMMUNICATIONS PREFERENCES

PROFESSION AND EDUCATION

TECHNICAL INTERESTS

Need Help?

Follow

f in ¥

US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981

0060

CONTACT & SUPPORT

About IEEE *Xplore* | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2022 IEEE - All rights reserved.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2022 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Expert Annotation Tools for Labeling Student Capstone Project Based On ACM CCS Ontology

Andre Department of Informatics Institut Teknologi Sepuluh Nopember Universitas Surabaya Surabaya, Indonesia andre@staff.ubaya.ac.id Nanik Suciati Department of Informatics Institut Teknologi Sepuluh Nopember Surabaya, Indonesia nanik@if.its.ac.id Hadziq Fabroyir Department of Informatics Institut Teknologi Sepuluh Nopember Surabaya, Indonesia hadziq@its.ac.id

Abstract-Students enrolled in an undergraduate computer science program must complete a capstone project as their final project. The selection of a capstone topic that is not appropriate can cause delays in the completion of this activity. Consequently, a thorough comprehension of the disciplines represented in each capstone title is required as a reference point for students when selecting topics that are appropriate for their academic skills. The popular ontology produced by the Association of Computing Machinery (ACM) can be used to learn about different computer science disciplines. Capstone title labeling on this ontology is applicable in topic recommendation systems that use clustering techniques to group titles into groups of similar topics. This technique requires a manual labeling process carried out by an expert, which has proven to be superior in other studies. However, this process is cumbersome and prone to errors. As a result, we present annotation tools that can assist experts in labeling based on the rules of the ACM Computing Classification System (CCS) ontology. Such tools have never been developed before in the education domain, despite the fact that educational datasets are widely available. In order to evaluate the efficacy, reliability, and accuracy of our system, we employ expert services to make manual annotations with and without the use of tools. The results of the comparison show that the manual labeling process with our tools are able to speed up the annotation process and increase the accuracy of the results achieved, as well as assist the resolution process of labeling disagreements among experts.

Keywords—annotation, expert system, ontology, capstone project

I. INTRODUCTION

Data pre-processing involves transforming raw data into a structured and easy-to-understand form. This procedure creates accurate and reliable datasets which ready to be analyzed in an algorithm, such as machine learning. One of the pre-processing data methods involves expert judgments to assess the data. For instance, in the problem of clustering and classification, especially in big data within education domain with unstructured data, the involvement of experts has been investigated extensively [1]-[4], which produces improved accuracy and reliability. The manual annotation process is challenging-the proclivity includes error labeling, ambiguous decisions, and tremendous complex effort in term of tedious and time-consuming job. However, several studies indicate that expert labeling has superior benefits to nonexpert methods. For example, in research [5]-[7] combining manual annotation by expert and crowdsourcing to produce an accurate dataset viewed from the aspect of annotation discrepancy between expert and crowd. While in the other publication [8], [9] developed a multiple expert annotation framework with superior results than the standard. Moreover, besides manual labeling, the expert also contributes to validating automatic labeling by the system [10]–[12].

The manual annotation method used by the expert has been shown to be more effective and precise in terms of processing time when the appropriate tools are used to facilitate it. Annotation tools provide a corridor for expert reasoning in labeling or annotating datasets. Furthermore, these tools may provide recommendations and even perform automatic labeling, which makes it easier for experts to complete their tasks efficiently. Several tools also take advantage of the ontology in case studies where the knowledge has been mapped comprehensively and structured in a standardized way. The medical domain is where the majority of the research and development of annotation tools based on ontologies takes place. The annotation method with a crowdsourcing approach to medical data produces a knowledge base for mental health literature, segmentation of cellular biology images, and the retrieval process of electronic medical records [13]-[15]. Annotation tools have also been developed for labeling multimedia data [16], [17] with the help of a previously trained semantic ontology. Annotated multimedia data is beneficial in the retrieval of multimedia data from a database. The findings of this study demonstrate a higher level of accuracy that is better, faster, and more efficient. Despite the fact that there have been various framework or proof of concept annotation tools published, we have discovered that there has only been a limited number of studies that have focused on annotation tools in the educational field.

