SUBSCRIBE

Q

ADVANCED SEARCH

Conferences > 2022 International Conference...

ΔII

Integrated Performance Appraisal System with Management by Objective Method

Publisher: IEEE

Cite This

PDF

<< Results

Fitri dwi Kartikasari; Susana Limanto; Nandya cahya Puspita

Abstract

Document Sections

- I. Introduction
- II. Methods
- III. Result and Discussions
- IV. Conclusion

Authors

Figures

References

Keywords

More Like This

Abstract: Higher education institutions generally have two types of employees, Lecturers and Non-Lecturers, both of which are managed by the Directorate of Human Resources (HR). On... View more

▶ Metadata

Abstract:

Higher education institutions generally have two types of employees, Lecturers and Non-Lecturers, both of which are managed by the Directorate of Human Resources (HR). One of the tasks of the HR Directorate is to provide Non-Lecturer employee performance appraisal services. Scoring systems that are often used are generally behavior-based (Behaviorally Anchored Rating Scales techniques). This technique assesses all employees with the same assessment indicators. This raises the problem of not being able to show actual work results because it only evaluates behavior without assessing the successful completion of the employee's main work or tasks. Based on these problems a performance appraisal-based performance target system (Management By Objective) was developed. This system can provide assessment results that reflect the actual performance of employees and can set assessment indicators based on the duties of each employee. Evaluations show that the system is function properly and successfully helps the implementation of performance appraisal system development because it is able to facilitate the evaluation of subordinates' performance, evaluate their own performance, be able to help provide assessment results that reflect actual employee performance, and be able to help regulate assessment indicators based on the duties and responsibilities of each employee.

Published in: 2022 International Conference on Informatics Electrical and Electronics (ICIEE)

Date of Conference: 05-07 October

2022

10.1109/ICIEE55596.2022.10010037

Date Added to IEEE Xplore: 16

January 2023

Publisher: IEEE

Conference Location: Yogyakarta,

▶ ISBN Information:

Indonesia

Contents

I. Introduction

I. Introduction
Sign in to Continue Reading
In an organization it is very important to be able to maintain

Back to Results

More Like This

Web application as support for learning methodology in informatics education 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT) Published: 2016

Robot Kits in Primary Informatics Education -What Should Future Teachers Know? 2021 19th International Conference on Information Technology Based Higher Education and Training (ITHET) Published: 2021

Show More

existence and be able to continue to develop its potential. This is inseparable from the role of competent human resources in their fields. Based on this, a performance appraisal system is very necessary to support the improvement of the quality of human resources [1].

CHANGE USERNAME/PASSWORD PAYMENT OPTIONS

VIEW PURCHASED DOCUMENTS

COMMUNICATIONS PREFERENCES

PROFESSION AND EDUCATION

TECHNICAL INTERESTS

US & CANADA: +1 800 678

f in 🛩

4333

WORLDWIDE: +1 732 981

0060

CONTACT & SUPPORT

About IEEE *Xplore* Contact Us Help Accessibility Terms of Use Nondiscrimination Policy IEEE Ethics Reporting 🗹 Sitemap IEEE Privacy Policy

IEEE AccountPurchase DetailsProfile InformationNeed Help?» Change Username/Password» Payment Options» Communications Preferences» US & Canada: +1 800 678 4333» Update Address» Order History» Profession and Education» Worldwide: +1 732 981 0060» View Purchased Documents» Technical Interests» Contact & Support

About IEEE Xplore Contact Us Help Accessibility Terms of Use Nondiscrimination Policy Sitemap Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanit

Copyright 2023 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

2022 International Conference on Informatics Electrical and Electronics (ICIEE)

Conference Proceedings

2022 International Conference on Informatics Electrical and Electronics (ICIE) | 978-1-6654-8622-4/22/\$31.00 ©2022 IEE | DOI: 10.1109/ICIEE55596.2022.10010063

Conference Proceedings

2022 International Conference on Informatics Electrical and Electronics (ICIEE)

Yogyakarta, Indonesia

5 – 7 October 2022

Organizer:

Department of Electrical Engineering
Universitas Sultan Ageng Tirtayasa

Technical Co-Sponsor:

IEEE Indonesia Section

Supported by:

Universitas Lampung

Universitas Tidar

Universitas Mataram

FORTEI

APTIKOM

Patron:

BTN Syariah

Rugged Monitoring

iciee.untirta.ac.id

Copyright

2022 International Conference on Informatics Electrical and Electronics (ICIEE) Proceedings

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2022 by IEEE.

IEEE Catalog Number: CFP22W82-ART

ISBN: 978-1-6654-8622-4

Welcome Message

Salam. Dear ICIEE participants,

Welcome to the ICIEE 2022!

On behalf of the Organizing Committee of the 2022 International Conference on Informatics Electrical and Electronics, it is our great pleasure to welcome you to our hybrid event in Yogyakarta. The aim of this event is to provide an opportunity to present and share the most current research in electrical engineering and informatics. We cordially ask you to join fellow researchers, academicians, scientists, and engineers on a full day occasion.

The ICIEE is a biennial conference, organized by the Department of Electrical Engineering, Universitas Sultan Ageng Tirtayasa (and partners), with previous successful events held in 2018 and 2020. Technically co-sponsored by IEEE Indonesia Section, this year the conference's theme is "Smart Technology Towards Smart Energy." The topics include but are not limited to: Power System, Control Electronics, Circuits, and Systems, Information Technology, and Telecommunication.

We will kick off our conference with keynote lectures from distinguished profiles: Professor Chii-Wann Lin from National Taiwan University, Professor Josaphat Tetuko Sri Sumantyo from Chiba University and Professor Hadi Suyono from Universitas Brawijaya. We thank them sincerely for dedicating their valuable time to give exciting talks to the conference audience. Then, technical sessions will follow and be presented in parallel. Most presentations will be given virtually, so in-person participation here does not necessarily reflect the actual scale of this conference.

Our conference this year received a total of 74 submissions, of which 47 will be presented during the conference. All contributed papers went through an independent peer-review process. Finally accepted and presented papers published in the Conference Proceedings will be submitted for possible inclusion into IEEE Xplore. Submissions were from academia (87.8%), research facilities and government laboratories (9.5%), and industry (2.7%). Those papers came from IEEE Region 8 (Africa, Europe, Middle East) and Region 10 (Asia Pacific).

Special mention should be addressed to Rector of Untirta Professor Fatah Sulaiman and Dean of Engineering Faculty Untirta Professor Asep Ridwan for their institutional backing. In addition, we are honoured to have support from Universitas Lampung, Universitas Tidar, Universitas Mataram, as well as FORTEI, APTIKOM and sponsors. It goes without saying that this event is made possible by efforts from hard-working committees and also our student volunteers. Of course, appreciation also goes to external reviewers whose major contribution in the peer-reviewing process is at the very core of scientific dissemination.

We hope you will find the conference experience both technically and socially informative. Moreover, our purpose is also to facilitate collaborations and connections. We look forward to your feedback on this event and we hope to see you in the future ICIEE 2024!

General Chair : Dr. Romi Wiryadinata

Technical Program Chair : Imamul Muttakin, Ph.D.

Welcome Message

Assalamualaykum warohmatullahi wabarakatuh.

Distinguished keynote speakers and speakers, guests, ladies and gentlemen,

It is our great pleasure to join and to welcome all participants of the 2022 International Conference on Informatics Electrical and Electronics (ICIEE) in hybrid. I am happy to see this great work of the Department of Electrical Engineering on organizing this international event.

On this occasion, I would like to congratulate all participants for their scientific involvement and willingness to share their findings in this conference. I believe that this conference can play an important role to encourage and embrace cooperative, collaborative, and interdisciplinary research among the engineers and scientists. And as a leading state university in Banten Province and fast-growing university in Indonesia, through this international seminar, Untirta consistently serves a medium for the development of knowledge particularly in area of Electrical engineering.

I do expect that this kind of similar event will be held in the future by other department within Untirta as part of activities in education research and social responsibilities of universities, research institutions, and industries internationally. My heartful gratitude is dedicated to Organizing Committee members and the students of Department of Electrical Engineering for their generous effort and contribution toward the success of the ICIEE 2022.

And on behalf of Universitas Sultan Ageng Tirtayasa, by reciting basmalah, "Bismillahirrohmanirrohim" I officially declare to open the 2022 International Conference on Informatics Electrical and Electronics.

Thank you.

Wassalamualaykum warohmatullahi wabarakatuh.

Prof. Dr. H. Fatah Sulaiman, ST., MT.