A. Capstone Project and Ontology

Undergraduate computer science students are required to complete a capstone project as part of their degree. However, incorrect topic selection as well as a lack of cognitive skill in the selected capstone resulted in delays in the completion of the assignment. Among the options is a widely used machine techniques for developing learning clustering а recommendation system. The goal is to group capstones into topic groups which can then be used to assess students' abilities and suitability for certain topic groups. It is necessary to involve experts in the pre-processing of data stage in order to annotate each capstone title for the relevant disciplines in order to use this recommendation method. This annotation procedure makes advantage of established ontology standards in computer science, such as the Computing Classification System developed by the Association of Computing Machinery (ACM CCS).

B. Problem Statement, Gap, and Motivation

The capstone topic recommendation system requires a clustering technique to group similar capstone titles. Several courses support each capstone title, correspondingly the clustering process maps these titles into cluster groups. In this case, the system requires a supervised learning method for the dataset of capstone titles. As a result, in order to build an accurate and efficient dataset, it is necessary for the expert to provide computer science annotations based on the ACM CCS

Ontology on each capstone title. These activities are timeconsuming, tedious, and need high concentration and effort. In addition, the current research gap highlights the lack of annotation tools that have ever been developed to label capstone data based on computer science ontology. Based on these problems, the research question is formulated as follows:

RQ 1. How to help experts annotate capstone titles more easily and quickly?

RQ 2. How is the accuracy level of expert labeling results compared to manual labeling without tools?

RQ 3. How can annotation tools highlight inaccurate annotation information and help settle a disagreement between experts?

II. METHODOLOGY

A. Computer Science Capstone Project

The capstone project at the undergraduate study level is the final stage determining student graduation. Therefore, students should master the related courses that support a capstone title. Capstone project delaying is a common problem because students lack cognitive incompetence in the fundamental knowledge of a particular capstone title. As a result, students exhibit a low level of esteem and intention to work on the title. A case study at the undergraduate level at the Informatics Engineering University of Surabaya shows that the average student spent more than two semesters working on the capstone project, albeit the standard duration of capstone project completion is one semester. This study involves 301 students who graduated from the 2016-2021 class.

Therefore, students must choose capstone titles and topics that match their abilities and passions. The topic recommendation system can help students to choose a suitable capstone topic. This system utilizes clustering techniques to group capstone topics that maintain similarities. Then the system reads student transcripts to determine the student cluster to provide recommendations for the proper topic. Data pre-processing stages are needed to build a recommendation system based on machine learning clustering. The raw dataset compromises the bulk of the computer science capstone project. The challenge of this topic clustering is that each capstone title has specific computer science knowledge that students must master. It is possible to have cross-domain knowledge within a title. For example, a capstone with the topic of machine learning requires an understanding of statistics; in addition, the student may master mobile development if the machine learning is implemented in a mobile application.

The Association of Computing Machinery: Computing Classification System (ACM CCS) is a computer science ontology system that classifies and identifies computer disciplines that can be accessed on the weh https://dl.acm.org/ccs. ACM CCS is a poly-hierarchical ontology applied to modern computer disciplines and reliable for future changes. ACM CCS is used to classify research publications in computer science into 13 main domains. Each domain has a sub-field depth of 4-6 tree levels. This ontology can be used to label the computer science project capstone according to standards, and this process requires expert involvement. The result of this process is a dataset of a capstone project that consists of fundamentals courses, and it

requires as the basis of calculation in clustering algorithms applied.

B. Annotation Tools Framework Design

Manual annotating is tedious work and prone to mistakes. Therefore, we developed annotation tools to help simplify the work of experts in the dataset labeling process. Fig 1 shows the workflow of the annotation process.