Rector of Universitas Sultan Ageng Tirtayasa

Indonesia

Organizing Committee

General Chair

Romi Wiryadinata

Technical Program

Supriyanto Rocky Alfanz
Alimuddin Deria Pravitasari
Siswo Wardoyo Diah Permata
Suhendar Misbahuddin
Imamul Muttakin

Publication

Teguh Firmansyah Fadil Muhammad

Local Program

Muhammad Iman Santoso HM. Hartono
Rian Fahrizal Masjudin
Heri Haryanto Adi Nugraha

Sponsorship

Anggoro Suryo Pramudyo Ri Munarto Wahyuni Martiningsih H. Alief Maulana

Treasurer

Irma Saraswati Ceri Ahendyarti

Secretary

Dina Estining Tyas Lufianawati

Media

Cakra Adipura Wicaksana

Scientific Committee

Altyeb Altaher Taha King Abdul Azis University, Saudi Arabia A. N. Afandi Universitas Negeri Malang, Indonesia

Bambang Sujanarko Universitas Jember, Indonesia

Bernd Noche
Universitat Duisburg Essen, Germany
Chii-Wann Lin
National Taiwan University, Taiwan
Dadang Gunawan
Universitas Indonesia, Indonesia
Didik Notosudjono
Universitas Pakuan, Indonesia

Eko Supriyanto Universiti Teknologi Malaysia, Malaysia

Elhadj Dogheche Université Polytechnique Hauts-de-France, France

Hadi Suyono Universitas Brawijaya, Indonesia Hendro Wicaksono Jacobs University, Germany

Herman Dwi Surjono Universitas Negeri Yogyakarta, Indonesia

Josaphat Tetuko Sri Sumantyo Chiba University, Japan

Manuchehr Soleimani University of Bath, United Kingdom

Masaharu Shiratani Kyushu University, Japan

Poki Chen National Taiwan University of Science and Technology, Taiwan

Rosni Abdullah Universiti Sains Malaysia, Malaysia Sunny Joseph Kalayathankal Jyothi Engineering College, India Syamsir Abduh Universitas Trisakti, Indonesia

Taufik California Polytechnic State University, USA

Tofael Ahamed Tsukuba University, Japan

Wahyu Widada BRIN, Indonesia

Yilmaz Uygun Jacobs University, Germany Ali Abdulrazzaq Khudher University of Mosul, Iraq

Arbai Yusuf Ctech Labs EdWar Technology, Indonesia

Arief Noor Rahman Pegatron, Taiwan

Habila Mormi John University of Abuja, Nigeria

Iman FirmansyahBRIN, IndonesiaLatifa Hanum LalasariBRIN, Indonesia

Leau Yu Beng Universiti Malaysia Sabah, Malaysia Manasavee Lohvithee Chulalongkorn University, Thailand

Marlin Ramadhan Baidillah BRIN, Indonesia

M. V. Reddy Nouveau Monde Graphite, Canada

Panji Nursetia Darma Chiba University, Japan Raja Kumar Murugesan Taylor's University, Malaysia

Ramon Zamora Auckland University of Technology, New Zealand

Shafiq UI Rehman Amity University, India Yandan Jiang Zhejiang University, China

Awf Abdulrahman Ramadhan Duhok Polytechnic University, Iraq Azlan Osman Universiti Sains Malaysia, Malaysia

Dayat Kurniawan BRIN, Indonesia Handrea Bernando Tambunan PLN, Indonesia

Iznan H. Hasbullah Universiti Sains Malaysia, Malaysia

Jemmy Kristianto Wiguno Xtremax, Indonesia

Kevin Gausultan Hadith Mangunkusumo PLN, Indonesia

Rohmadi Ctech Labs EdWar Technology, Indonesia

Keynote Speaker

"Enabling Precision Health with Biomedical Electronics"

Chii-Wann Lin, Ph.D., Professor, Department of Biomedical Engineering, National Taiwan University

Biomedical electronics has been the corner stone of the healthcare with numerous innovative medical devices. Advances in miniaturization, heterogeneous integration, and hard/software co-development have enabled digital transformation of modern healthcare system. Artificial intelligence, big data analytics, cloud computing, low latency communications, and immersive interactions, all these emerging technologies will help to facilitate novel service models in healthcare for better clinical outcomes and in preventive care toward precision health. I will share a few current statuses of research projects from my laboratory, e.g. complex phase space differential (CPSD) for arrythmia detection, automation of surface plasmon resonance (SPR) biosensing system, reinforcement learning (RL) algorithm for closed-loop stimulator.

Chii-Wann Lin received the B.S. degree from the Department of Electrical Engineering, National Cheng Kung University, Tainan City, Taiwan, the M.S. degree from the Graduate Institute of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan, and the Ph.D. degree from Case Western Reserve University, Cleveland, OH, in 1984, 1986, and 1993, respectively. He was with the Center for Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, from September 1993 until August 1998. He is now a Professor in the Graduate Institute of Biomedical Engineering and holds joint appointments in the Department of Electrical Engineering and Institute of Applied Mechanics, National Taiwan University. His research interests include biomedical micro sensors, optical biochip, surface plasmon resonance, bioplasmonics, nanomedicine, and personal e-health system. Dr. Lin is a member of the IEEE Engineering in Medicine and Biology Society, the International Federation for Medical and Biological Engineering, and the Chinese Biomedical Engineering Society. He was the President of the Taiwan Association of Chemical Sensors from 2008–2010.

Keynote Speaker

"Development of Airborne Microwave Remoted Sensor and The Applications"

Josaphat Tetuko Sri Sumantyo, Ph.D., *Professor, Center for Environmental Remote Sensing, Chiba University*

Our laboratory developed airborne circularly polarized synthetic aperture radar (SAR) for disaster and environment observation. This lecture explains the experience to develop this sensor, investigation of scattering characteristics of circular polarization in the ground test, and flight test of circularly polarized SAR in the Hinotori-C2 mission onboard CN235MPA aircraft in March 2018 at Makassar, Indonesia. This lecture also explains the applications of SAR image analysis using differential interferometric SAR and permanent scatterer interferometric SAR to observe disaster and environmental change. Finally, the tips of how to to be researcher will be explain in the end of this lecture.

Josaphat Tetuko Sri Sumantyo was born in Bandung, Indonesia in June 1970. He received the B.Eng. and M.Eng. degrees in electrical and computer engineering (subsurface radar systems) from Kanazawa University, Japan, in 1995 and 1997, respectively, and a Ph.D. degree in artificial system sciences (applied radio wave and radar systems) from Chiba University, Japan, in 2002. From 2002 to 2005, he was a Lecturer (Post-doctoral Fellowship Researcher) with the Center for Frontier Electronics and Photonics, Chiba University, Japan. From 2005 to 2013, he was an Associate Professor (permanent staff) with the Center for Environmental Remote Sensing, Chiba University, where he is currently a Full Professor (permanent staff). He is Head Department of Environmental Remote Sensing and Head Division of Earth and Environmental Sciences, Graduate School of Integrated Science and Technology, Chiba University in 2019-2020. He is also Full Professor in the Department of Electrical Engineering, Faculty of Engineering, Universitas Sebelas Maret (UNS), Indonesia since 2020. Now he is Head Division of Disaster Data Analysis, Research Institute of Disaster Medicine, Faculty of Medicine, Chiba University since October 2021. His research interest is theoretically scattering microwave analysis and its applications in the microwave (radar) remote sensing, especially synthetic aperture radar, quantum radar, noise radar, and subsurface radar (VLF), including InSAR, DInSAR, and PS-InSAR, analysis and design of antennas for mobile satellite communications and microwave sensors, development of microwave sensors, including synthetic aperture radar for UAV, aircraft, high altitude platform system (HAPS), and microsatellite. He published about 900 journal and conference papers, invited talks, and 15 book-related wave analyses, UAV, SAR, space antenna, and a small antenna. He is General Chair of the 7th and the 8th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR 2021), and more than 260 Invited Talks and Lectures. He is Chair of Technical Committee of Working Group on Remote Sensing Instrumentation and Technologies for UAV of IEEE-GRSS, Technical Committee on Instrumentation, and Future Technologies (IFT-TC), and Associate Editor of IEEE Geoscience and Remote Sensing Letter (GRSL).

Keynote Speaker

"Enhancement of Power Grid Resilience using Artificial Intelligence"

Ir. Hadi Suyono, Ph.D., IPU., ASEAN.Eng., *Professor, Department of Electrical Engineering, Universitas Brawijaya*

.

Prof. Ir. Hadi Suyono, S.T., M.T., Ph.D., IPU., ASEAN Eng. received his B.Eng. from Universitas Brawijaya, Malang-Indonesia in 1996; M.Eng. from Universitas Gadjah Mada, Yogyakarta-Indonesia in 2000 and Ph.D from Universiti Malaya, Kuala Lumpur-Malaysia in 2006. He is currently a Professor at the Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya (UB), Malang, Indonesia.

He serves as the Head of the Department of Electrical Engineering, from 2017 up to 2021, and as the Dean of Faculty of Engineering, Brawijaya University, from 2021 up to now. He is also the Head of Power System Engineering and Energy Management Research Group (PSeeMRG), Universitas Brawijaya, since 2015 - now. In year 2013-2017, he served as the Vice Head of Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya. In year 2010-2014 he served as Vice Head of the Master and Doctoral Program in the Faculty of Engineering, Universitas Brawijaya. He has been appointed as interviewer and reviewer of Indonesia Endowment Fund for Education, the Secretariat General of the Ministry of Finance of the Republic of Indonesia, since 2015-now. He holds professional engineer certificate from the Engineer Association of Indonesia since 2016-now. He has been appointed as the Auditor of the Quality Assurance Centre, Universitas Brawijaya since 2013-now.

He is a member of IEEE, IEEE Power and Energy (PES), IEEE Computational Intelligence Society (CIS), IEEE Dielectrics and Electrical Insulation Society (DEIS), International Association of Engineers (IAENG), Indonesian Renewable Energy Society (IRES), International Association of Computer Science and Information Technology (IACSIT). He is elected as vice head (2018-2020) and Head (2020-now) of Association of Higher Education in Electrical Engineering Indonesia (FORTEI). He is active as a reviewer of several international journals and conferences. He also serves actively as a senior consultant in industries, private companies and government institutions. His research interests cover the power system engineering, artificial intelligence, energy efficiency, embedded generation system, renewable energy, power system stability, power system planning and operation, and reliability studies in a deregulated power system.

Program

2022 International Conference on Informatics Electrical and Electronics (ICIEE)

Wednesday, 5 October 2022

Eastparc Hotel, Yogyakarta – Indonesia

08:00 - 08:30	, rogyakarta — III		gistration	
08:30 - 09:30		(Opening	
09:30 – 10:00	Coffee break			
10:00 – 12:00		Keyr	note lecture	
12:00 – 13:00	Lunch and prayer break			
	Parallel session			
13:00 – 15:00	Power system I	Control, electronics, circuits, and systems I	Information technology I	Telecommunication I
15:00 – 15:30	Coffee and prayer break			
	Parallel session			
15:30 – 16:45	Power system II	Control, electronics, circuits, and systems II	Information technology II	Information technology III
16:45 – 17:00			Closing	

Technical Schedule

13:00 - 15:00 Power System I

Session Chair: Alimuddin

Room: A

957	Thermoelectric Generator for Micropower Application Using Household Waste
(in person)	Munnik Haryanti, Wahyu Saputro and Bekti Yulianti
2072	Thermal Monitoring System Phase Change Material Batteries Using Fuzzy Logic
(in person)	Hartono Hartono and Khen Nuhfus Sanjaya
5596	Dynamic Stability Simulation Multimachine Power Generating System
(in person)	Sapto Nisworo, <u>Deria Pravitasari</u> and Zulfikar Aji Kusworo
6851	Shaded Cell Random Model of Solar Cell Module on Energy Harvesting
(in person)	A.N. Afandi, Sujito Sujito, Mahmudin Yunus, Langlang Gumilar, Ana Nuril
	Achadiyah and Goro Fujita
9323	Dynamic Thermal Line Rating Considering Cooling Impact on Conductor's
	Heating of Transmission Power Loss
(in person)	A.N. Afandi, Aji Prasetya Wibawa, Yuni Rahmawati, Sunaryono Sunaryono and
	Makiko Kobayashi
7457	Acceleration of Rooftop Solar Power Plant Development as a Support of the
	Reduction of Greenhouse Effect
(in person)	<u>Ibrahim Nawawi</u> , Andriyatna Agung Kurniawan and Deria Pravitasari

15:30 - 17:00 Power System II

Session Chair: Hartono Room: A

7591	Study of Electrical Power System on Transmission and Distribution in PT
	Krakatau Daya Listrik (KDL)
(in person)	Alimuddin Alimuddin, Amil Mukrod, Irma Saraswati, Cakra Adipura Wicaksana,
	Heri Hariyanto and Ria Arafiyah
6671	Role of type-2 fuzzy algorithm to improve response of rectifier in HVDC-model
(virtual)	I Made Ginarsa, I Made Ari Nrartha, Agung Budi Muljono, Ni Made Seniari and
	Osea Zebua
9341	A Development of a Low Cost Solar Irradiance Meter Using Mini Solar Cells
(virtual)	Ferdian Ronilaya, Putra Fahri Ramadhani, Moh. Noor Hidayat, Sapto Wibowo,
	Irwan Heryanto Eryk and <u>Stevanus Septian Vicky Putra Pratama</u>

13:00 - 15:00

Control, electronics, circuits, and systems I

Session Chair: Irma Saraswati

Room: B

1954	Determine of the Time Constant of Capacitance Applied to Electrical Capacitance
	Tomography
(in person)	Arba'l Yusuf, Wahyu Widada and Warsito Purwo Taruno
2750	Active Front End with simple control for Improved Power Quality
(in person)	Asep Andang, Oriza Sativa and Abdul Chobir
3761	Analysis of the Influence of Sun Intensity on Power on Coastal and High Lands using Solar Tracker based on Arduino Microcontroller
(in person)	Isra Nuur Darmawan, Kholistianingsih Kholistianingsih, <u>Burhan Alnovda Azaria</u> and Priyono Yulianto
5220	Implementation of AHRS (Attitude Heading and Reference Systems) With
	Madgwick Filter as Hexapods Robot Navigation
(in person)	Ri Munarto, Romi Wiryadinata and Donny Prakarsa Utama
8746	The role of post-annealing treatment on ZnO:Co structure and magnetic
	transition grown by sputtering deposition
(virtual)	Agusutrisno Marlis Nurut, Naoto Yamashita, Kunihiro Kamataki, Kazunori Koga,
	Naho Itagaki and Masaharu Shiratani
1530	Control of DC Motor Speed on Smart Gate System Using Fuzzy Logic Controller
(virtual)	Wahyudi Wahyudi, Muhammad Rohman and M Arfan
2270	Dual Axis Solar Tracker With Fuzzy Logic Method
(virtual)	Yustinus Bagus Arisotya, A. Bayu Primawan and Djoko Untoro Suwarno

15:30 - 17:00

Control, electronics, circuits, and systems II

Session Chair: Ceri Ahendyarti

Room: B

3057	Prototype of a Monitoring System for Temperature, Humidity, and Location of
3037	Reefer Container based on IoT
(virtual)	Abdi Pratama Putra, Muhammad Yusro and Aodah Diamah
3772	Monitoring System Temperature and Humidity of Oyster Mushroom House
	Based On The Internet Of Things
(virtual)	Irma Saraswati, Adhitya Rahma Putra, Masjudin Masjudin and Alimuddin
	Alimuddin
6252	A Real-time Performance Monitoring of IoT-based on Lithium-Ion Battery Pack
(virtual)	Murie Dwiyaniti, Sri Lestari Kusumastuti, Luthfi Rahman Nova Kusuma, Achmad
	Rais Wiguna, Silawardono Silawardono and Tohazen Tohazen
6950	Internet of Things-based PDAM Water Usage and Quality Monitoring System
	using ESP32
(virtual)	Bramantyo Regowo, Muhammad Yusro and Jusuf Bintoro
6576	Low-cost Impedance Measurement System for Determination of Condition and
	Oil Content in Wood Material
(in person)	Rocky Alfanz, Muhamad Fauzi, Imamul Muttakin, Rian Fahrizal and Yofei Okazaki

13:00 - 15:00

Information technology I

Session Chair: Muhammad Iman Santoso

Room: C

1310	Energy Potential Estimation System Model To Produce Alternative Energy Briquettes
(in person)	Norbertus Tri Suswanto Saptadi, Ansar Suyuti, Amil Ahmad Ilham and Ingrid Nurtanio
7949	Analysing Temporal Hotspot Occurance over Sumatera and Kalimantan
(in person)	<u>Arie Vatresia</u> , Ferzha Putra Utama, Aji Novriadi, Hendri Gunawan, Rendra Rais and Yudi Setiawan
388	Integrated Performance Appraisal System with Management by Objective Method
(virtual)	Fitri Dwi Kartikasari, Susana Limanto and Nandya Cahya Puspita
3764	Graph-based Process Mining for Measuring Quality of Business Process Model
(virtual)	Kelly Rossa Sungkono, Riyanarto Sarno, Fara Dinda Mutia Kinanggit, <u>Irsyadhani Dwi</u> <u>Shubhi</u> and Khofifah Nurlaela
4644	Role of Internet of Things in Aviation Industry: Applications, Challenges, and Possible Solutions
(virtual)	Md Shaikh Rahman, Selvakumar Manickam and Shafiq Ul Rehman
6858	Modelling Flood Prone Area in North America with Geomorphic Flood Index Method
(virtual)	Hanni Yolina, Edy Irwansyah and <u>Rojali Rojali</u>
7787	Mapping Graph-Based Process Model Into Discrete Event Simulation (DES)
(virtual)	Riza Dwi Andhika, Kelly Rossa Sungkono and Riyanarto Sarno