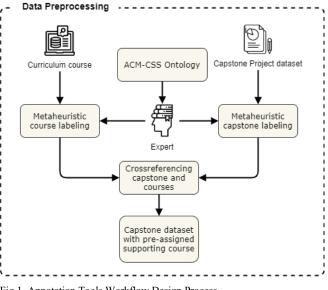


Fig 1. Annotation Tools Workflow Design Process

Four primary processes establish in our workflows that are briefly explained as follows:

1. Understanding of ACM CCS Ontology

Each ontology domain can have a hierarchy of up to a maximum of 4 depth levels. In conjunction with that, the selected ontology keyword should use the deepest hierarchy possible to deliver more accuracy. Consequently, the experts need to familiarize themself with the entire ACM CCS ontology hierarchy. Our annotation tools provide hierarchical tree mapping visualization to help the experts.

2. Metaheuristic course labeling

The final result of the expected dataset is a collection of supporting courses as the fundamental cognitive substantive for each capstone title. For example, in the case study at the Informatics Engineering University of Surabaya, we decided to use 72 courses, of which 23 courses are mandatory, and the rest are elective courses. The step taken by the expert is to label each course based on the ACM CCS ontology manually. Each course covers a broad range of computer science discipline topics. However, not every discipline is prevalent in these subjects. Thus we use coefficients to give the degree of influence of each discipline on the course. The data snippet in the table1 shows the result of the labeling process for each course.

3. Metaheuristic capstone labeling

Furthermore, the expert performs manual labeling of each capstone title according to the rules of the ACM CCS ontology. The selection of ontology keywords uses the most profound level to make the results more accurate. Each capstone title could consist of multi-disciplines of computer science.

4. Cross-referencing capstone and courses

The system uses the cross-reference technique of the ontology keywords of each course against each capstone title. Then the system displays a list of courses that are related or have substantive elements to the capstone title. The expert's task is to select relevant courses to be associated with each capstone title. The results of this final process are capstone titles that have associations with the supporting courses. The clustering algorithm requires this result to generate the expected outcomes.

III. RESULT AND DISCUSSION

This section describes the work plan for implementing the annotation tools in a closed system trial. We involved multiple experts consisting of four experts who served as head of the laboratory responsible for research in each field of computer science. Three experts were assigned to do manual labeling with the help of our annotation tool, while one other expert did manual labeling without the help of tools. To answer the first and second research questions, we measured the input pace of each group and then compared the accuracy of the results. Meanwhile, to answer the third research question, we observed the amount of disagreement data and measured how long the resolution process took.

A. End to End Testing: Study Case Computer Science Undergraduate Capstone Project

A complete and hierarchical-based visual ontology is made available by ACM CCS, which may be accessed on the website located at https://dl.acm.org/ccs. There are a total of 13 core fields of study, and each of these fields has its own hierarchical structure with up to four levels of concentration. The purpose of the ACM CCS is to assist researchers in correctly categorizing their publications so that they may be indexed and retrieved more quickly. Furthermore, our annotation tools provide better visualization of the ontology hierarchy with the help of visual notation in the form of Euler diagrams. As a result, disciplines can be searched and seen more clearly, making it easier for experts to quickly learn and browse each ontology node.

We used 300 capstone titles as dataset testbed from informatics engineering graduates from class 2016 to 2021. Each expert annotated 300 data and then resolved disagreements for specific data. The screenshot display of the annotation tools in Fig 2 shows the ontology keyword input process in a capstone title. Ontology number one shows the disciplines that contributed the most to the title. While ontology number three is assumed to have the lowest contribution to the title. In deciding on the ontology keywords, the expert checks the title, abstract, and even, if necessary, checks the contents of the Capstone project report document. The entered ontology keywords should use the deepest hierarchy of ACM CCS as possible. Furthermore, the system displays the root field of ontology to facilitate the crossreferencing process with the supporting courses that have also been labeled. Finally, the system also displays a table that contains a list of courses associated with these keywords and their coefficient degrees. Information on the list of courses associated with the ontology nodes can help the expert decide on the three supporting courses for the capstone title.