15:30 - 17:00

Information technology II Session Chair: Rian Fahrizal

Room: C

5548	Performance Evaluation for Infrared Face Recognition using Convolutional Neural
	Network
(in person)	Muhammad Eka Setio Aji, Annisa Syakhira, <u>Supriyanto Praptodiyono</u> and Rocky Alfanz
8577	Fake News Classifier with Deep Learning
(In person)	Abba Suganda Girsang
490	Twitter Sentiment Analysis in Indonesian Language with Python using Naive Bayes
	Classification Method
(in person)	Cakra Adipura Wicaksana, Mohammad Fatkhurrokhman, Rinanda Febriani, Rifaldi
	Tryawan, Alimuddin Alimuddin and Hafiyyan Putra Pratama
673	Investigating the Influence of Layers Towards Speed and Accuracy of Neural Networks
(virtual)	Kevin Bennett Haryono, Hizkia Christian Purnomo, Ryne Ferdinand, Henry Lucky and
	Derwin Suhartono
5935	Implementation of Feature Selection to Reduce the Number of Features in Determining
	the Initial Centroid of K-Means Algorithm
(virtual)	Vincentius Riandaru Prasetyo, Fania Alya Miranti and Susana Limanto
6488	Clustering of Customer Lifetime Value With Length Recency Frequency and Monetary
	Model Using Fuzzy C-Means Algorithm
(virtual)	Mirdatul Husnah and Rice Novita

13:00 - 15:00

Telecommunication I

Session Chair: Teguh Firmansyah

Room: D

4898	5G Coverage Evaluation: A Systematic Literature Review
(in person)	Bayu Devanda Putra, Rizal Munadi, Syahrial Syahrial, Ramzi Adriman, Teuku Yuliar Arif
	and Melinda Melinda
9615	Multi-Antenna Combination Visibility Analysis for Rocket Application using SDR
(in person)	Sri Kliwati, Romi Wiryadinata, Afrido Prayogi, Rustamaji Rustamaji and Wahyu Widada
1330	Design of Fiber-to-the-Home Network Deployment at the Ministerial Residential of IKN
	Nusantara
(virtual)	<u>Jeremy Baskoro</u> , Fasya Tiarani, Naufal Alfarabay, Bintang Giani, Nurmuthia Oktovioletha
	and Catur Apriono
1510	Dual-Band Microstrip Antenna Array Design for Low Power Energy at Frequencies 900
	MHz and 1800 MHz
(virtual)	<u>Priyo Wibowo</u> , R. Harry Arjadi and Nur Adi Siswandari
1653	FPGA Implementation of OFDM-based Visible Light Communication System
(virtual)	Rahmayati Alindra, Purnomo Sidi Priambodo and Kalamullah Ramli
1801	Techno-Economic Analysis of 5G Implementation at Frequency 2.3 GHz for Bandung City
(virtual)	Merlyn Inova Christie Latukolan, Nachwan Mufti Adriansyah and Ahmad Tri Hanuranto
8995	Predicting Channel Gain Threshold for V2V Communications with Varying Doppler Shift
	Using Machine Learning
(virtual)	Nazmia Kurniawati, Aisyah Novfitri, Rifqi Fuadi Hasani and Arti Suryaning Tyas

15:30 - 17:00

Information technology III Session Chair: Suhendar

Room:

5473	Effect of Visual Augmented Reality in the Transportation Sector
(virtual)	I Putu Ronny Eka Wicaksana, Bertrand Bertrand, Jason Christian, Said Achmad and Rhio
	Sutoyo
5981	How is Smartphone Technology Changing Healthcare
(virtual)	Azella Gania Mutyara, Brian Abiyyu Farras, Liauren Permata Sari, Said Achmad and Rhio
	Sutoyo
7301	Detecting Phishing Websites with Non-Parametric Machine Learning
(virtual)	Bianca Chelsea Putri Nugroho, Josephine Florencia Chan, Valencia Vananda, Henry Lucky
	and Derwin Suhartono
8343	Important Security Factors for Implementing Internet of Things in Smart Home Systems
(virtual)	<u>Daniel Widjaja</u> , Derrick Derrick, Muhammad Fathariq Dimas Octaviandra, Said Achmad
	and Rhio Sutoyo
8776	Comparative Analysis of Radial Basis Method with Backpropagation for Signature
	Identification
(in person)	Siswo Wardoyo, Adi Nugroho and Suhendar Suhendar
8931	The Utilization of Content Based Filtering for Spotify Music Recommendation
(virtual)	Jonas Theon Anthony, Gerard Ezra Christian, Vincent Evanlim, Henry Lucky and Derwin
	Suhartono

Room

Agenda	Venue	Zoom
Koynata Lastura	Main Venue "Garden Room"	Meeting ID: 927 2371 0736
Keynote Lecture	Ivialii vellue Garden Room	Passcode: 438329
Davidlal Cassian A	Passcode: 1234	Meeting ID: 959 6751 2980
Parallel Session A		Passcode: 1234
Parallel Session B	Drookout II "Magnalia Doom"	Meeting ID: 832 2435 0072
Farallel Session B	Breakout II Wagiiolia Kooiii	Passcode: 537443
Parallel Session C	Breakout III "Carnation Room"	Meeting ID: 883 9976 2136
Parallel Session C		Passcode: 544854
Darallal Cassian D	Breakout IV "Lotus Room"	Meeting ID: 921 5958 9210
Parallel Session D	breakout iv Lotus Room	Passcode: 887272

Table of Contents

Welcome Messagev
Organizing Committee vii
Scientific Committeeix
Keynote Speaker
Programxii
Technical Schedulexiv
ntegrated Performance Appraisal System with Management by Objective Method1
Fitri Dwi Kartikasari, Susana Limanto and Nandya Cahya Puspita
Twitter Sentiment Analysis in Indonesian Language using Naive Bayes Classification Method8
Cakra Adipura Wicaksana, Mohammad Fatkhurrokhman, Hafiyyan Putra Pratama, Rifaldi Tryawan, Alimuddin Alimuddin and Rinanda Febriani
Investigating the Influence of Layers Towards Speed and Accuracy of Neural Networks14 Kevin Bennett Haryono, Hizkia Christian Purnomo, Ryne Ferdinand, Henry Lucky and Derwin Suhartono
Thermoelectric Generator for Micropower Application Using Household Waste20 Munnik Haryanti, Wahyu Saputro and Bekti Yulianti
Energy Potential Estimation System Model To Produce Alternative Energy Briquettes25 Norbertus Tri Suswanto Saptadi, Ansar Suyuti, Amil Ahmad Ilham and Ingrid Nurtanio
Design of Fiber-to-the-Home Network Deployment at the Ministerial Residential of IKN Nusantara32 Jeremy Baskoro, Fasya Tiarani, Naufal Alfarabay, Bintang Giani, Nurmuthia Oktovioletha and Catur Apriono
Dual-Band Microstrip Antenna Array Design for Low Power Energy at Frequencies 900 MHz and 1800 MHz38
Priyo Wibowo, R. Harry Arjadi and Nur Adi Siswandari
Control of DC Motor Speed on Smart Gate System Using Fuzzy Logic Controller43 Wahyudi Wahyudi, Muhammad Rohman and M Arfan
FPGA Implementation of OFDM-based Visible Light Communication System
Techno-Economic Analysis of 5G Implementation at Frequency 2.3 GHz for Bandung City 54 Merlyn Inova Christie Latukolan, Nachwan Mufti Adriansyah and Ahmad Tri Hanuranto
Determine of the Time Constant of Capacitance Applied to Electrical Capacitance Tomography60 Arba'l Yusuf, Wahyu Widada and Warsito Purwo Taruno
Thermal Monitoring System Phase Change Material Batteries Using Fuzzy Logic66 Hartono Hartono and Khen Nuhfus Sanjaya
Dual Axis Solar Tracker With Fuzzy Logic Method74 Yustinus Bagus Arisotya, A. Bayu Primawan and Djoko Untoro Suwarno
Active Front End with simple control for Improved Power Quality79 Asep Andang, Oriza Sativa and Abdul Chobir

based on IoT	
Abdi Pratama Putra, Muhammad Yusro and Aodah Diamah ANALYSIS OF THE INFLUENCE OF SUN INTENSITY ON POWER ON COASTAL AND HIGH LANDS USING SOLAR TRACKER BASED ON ARDUINO	
MICROCONTROLLER	90
Graph-based Process Mining for Measuring Quality of Business Process Model	98
Kelly Rossa Sungkono, Riyanarto Sarno, Fara Dinda Mutia Kinanggit, Irsyadhani Dwi Shubhi and Khofifah Nurlaela	36
Monitoring System Temperature and Humidity of Oyster Mushroom House Based On The Internet Of Things	104
Irma Saraswati, Adhitya Rahma Putra, Masjudin Masjudin and Alimuddin Alimuddin	
Role of Internet of Things in Aviation Industry: Applications, Challenges, and Possible Solutions Md Shaikh Rahman, Selvakumar Manickam and Shafiq Ul Rehman	110
5G Coverage Evaluation: A Systematic Literature Review	116
Implementation of AHRS (Attitude Heading and Reference Systems) With Madgwick Filter as Hexapods Robot Navigation	121
Effect of Visual Augmented Reality in the Transportation Sector I Putu Ronny Eka Wicaksana, Bertrand Bertrand, Jason Christian, Said Achmad and Rhio Sutoyo	130
Performance Evaluation for Infrared Face Recognition using Convolutional Neural Network	135
Muhammad Eka Setio Aji, Annisa Syakhira, Supriyanto Praptodiyono and Rocky Alfanz	
Dynamic Stability Simulation Multimachine Power Generating System	141
Implementation of Feature Selection to Reduce the Number of Features in Determining	
the Initial Centroid of K-Means Algorithm	146
Vincentius Riandaru Prasetyo, Fania Alya Miranti and Susana Limanto	
The Influence of Smartphone Applications on Human Healthcare	152
A Real-time Performance Monitoring of IoT-based on Lithium-Ion Battery Pack	158
Murie Dwiyaniti, Sri Lestari Kusumastuti, Luthfi Rahman Nova Kusuma, Achmad Rais Wiguna, Silawardono Silawardo and Tohazen Tohazen	no
Clustering of Customer Lifetime Value With Length Recency Frequency and Monetary Model Using Fuzzy C-Means Algorithm	162
Low-cost Impedance Measurement System for Determination of Condition and Oil Content in Wood Material	166
Rocky Alfanz, Muhamad Fauzi, Imamul Muttakin, Rian Fahrizal and Yofei Okazaki	470
Role of type-2 fuzzy algorithm to improve response of rectifier in HVDC-model	1/0
Shaded Cell Random Model of Solar Cell Module on Energy Harvesting	176

Author Index
MULTI-ANTENNA COMBINATION VISIBILITY ANALYSIS FOR ROCKET APPLICATION USING SDR271 Sri Kliwati, Romi Wiryadinata, Afrido Prayogi, Rustamaji Rustamaji and Wahyu Widada
A Development of a Low Cost Solar Irradiance Meter Using Mini Solar Cells
A.N. Afandi, Aji Prasetya Wibawa, Yuni Rahmawati, Sunaryono Sunaryono and Makiko Kobayashi
Dynamic Thermal Line Rating Considering Cooling Impact on Conductor's Heating of Transmission Power Loss
Nazmia Kurniawati, Aisyah Novfitri, Rifqi Fuadi Hasani and Arti Suryaning Tyas
Predicting Channel Gain Threshold for V2V Communications with Varying Doppler Shift Using Machine Learning
The Utilization of Content Based Filtering for Spotify Music Recommendation
Comparative Analysis of Radial Basis Method with Backpropagation for Signature Identification244 Siswo Wardoyo, Adi Nugroho and Suhendar Suhendar
Agusutrisno Marlis Nurut, Naoto Yamashita, Kunihiro Kamataki, Kazunori Koga, Naho Itagaki and Masaharu Shiratani
Control of magnetic properties transition of ZnO:Co grown by RF-sputter using post-annealing
Fake News Classifier with Deep Learning
Important Security Factors for Implementing Internet of Things in Smart Home Systems 229 Daniel Widjaja, Derrick Derrick, Muhammad Fathariq Dimas Octaviandra, Said Achmad and Rhio Sutoyo
Arie Vatresia, Ferzha Putra Utama, Aji Novriadi, Hendri Gunawan, Rendra Rais and Yudi Setiawan
Analysing Temporal Hotspot Occurance over Sumatera and Kalimantan223
Mapping Graph-Based Process Model Into Discrete Event Simulation (DES)217 Riza Dwi Andhika, Kelly Rossa Sungkono and Riyanarto Sarno
Alimuddin Alimuddin, Amil Mukrod, Irma Saraswati, Cakra Adipura Wicaksana, Heri Hariyanto and Ria Arafiyah
Study of Electrical Power System onTransmission and Distribution in PT Krakatau Daya Listrik (KDL)
Ibrahim Nawawi, Andriyatna Agung Kurniawan and Deria Pravitasari
ACCELERATION OF ROOFTOP SOLAR POWER PLANT DEVELOPMENT AS A SUPPORT OF THE REDUCTION OF GREENHOUSE EFFECT
Detecting Phishing Websites with Non-Parametric Machine Learning
Bramantyo Regowo, Muhammad Yusro and Jusuf Bintoro
Internet of Things-based PDAM Water Usage and Quality Monitoring System using ESP32189
Modelling Flood Prone Area in North America with Geomorphic Flood Index Method

Author Index

Abiyyu Farras, Brian	152
Achadiyah, Ana Nuril	176
Achmad, Said	130, 152, 229
Adriansyah, Nachwan Mufti	54
Adriman, Ramzi	116
Afandi, A.N	176
Afandi, A.N.	258
Alfanz, Rocky	135, 166
Alfarabay, Naufal	32
Alimuddin, Alimuddin	8, 104, 207
Alindra, Rahmayati	48
Andang, Asep	79
Andhika, Riza Dwi	217
Anthony, Jonas Theon	249
Apriono, Catur	32
Arafiyah, Ria	207
Arfan, M	43
Arisotya, Yustinus Bagus	74
·	38
Arjadi, R. Harry	
Azaria, Burhan Alnovda	90
Baskoro, Jeremy	32
Bertrand, Bertrand	130
Bintoro, Jusuf	189
Chan, Josephine Florencia	197
Chobir, Abdul	79
Christian, Gerard Ezra	249
Christian, Jason	130
emistian, Jasen	150
Darmawan, Isra Nuur	90
Derrick, Derrick	229
Devanda Putra, Bayu	116
Diamah, Aodah	85
Dimas Octaviandra, Muhammad Fathariq	229
Dwiyaniti, Murie	158
Eka Setio Aji, Muhammad	135
Evanlim, Vincent	249
Evaluiti, vincent	243
Fahri Ramadhani, Putra	266
Fahrizal, Rian	166
Fatkhurrokhman, Mohammad	8
Fauzi, Muhamad	166
Febriani, Rinanda	8
Ferdinand, Ryne	14
Fujita, Goro	176
Gania Mutyara Azella	152
Gania Mutyara, Azella	32
Giani, Bintang	
Ginarsa, I Made	170
Girsang, Abba Suganda	236
Gumilar, Langlang	176

Gunawan, Hendri	223
Hanuranto, Ahmad Tri Hariyanto, Heri Hartono, Hartono Haryanti, Munnik Haryono, Kevin Bennett Hasani, Rifqi Fuadi Heryanto Eryk, Irwan Hidayat, Moh. Noor Husnah, Mirdatul	54 207 66 20 14 253 266 266 162
Ilham, Amil Ahmad Irwansyah, Edy Itagaki, Naho	25 184 240
Kamataki, Kunihiro Kartikasari, Fitri Dwi Khausan Al Muis, Sobri Kholistianingsih, Kholistianingsih Kinanggit, Fara Dinda Mutia Kliwati, Sri Kobayashi, Makiko Koga, Kazunori Kurniawan, Andriyatna Agung Kurniawati, Nazmia Kusworo, Zulfikar Aji	240 1 141 90 98 271 258 240 202 253 141
Latukolan, Merlyn Inova Christie Lestari Kusumastuti, Sri Limanto, Susana Lucky, Henry	54 158 1, 146 14, 197, 249
Lestari Kusumastuti, Sri Limanto, Susana	158 1, 146
Lestari Kusumastuti, Sri Limanto, Susana Lucky, Henry Manickam, Selvakumar Masjudin, Masjudin Melinda, Melinda Miranti, Fania Alya Mukrod, Amil Muljono, Agung Budi Munadi, Rizal Munarto, Ri	158 1, 146 14, 197, 249 110 104 116 146 207 170 116 121