< Back	20	
Edit Capsto	ne	
Pembuatan Sistem Int	formasi Pengelolaan Keua	ngan Daerah Kota Mar
Onto1	Onto2	Onto3
Computing and bu	Enterprise informa	Web applications
Root: Professional topics	Root: Information systems applications	Root: Software organization and properties
Results		\sim
Pick Course ID #1		
Enterprise System Imp	plementation	~
Pick Course ID #2		
Management Informa	ition Systems	~
Pick Course ID #3		
Web Framework Prog	ramming	~
Submit		

Fig 2. Ontology Input Process on Capstone Title

Using the cross-reference technique, we can investigate the academic substance that emerges between the pre-judgment expert of the capstone title dataset and the courses under consideration. Example: The cross-referencing segment for the capstone title "Development of Decision Supporting Systems Using the Weighted Product Methodologies for Credit Installment of Vehicle Sales" is shown in Table 2. The expert has conducted an assessment and determined that this title requires adequate competence in the fields of Operation Research, Information System Application, and Software notation and tools. These three fields are ordered from highest to lowest relevance based on the default ACM CCS ontology. Additionally, the mapping process was conducted between comparable courses and these three fields on subjects. The outcome was that it discovered at least nine courses that were relevant to the capstone title categories. To determine the subject relevance between each course and the five aforementioned fields, we employ coefficients ranging from 0 to 1.

to1			Onto2			Onto3				
orecasting	Regre			Regression analysis			Information retrieval query processing			
t: Operations research			Root: Probability and statisti	cs		Root Information r	retrieval			
Results										
Course	Onto1	Coeff1	0 Onto2 0	Coeff2	0nto3	Coeff3	Search: Onto4	Coeff4		
Course Applied Data Mining in Security	Onto1 Information retrieval	Coeff1 0.4	Onto2 Probability and statistics	Coeff2 0.4	Onto3 Systems security			0 Coeff4		
Applied Data	Information		Probability and		ontos					
Applied Data Mining in Security Applied Multivariate	Information retrieval Probability and	0.4	Probability and statistics	0.4	ontos	0.2		0		

Fig 3. Screenshot of Cross-Reference Result

Likewise, in figure 3 shows how our system displays the results of cross-reference between courses and capstone ontology substance. The system automatically assigns three courses relevant to the title. However, this result can still be overridden by the expert. There is a possibility that the results of each expert's annotations will result in disagreements. In this scenario, disagreement refers to a disparity between the courses that were chosen and the sequence in which they were chosen by the experts. As shown in Figure 4, our system has the capability of highlighting disparities in annotation findings, which can assist in the resolution of arguments amongst experts.

< Back

Capstone Annotation Disagreement

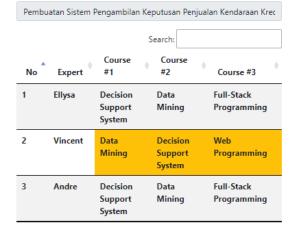


Fig 3. Screenshot of Highlighted Disagreement

B. Annotation Result Analysis

The preliminary step is needed before undertaking manual labeling on the capstone title dataset. The chairman of the Department of Informatics Engineering at the University of Surabaya established the 72 courses designated linked to ACM CCS ontology. This annotated course used as ground truth data that need to be consumed in later steps. However, the objectivity of the system that is being designed, the quantity of data, and the knowledge gap between the system designer and the expert all contribute to the quality of the ground truth [18]. A reverse classification framework is utilized as part of an approach in order to make labeling accuracy predictions in the absence of ground truth [19]. To get a higher level of precision and objectivity in the ground truth, one strategy for validating it is to use the assistance of multiple experts in addition to crowdsourcing [20].