Olderialethe Normanthie	22
Oktovioletha, Nurmuthia	32
Permata Sari, Liauren	152
Praptodiyono, Supriyanto	135
Prasetyo, Vincentius Riandaru	146
Pratama Putra, Abdi	85 8
Pratama, Hafiyyan Putra Pravitasari, Deria	141, 202
Prayogi, Afrido	271
Priambodo, Purnomo Sidi	48
Primawan, A. Bayu	74
Purnomo, Hizkia Christian	14
Purwo Taruno, Warsito	60
Puspita, Nandya Cahya Putra Utama, Ferzha	1 223
Putra, Adhitya Rahma	104
Rahman, Md Shaikh	110
Rahmawati, Yuni Rais Wiguna, Achmad	258 158
Rais, Rendra	223
Ramli, Kalamullah	48
Regowo, Bramantyo	189
Rehman, Shafiq Ul	110
Rohman, Muhammad	43
Rojali, Rojali Ronilaya, Ferdian	184 266
Ronny Eka Wicaksana, I Putu	130
Rustamaji, Rustamaji	271
Sanjaya, Khen Nuhfus	66
Saptadi, Norbertus Tri Suswanto	25
Saputro, Wahyu	20
Saraswati, Irma	104, 207
Sarno, Riyanarto	98, 217
Sativa, Oriza	79 170
Seniari, Ni Made Setiawan, Yudi	223
Shiratani, Masaharu	240
Shubhi, Irsyadhani Dwi	98
Silawardono, Silawardono	158
Siswandari, Nur Adi	38
Suhartono, Derwin Suhendar, Suhendar	14, 197, 249 244
Sujito, Sujito	176
Sunaryono, Sunaryono	258
Sungkono, Kelly Rossa	98, 217
Sutoyo, Rhio	130, 152, 229
Suwarno, Djoko Untoro	74
Suyuti, Ansar Syahrial, Syahrial	25 116
Syakhira, Annisa	135
-,,,	133
Tiarani, Fasya	32
Tohazen, Tohazen	158
Tryawan, Rifaldi Tyas, Arti Suryaning	8 253
ryas, rati saryaning	233

Utama, Donny Prakarsa	121
Vananda, Valencia Vatresia, Arie Vicky Putra Pratama, Stevanus Septian	197 223 266
Wahyudi, Wahyudi	43
Wardoyo, Siswo Wibawa, Aji Prasetya	244 258
Wibowo, Priyo	38
Wibowo, Sapto	266
Wicaksana, Cakra Adipura	8, 207
Widada, Wahyu	60, 271
Widjaja, Daniel	229
Wiryadinata, Romi	121, 271
Yamashita, Naoto	240
Yolina, Hanni	184
Yulianti, Bekti	20
Yulianto, Priyono Yuliar Arif, Teuku	90 116
Yunus, Mahmudin	176
Yusro, Muhammad	85, 189
Yusuf, Arba'l	60
i usui, Ai ba i	00
Zebua, Osea	170

Integrated Performance Appraisal System with Management by Objective Method

Fitri dwi Kartikasari

Dept. of Informatics Engineering

University of Surabaya

Surabaya, Indonesia

fitri dk@staff.ubaya.ac.id

Susana Limanto
Dept. of Informatics Engineering
University of Surabaya
Surabaya, Indonesia
susana@staff.ubaya.ac.id

Nandya cahya Puspita
Dept. of Informatics Engineering
University of Surabaya
Surabaya, Indonesia
s6134107@student.ubaya.ac.id

Abstract— Higher education institutions generally have two types of employees, Lecturers and Non-Lecturers, both of which are managed by the Directorate of Human Resources (HR). One of the tasks of the HR Directorate is to provide Non-Lecturer employee performance appraisal services. Scoring systems that are often used are generally behavior-based (Behaviorally Anchored Rating Scales techniques). This technique assesses all employees with the same assessment indicators. This raises the problem of not being able to show actual work results because it only evaluates behavior without assessing the successful completion of the employee's main work or tasks. Based on these problems a performance appraisal-based performance target system (Management By Objective) was developed. This system can provide assessment results that reflect the actual performance of employees and can set assessment indicators based on the duties of each employee. Evaluations show that the system is function properly and successfully helps the implementation of performance appraisal system development because it is able to facilitate the evaluation of subordinates' performance, evaluate their own performance, be able to help provide assessment results that reflect actual employee performance, and be able to help regulate assessment indicators based on the duties and responsibilities of each employee.

Keywords— performance appraisal system, non – lecturer employee, management by objective

I. INTRODUCTION

In an organization it is very important to be able to maintain existence and be able to continue to develop its potential. This is inseparable from the role of competent human resources in their fields. Based on this, a performance appraisal system is very necessary to support the improvement of the quality of human resources [1].

Various employee performance appraisal techniques have been developed and applied in various institutions. Generally, every institution will avoid the element of subjectivity in evaluating the performance of its employees. For example, an institution engaged in finance uses employee performance appraisal techniques by incorporating different assessment components for each group, judged to be less effective because of the high subjectivity element [2]. The Industrial Engineering Department of a tire factory located in Tangerang applies the Balanced Score Card method to establish clear Key Performance Indicators items for each of its employees. The method is expected to eliminate the subjectivity of the assessment that comes from the person who leads the department [3].

A higher education institution has two types of employees, lecturers and non-lecturers. The performance evaluation of lecturers has been regulated in various laws and regulations regarding higher education in Indonesia [4].

While the performance evaluation of non-lecturer employees for private universities is carried out with the regulations of each institution. This research was applied at a private university that previously assessed the performance of nonlecturer employees based on behavior using the Behaviourally Anchored Rating Scales (BARS) technique. The BARS technique evaluates employees based on their behavior with the same indicators for all employees. This creates a problem because it cannot show the actual work. This is because if an employee is assessed to be well behaved then the result of the employee's performance appraisal is good and if the employee is assessed to have bad behavior then the result of his performance appraisal is bad. Even though employees with bad behavior do not necessarily have bad work results and vice versa. To overcome these problems, a new integrated assessment system was developed by adopting Management by Objective (MBO) techniques based on work targets [5]. This method has been widely used in various fields and has been assessed several times [6-8].

MBO is a technique of performance appraisal based on the success of each member of the team in completing their work targets [5, 9-11]. So, MBO provides a unique assessment for each employee. While BARS technique focuses on evaluating employee's behavior with the same indicators for all employees. Reference [12] states that the MBO technique is an effective tool to improve employee performance in order to encourage organizational productivity. Meanwhile, [13] states that MBO improves employee performance so that organizations can compete in the world of globalization. However, many researchers try to combine both techniques to get the most effective performance appraisal [9-11].

The performance appraisal system that was developed can manage the assessment indicators based on the works and responsibilities of each employee in each unit. Unit leaders will set a rating scale not only based on employee work behavior but also the standard of achievement that must be achieved by each employee. This standard will be a reference for leaders to be able to carry out an evaluation. The system is built integrated with various existing systems so as to facilitate the unification of data.

II. METHODS

This research can be classified as applied research because the developed system can be used as a practical solution to a problem. The object of this research is a private university in East Java. The study was developed using the prototyping methodology as seen in Fig 1. It starts with a system analysis to understand the current employee performance appraisal system with various existing problems and defines the system requirements. System analysis is carried out through semi-structured interviews with related

parties, evaluating the current employee performance appraisal system and looking at related documents. Interviews were conducted with the Director of Human Resources (HR), the Manager of Empowerment of Human Resources (PSDM), and the Manager of Management Information Systems (MIS).

The next step is to create a system design based on a predefined needs analysis. The design created includes data design, process design, and user interface design. Data design is based on the analysis of the relationship between data so that it can be well integrated in the system. The design process shows the workflow of the new employee performance appraisal system and the roles of the parties involved. While the user interface design shows the appearance of the system when used by the user.

The design of the data is confirmed with the SIM director to ensure that employee performance appraisal data can be integrated with other data. While the user interface design will be used to develop a prototype system. The design process and prototype were discussed with the HR director to ensure that changes were made to the new system and to test the ease of use. The results of discussions with the HR director are used to improve the existing design. The approved design will be implemented in the form of a webbased program. The program is designed web-based so it can be accessed directly by many users from various departments in the institution. Data implementation is done using Postgre SQL software. While the program implementation is done programming language: Hypertext using the PHP Preprocessor based on the PHP framework template developed by the SIM Directorate.

As a final step, a program testing was conducted which included the verification and validation stages. Verification is carried out to ensure that the program runs according to the design previously made and validation is carried out to ensure that the program output is in line with user requirements. Verification is done using the black box testing method, by testing various input scenarios then evaluating the results. If the results are not suitable, repairs and re-verification will be carried out. Validation is done by demonstrating the program, simulating by the user, and evaluating the program by the user. Evaluation is done by filling out the questionnaire and giving a brief explanation related to the answers to the questionnaire. The simulation was conducted by three HR employees as administrators who were responsible for carrying out employee performance appraisal at the university which was the object of research, 9 employees who had positions as unit leaders who gave assignments and assessed the performance of subordinates, and 19 employees as subordinates to be assessed as well as assessing themself and evaluating coworkers. Respondents who act as administrators are selected from the HR directorate given their duties as the ones responsible for carrying out employee performance appraisals. While other respondents were selected using the cluster sampling method combined with the simple random sampling method. The existing cluster is divided into 2, namely academic support units and academic units. Respondents from each cluster were taken randomly using the simple random sampling method. The results of the questionnaire and interview will be used to improve the program.

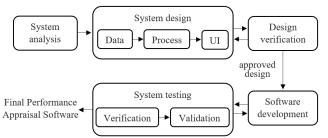


Fig. 1. Research methodology

III. RESULT AND DISCUSSIONS

Employee performance appraisal techniques currently used are Behaviourally Anchored Ratting Scales (BARS). The assessment carried out only assesses the achievement of agreed targets and applies equally to all employees. The target set is a general target, employee behavior in serving customers is not the result of performance. So the results of the assessment do not indicate the ability of employees to complete their work in accordance with their respective duties and responsibilities. To overcome the existing problems, this research develops an employee performance appraisal software based on the work targets that have been set for each employee. The performance appraisal technique used is Management by Objective.

The system that is built begins with an analysis of the old system to find out the current conditions and the problems they are experiencing. Based on the results of the analysis, it was found that the obstacle that had occurred with the existing performance appraisal system was that the results of the assessment could not show the actual work results because what was assessed was only behavior without assessing the work so that it did not reflect the ability of employees to carry out their work in accordance with their duties and responsibilities. each employee. Based on the results of this analysis, a system design is made which includes the design of data, processes, and user interfaces.

Data is an important part of a system. In the system built, the data is described in the form of an Entity Relationship Diagram (ERD) [14]. This ERD will describe the relationship between the entities involved in the Integrated Performance Appraisal System with the Management by Objective Method. Part of ERD can be seen in Fig. 2.

Broadly speaking, the design of the workflow process of the performance appraisal system developed in this study is divided into five stages of assessment. The process design of each stage of the employee performance appraisal system is described using the Business Process Model and Notation (BPMN) [15]. The first stage, which is the preparation phase involves the Directorate of Human Resources and unit leaders to set work targets, periods, coordinator of work units, types of appraisers, indicators and weighting of assessments for each type of appraiser, as well as limits on Cumulative Increase in Position. The work target for each employee is determined by the respective unit leader for each assessment period. While the evaluation period, type of appraiser and access rights respectively, coordinator of the work unit, indicators and weight of the appraisal for each type of appraiser, as well as the cumulative number limit for obtaining a promotion (AKKJ) are determined by the Directorate of Human Resources. BPMN from the system setting stage can be seen in Fig. 3.

The second stage begins after the selected unit coordinator receives notification of the assessment schedule. At this stage a prospective employee appraiser is determined for each type of appraiser. BPMN from the second stage, namely the determination of prospective assessors can be seen in Fig. 4. Next, the third stage is the assessment stage. At this stage the leaders and employees will receive notifications to make an assessment. Employees will receive notifications to assess their own performance as well as to assess colleagues that have been determined by the unit coordinator. While the unit leader assesses all employees in the unit they lead. BPMN from the third stage, namely the assessment can be seen in Fig. 5. The fourth stage is the stage of calculating the value of performance and forming a report. This stage is carried out entirely by the system by taking assessment data that has been done by all types of assessors. The result of the forth stage is the report on the performance appraisal (report cards). The last stage is validation of report cards by the HR Directorate.

BPMN from the validation stage can be seen in Fig. 6. Validated report cards can then be seen by interested parties. The flow of the employee performance appraisal process can be seen in Fig. 7.

The User interface design is implemented in the form of a web-based Performance Appraisal software. This software provides various features which are divided into five major parts, i.e. data management, assessment processes, monitoring, validation, and reports. The monitoring feature is used to check the assessment process. The validation feature is used to check the completeness of the assessment results. If all assessment results are complete, validation can be carried out on the results of the assessment and close the assessment process. Employee Performance Assessment users are divided into five types, i.e. administrators, coordinators, appraisal employees, unit leaders, and assessed employees. Each user has different access rights to the features in the system, for example features that can be accessed by the administrator can be seen in Fig. 8. Fig. 8 shows that the administrator has the right to manage data through the Settings menu, monitor the course of the assessment process through the Monitoring menu, and at the end the assessment period validates the assessment results through the Validation menu. Administrators can also view reports in the form of performance report cards from each employee through the Report Card menu.

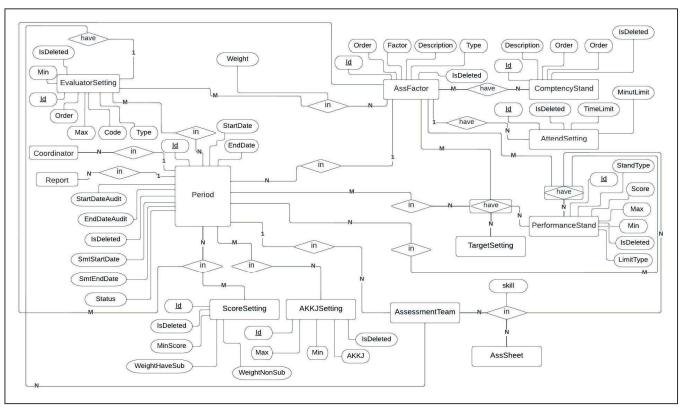


Fig. 2. ERD of Integrated Performance Appraisal System

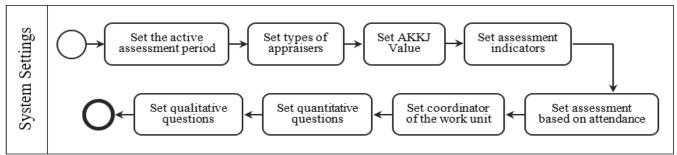


Fig. 3. BPMN of the first stage (system setting)

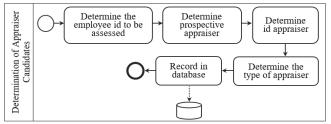


Fig. 4. BPMN of the second stage (determination of appraiser candidates)

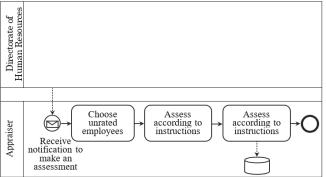


Fig. 5. BPMN of the third stage (assessment stage)

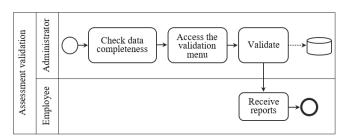


Fig. 6. BPMN of the fifth stage (validation stage)

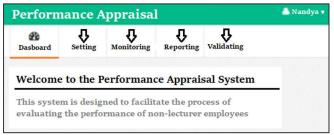


Fig. 8. Administrator main menu

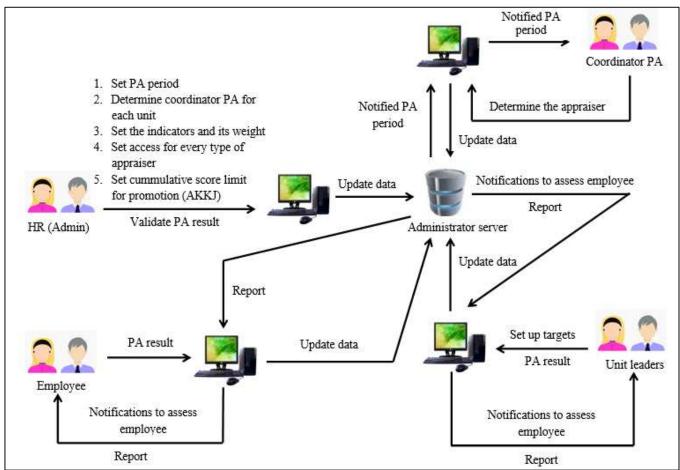


Fig. 7. Appraisal system process

The appraiser can provide the results of the appraisal on a predetermined schedule period in accordance with the given role (as oneself, supervisor, coworkers, subordinates, or customers). Examples of assessment pages can be seen in Fig. 9. Fig. 9 shows that there are two types of assessment factors,

i.e. quantitative and qualitative factors. Qualitative factor assessments are displayed in the form of multiple choices in which the assessor can choose more than one answer choice. Each assessment factor can be divided into several sub-assessment factors. The factors assessed are adjusted to the work targets that have been determined by the unit leader.

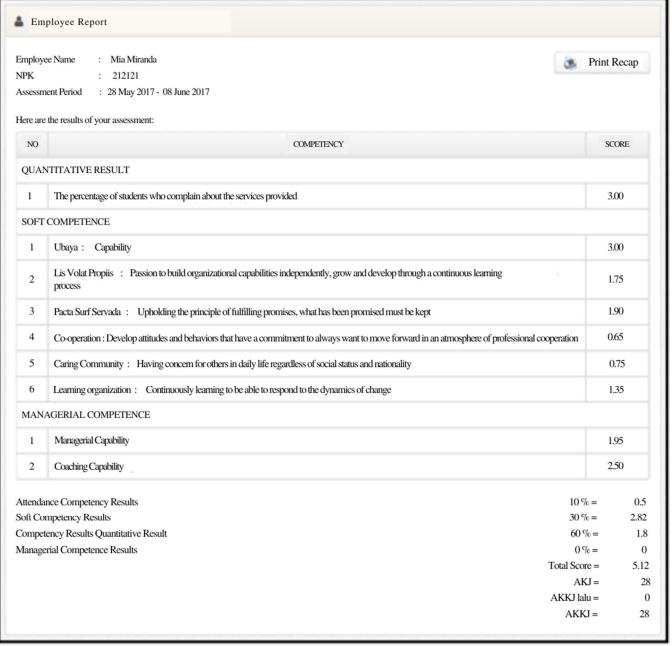


Fig. 9. Performance appraisal form

After the assessment period ends and the administrator has validated, the system will automatically carry out a calculation process to produce report cards from each employee. An example of an employee's report card can be seen in Fig. 10. Employee performance report cards contain detailed assessment results and a summary of final grades. The assessment results are calculated from all types of assessors and the weights of each assessment factor. If needed, report cards can be printed.