Moreover, this technique uses coefficients to represent the degree of considerable importance for each of the relevant ontology nodes for that course. Table 1 illustrates instances of course labeling results. The node with the highest coefficient is considered to influence the course content more than other nodes with a smaller coefficient. This ontology classification becomes the basis for the subsequent capstone labeling process.

Courses	Nodes #1	Coeff #1	Nodes #2	Coeff #2	Nodes #3	Coeff #3
Hybrid Mobile Programmi ng	Softwar e notation s and tools	0.7	World Wide Web	0.2	Informa tion systems applicat ions	0.1
Business Geography	Informat ion systems applicati ons	0.8	Informa tion systems applicat ions	0.2	N/A	
Data Mining	Probabil ity and statistics	0.5	Informa tion retrieva l	0.3	Informa tion systems applicat ions	0.2

In addition, for the purposes of validating the accuracy of our work, we utilized a ground truth dataset that had been verified by the chairman of the Department of Informatics Engineering at the University of Surabaya. We took a sample from 10 different datasets, each of which contained a capstone title with a different topic: three capstone titles with information system subjects, three capstone titles with computer vision topics, and four capstone titles with data science or artificial intelligence issues. We measure the level of correctness of each expert based on the data from the ground truth, and we also measure the speed at which annotations are completed. The results of the measurements are presented in table 2 below. The annotating tools that we built are used by Experts A through C, however Expert D does not utilize any tools. All experts do the same thing, i.e., check the capstone's title, check the abstract, and, if necessary, check the capstone document. On the basis of the results of the examination, the expert provided three complementing courses for the capstone title and supplied scientific annotations in accordance with the norms established by the ACM CCS. The level of accuracy is then determined by comparing the results of the expert's work with the dataset that represents the ground truth. It is the responsibility of the expert to determine the three complementing course and organize them in sequence. In table 2, the correct course (CC) shows the proper number of courses chosen by the expert. Meanwhile, the correct order (CO) indicates if the three complementing courses have been successfully placed in the correct sequence.

Table 2. Result of Annotation Process of Selected Data Sampling

]	Exper	t A]	Exper	t B	1	Expert	C]	Exper	t D
Capstone	CC	СО	Acc	CC	CO	Acc	CC	CO	Acc	CC	CO	Acc
1	3	1	1	3	1	1	3	1	1	3	1	1
2	2	0	0.5	2	1	0.75	3	0	0.75	3	1	1
3	2	1	0.75	3	1	1	3	1	1	3	1	1
4	3	1	1	3	1	1	3	1	1	3	0	0.75
5	3	0	0.75	3	0	0.75	3	0	0.75	3	0	0.75
6	2	1	0.75	2	0	0.5	3	1	1	3	1	1
7	3	1	1	3	1	1	3	1	1	3	0	0.75
8	3	0	0.75	3	1	1	2	0	0.5	2	0	0.5
9	3	0	0.75	3	1	1	3	1	1	2	1	0.75
10	3	1	1	3	0	0.75	3	1	1	3	0	0.75
	2.7	0.6	0.825	2.8	0.7	0.875	2.9	0.7	0.9	2.8	0.5	0.825

Accuracy is calculated by adding together CC and CO and dividing by four. In conclusion, each capstone title has three complementing courses that are ordered by their relevance to the title. It can be seen that the use of tools does not significantly increase accuracy when compared to the absence of tools. However, it can be seen in table3, that the annotation processing speed is recorded faster when using tools. On average, using tools took 28 minutes to complete ten datasets compared to 47 minutes taken without using tools.

Table 3. Average Result Summary of Selected Data Sampling

	Course Correctness	Order Corectness	Accuracy	Anot. Speed (min)
Expert A	2.7	0.6	0.825	25
Expert B	2.8	0.7	0.875	32
Expert C	2.9	0.7	0.9	27
Expert D	2.8	0.5	0.825	47

Without using tools, the manual labeling process takes an average of 4.7 minutes per capstone title to label ten capstone titles. If the experts work on labeling for all 300 datasets, it approximately requires 1410 minutes (23.5 work hours). In comparison, the time required for the manual labeling process using tools takes an average of 2.8 minutes per capstone title for approximately 84 minutes. It means that annotation tools have successfully accelerated 60% expert performance.