Testing was carried out to ensure that the program created was suitable to use. There were two kinds of tests carried out, namely verification and validation. Verification was carried out in the form of functional testing using the black box testing method. After several tests and revisions have been made, the program can be ascertained that it was running according to the design made.

Validation began with demonstrating the available features and how to use the program. After that, it was

continued by asking the user to do a simulation accompanied by the researcher. Finally, the users were asked to provide feedback on the program that was created as a solution to the problems that were previously encountered. The results of the evaluation by administrators can be seen in Table 1, the results of the evaluation by unit leaders can be seen in Table 2, and the results of the evaluation by subordinates can be seen in Table 3.

Based on the results of the questionnaire for administrators, it can be seen that 100% of respondents agree that the developed system helped the actual employee performance appraisal process with easy settings and operations and also provided reports as needed. On the other hand, there were some suggestions from respondent, namely adding an import feature (from Excel file) to make the process of adding large amounts of question data easier, feature to conduct assessment after deadline, and assessment complaint feature.

	Job Ap	ppraisal Sheet	
	(This assessmen	it is CONFIDENTIAL)	
	Assessment Period : 28 May 2017-08 June 2017 Assessment Date : 16 June 2017	Assessor Name/(NPK/ID): Yusuf Setiawan / 444444 Assessor Status: Leader Assessee: Mia Miranda / 212121	
	Rate according to	the question asked	X
NO	ASSESSMENT	FACTOR	SCORE
QUAN	VTITATIVE RESULT		
1	The percentage of students who complain about the services provided		10
		employee you assessed. If none match, leave it blank, an one appropriate statement	×
SOFT	COMPETENCE		
1	: Ability		
8	Able to control oneself in the sense of not complaining when facing pressu	are	
8	Able to work diligently and thoroughly		
8	Able to be part of the solution to any problems that arise in the work environment.	onment	
	Able to do more than targeted		

Fig. 10. Report card

TABLE I. The results of the evaluation by administrators

Questions	1	2	3	4	5
The developed system helps provide assessment results that reflect the actual performance of employees	67 %	33 %			
The developed system helps to set assessment indicators based on the jobs and responsibilities of each employee	100 %				
The developed system makes it easier to share access rights	67 %	33 %			
The software features provided for administrators are easy to understand		100 %			
It is easy to operate the Performance Appraisal software	67 %	33 %			
The reports provided are as needed	33 %	67 %			

1 = strongly agree, 5 = strongly disagree

Table II shows that 100% of respondents agree that the developed system facilitates the process of evaluating the performance of subordinates and the reports provided are in accordance with the needs. All respondents agreed that the features provided were easy to understand, but only 78% agree that the Performance Appraisal software was easy to operate. Confirmation results with 22% of respondents who were doubtful about the ease of using PA software,

respondents stated that the assessment by choosing the appropriate statement was quite difficult to do when compared to giving a rating like the previous system. This was because the time required to read each statement was quite a lot. But on the other hand, respondents stated that the assessment by choosing the appropriate statement was able to provide more accurate assessment results.

TABLE II. The results of the evaluation by unit leaders $\,$

Questions	1	2	3	4	5
The system developed makes it easier to evaluate the performance of subordinates	56 %	44 %			
The software features provided for unit leaders are easy to understand	44 %	56 %			
It is easy to operate the Performance Appraisal software	56 %	22 %	22 %		
The reports provided are as needed	33 %	67 %			

1 = strongly agree, 5 = strongly disagree

At least 84% of respondents as subordinates stated that the developed system helped employees performance appraisal process with easy operations and provided reports as needed. The reason for 15.8% of respondents who were doubtful about the ease of using PA software was the same as that of 22% of respondents as unit leaders who were doubtful about the same question.

TABLE III. The results of the evaluation by subordinates

Questions	1	2	3	4	5
The system developed makes it easier to evaluate your own performance	21%	79%			
The software features provided for employee as subordinates are easy to understand	42%	58%			
It is easy to operate the Performance Appraisal software	31.6 %	52.6 %	15.8 %		
The reports provided are as needed	5%	95%			

1 = strongly agree, 5 = strongly disagree

Based on the test results, it can be concluded that the employee performance appraisal system developed is feasible to use. In the future, the system will be developed by adding features suggested by respondents.

IV. CONCLUSION

After being tested, it is proven that the system developed can provide assessment results that reflect the actual performance of employees by arranging assessment indicators based on the duties and responsibilities of each employee. The system also simplifies the process of evaluating performance for oneself and subordinates. So as a whole the system developed makes it easier to carry out performance appraisals in accordance with the characteristics of the duties of each employee. In the framework of system development, respondents provide suggestions to add complaints to the results of the assessment.

Ease of customizing the program without depending on the programmer is very important. Therefore, a configurable performance appraisal system will be our future research.

REFERENCES

[1] Mangkunegara, A. A. A. P., 2012, Evaluasi Kinerja SDM, Cetakan ke-6, Refika Aditama, Bandung

- [2] Akbar, M. R. dan Muslim, M. A., 2014, Analisis Sistem Penilaian Kinerja Karyawan DAPENBI (Dana Pensiun Bank Indonesia), Skripsi, Fakultas Ilmu Sosial dan Ilmu Politik, Universitas Indonesia, Jakarta.
- [3] M. Rokhim, "Penentuan Key Performance Indicator Dengan Metode Balanced Scorecard," Jurnal Teknik Industri, vol 18 (02), hal 168-175, 2017
- [4] Pemerintah Indonesia, 2012, Undang-Undang Nomor 12 Tahun 2012 tentang Pendidikan Tinggi, Lembaran Negara Republik Indonesia Tahun 2012 Nomor 158, Jakarta.
- [5] Drucker, P. F., 2002, Chapter 8: Management by Objectives and Self-Control, https://softwareresearch.net/fileadmin/src/docs/teaching/SS02/PM/Ch apter8 presentation.pdf, Accessed: August, 2 2017.
- [6] Kaźmierczyk, J. dan Aptacy, M., "The management by objectives in banks: the Polish case," Journal of Entrepreneurship and Sustainability Issues, vol 4(2), hal 146-158, 2016.
- [7] Islami, X., Mulolli, E., dan Mustafa, N., "Using Management by Objectives as a Performance Appraisal Tool for Employee Satisfaction," Future Business Journal, vol 4(1), hal 94-108, 2018.
- [8] Antoni, C. H., "Management by objectives An effective tool fro teamwork," The International Journal of Human Resource Management, vol 16(2), hal 174-184, 2005.
- [9] A. D. Purnomo and M. I. Irawan, "Android Based Employee Performance Assessment," Advances in Economics, Business and Management Research, pp. 47-55, 2021.
- [10] W. Purnamasari and I. W. Ardhiyani, "Peningkatan Persepsi Karyawan terhadap Objektivitas Penilaian Kinerja Menggunakan Metode Bars dan Mbo," AMJ, vol. 5, no. 1, pp. 21-28, 2021.
- [11] A. L. Harahap and S. Perdana, "Analisis penilaian Kinerja Karyawan Menggunakan metode Behaviorally Anchore Rating Scale BARS dan Management By Objectives MBO Di CV Brilliant," Ikraith-Humaniora, pp. 18-26, 2021.
- [12] I. Nwafor-Orizu, O. M. Chinyere, and E. K. Tochukwu, "Management by objective as an effective took for enhancing organizational productivity," *Int. J. Soc. Sci. Manag. Rev.*, vol. 2, no. June, pp. 37–46, 2019.
- [13] W. Ofojebe and E. I. Olibie, "Management by Objectives (MBO) Imperatives for Transforming Higher Education for a Globalised World.," J. Int. Educ. Leadersh., vol. 4, no. 2, 2014.
- [14] Dybka, P., March, 31 2016, Desain Fundamentals: Crow's Foot Notation, https://www.vertabelo.com/blog/crow-s-foot-notation/, Accessed: Juni, 7 2021.
- [15] Object Management Group, Business Process Model and Notation, https://www.bpmn.org/, Accessed: Juni, 7 2021.