IV. CONCLUSIONS

The manual annotation process is challenging. We propose tools to help experts do this manual annotation to speed up the process and increase its accuracy. The case study used is the ontology labeling process for each capstone project title for undergraduate computer science students. The resulting dataset can be used as fundamental for creating a capstone topic recommendation system that prevents early delays in capstone completion. Based on the measurement of the speed and accuracy level, this tool can help the ontology annotating process quickly when compared to the manual method. However, evidence shows slightly improved annotation accuracy with our tools. Disagreement highlights are considered handy features amongst experts because they can quickly highlight the disagreement data and help resolve the discrepancies. Furthermore, visualization of the ontology hierarchy using a visual notation can help experts learn the structure of computer science ontologies. However, the results of automatic labeling and the cross-reference feature created by the system depend on the outcomes of the initial data setup for the 72 courses because it is utilized as a reference system in making decisions for three relevant courses for a capstone title. It can be difficult to get at ground truth that is both genuine and reliable. When determining the ground truth for course annotations, it is best to involve a large number of stakeholders, particularly the head of the lab and the lecturers for the relevant classes.

This research could go in many different directions. For instance, annotation tools may be built in the education field using a variety of educational datasets to facilitate crowdassisted labeling. This would enable the labeling process to be completed more quickly, which is especially important for large datasets. Furthermore, the system can be developed to automatically extract relevant keywords in capstone documents using text mining techniques and to map keywords to each course automatically. In conclusion, Our expert annotation tools undoubtedly speed up the undergoing process of semi-automatic dataset labeling. Moreover, the results of the dataset in this study are used for the process of clustering capstone topics to be used as an intelligent recommendation system that can provide guidelines for capstone topics tailored to students' performance records.

ACKNOWLEDGEMENTS

This research is funded by Ministry of Education, Culture, Research, and Technology, Indonesia under grant of doctoral dissertation research year 2022.

REFERENCES

- H. Zhang, H. Yang, T. Huang, and G. Zhan, "DBNCF: Personalized courses recommendation system based on DBN in MOOC environment," *Proc. - 2017 Int. Symp. Educ. Technol. ISET 2017*, pp. 106–108, 2017, doi: 10.1109/ISET.2017.33.
- [2] C. Vo and P. Nguyen, "ST_OS: An Effective Semisupervised Learning Method for Course-Level Early Predictions," *IEEE Trans. Learn. Technol.*, vol. 14, no. 2, pp. 238–256, 2021, doi: 10.1109/TLT.2021.3072995.
- [3] S. Agarwal, G. N. Pandey, and M. D. Tiwari, "Data Mining in Education : Data Classification and Decision Tree Approach," vol. 2, no. 2, pp. 140–144, 2012.
- [4] M. Durairaj and C. Vijitha, "Educational Data mining for Prediction of Student Performance Using Clustering Algorithms," vol. 5, no. 4, pp. 5987–5991, 2014.
- [5] D. Wang, P. Tiwari, M. Shorfuzzaman, and I. Schmitt, "Deep neural learning on weighted datasets utilizing label disagreement from crowdsourcing," *Comput. Networks*, vol. 196, no. June, p. 108227, 2021, doi: 10.1016/j.comnet.2021.108227.
- [6] S. Rabiger, G. Gezici, Y. Saygin, and M. Spiliopoulou, "Predicting worker disagreement for more effective crowd labeling," *Proc. - 2018 IEEE 5th Int. Conf. Data Sci. Adv. Anal. DSAA 2018*, no. 1, pp. 179–188, 2019, doi: 10.1109/DSAA.2018.00028.
- [7] Q. Hu, Q. He, H. Huang, K. Chiew, and Z. Liu, "A formalized framework for incorporating expert labels in crowdsourcing environment," *J. Intell. Inf. Syst.*, vol. 47, no. 3, pp. 403–425, 2016, doi: 10.1007/s10844-015-0371-6.
- [8] H. Valizadegan, Q. Nguyen, and M. Hauskrecht, "Learning classification models from multiple experts," *J. Biomed. Inform.*, vol. 46, no. 6, pp. 1125–1135, 2013, doi: 10.1016/j.jbi.2013.08.007.
- [9] Z. Li, Y. Yu, T. Wang, G. Yin, X. Mao, and H. Wang, "HAF: a hybrid annotation framework based on expert knowledge and learning technique," *Sci. China Inf. Sci.*, vol. 65, no. 1, pp. 2021– 2023, 2022, doi: 10.1007/s11432-019-9891-5.
- [10] C. González-Fernández, A. Fernández-Isabel, I. Martín de Diego, R. R. Fernández, and J. F. J. Viseu Pinheiro, "Experts perceptionbased system to detect misinformation in health websites," *Pattern Recognit. Lett.*, vol. 152, pp. 333–339, 2021, doi: 10.1016/j.patrec.2021.11.008.
- [11] X. Qin, S. He, Z. Zhang, M. Dehghan, and M. Jagersand, "ByLabel : A Boundary Based Semi-Automatic Image Annotation Tool," 2018, doi: 10.1109/WACV.2018.00200.
- [12] M. Tamper et al., "AATOS -- A Configurable Tool for Automatic Annotation," in *Language, Data, and Knowledge*, 2017, pp. 276–289.
- [13] X. He, H. Zhang, and J. Bian, "User-centered design of a webbased crowdsourcing-integrated semantic text annotation tool for building a mental health knowledge base," *J. Biomed. Inform.*, vol. 110, no. April, p. 103571, 2020, doi: 10.1016/j.jbi.2020.103571.
- [14] A. Cocos, T. Qian, C. Callison-Burch, and A. J. Masino, "Crowd control: Effectively utilizing unscreened crowd workers for biomedical data annotation," *J. Biomed. Inform.*, vol. 69, pp. 86– 92, 2017, doi: 10.1016/j.jbi.2017.04.003.
- [15] S. M. Bafti, C. S. Ang, M. M. Hossain, G. Marcelli, M. Alemany-Fornes, and A. D. Tsaousis, "A crowdsourcing semi-automatic image segmentation platform for cell biology," *Comput. Biol. Med.*, vol. 130, no. September 2020, p. 104204, 2021, doi: 10.1016/j.compbiomed.2020.104204.
- [16] R. J. Hendley *et al.*, "CASAM: Collaborative human-machine annotation of multimedia," *Multimed. Tools Appl.*, vol. 70, no. 2, pp. 1277–1308, 2014, doi: 10.1007/s11042-012-1255-1.
- [17] R. Lakshmi Tulasi, M. Srinivasa Rao, K. Usha, and R. H.

Goudar, "Ontology- Based Annotation for Semantic Multimedia

- [18]
- [19]
- Goudar, "Ontology- Based Annotation for Semantic Multimedia Retrieval," *Procedia Comput. Sci.*, vol. 92, pp. 148–154, 2016, doi: 10.1016/j.procs.2016.07.339.
 E. J. Favela and K. Yordanova, "Challenges Providing Ground Truth for Pervasive Healthcare Systems," pp. 100–104, 2019.
 V. V Valindria *et al.*, "Reverse Classification Accuracy : Predicting Segmentation Performance in the Absence of Ground Truth," vol. 36, no. 8, pp. 1597–1606, 2017.
 T. Spinde, D. Krieger, M. Plank, and B. Gipp, "Towards A Reliable Ground-Truth For Biased Language Detection," in *2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)*, 2021, pp. 324–325. doi: 10.1109/JCDL52503.2021.00053. [20] pp. 324–325, doi: 10.1109/JCDL52503.2021.00053.