IEEE Acces

¢ Rapid Review Joumnal

Received 12 August 2022, accepted 24 August 2022, date of publication 12 September 2022, date of current version 20 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3203973

=M RESEARCH ARTICLE

Parkinson’s Disease Detection Using Smartphone
Recorded Phonemes in Real World Conditions

MOHAMMOD ABDUL MOTIN"“1-2, (Senior Member, IEEE),
NEMUEL DANIEL PAH“23, (Member, IEEE), SANJAY RAGHAV?,
AND DINESH KANT KUMAR"“2, (Senior Member, IEEE)

! Department of Electrical and Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
2School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
3Electrical Engineering Department, Universitas Surabaya, Surabaya 60293, Indonesia

Corresponding author: Dinesh Kant Kumar (dinesh.kumar@rmit.edu.au)
This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was

granted by the Ethics Committee of Monash Health, Melbourne, Australia, under Application No. LNR/16/MonH/319, and the RMIT
University Human Research Ethics Committee, Melbourne, Australia, under Application No. BSEHAPP22-15KUMAR.

ABSTRACT Parkinson’s disease (PD) is a multi-symptom neurodegenerative disease. There are no
biomarkers; the diagnosis and monitoring of the disease progression require clinical and functional symptom
observation. Voice impairment is an early symptom of PD, and computerized analysis of voice has been
proposed for early detection and monitoring of the disease. However, there is poor reproducibility of many
studies, which is attributed to the experimental data having been collected under controlled conditions.
To overcome the limitations of earlier works, this study has investigated three sustained phonemes: /a/,
/o/, and /m/, which were recorded using an iOS-based smartphone from 72 participants (36 people with
PD and 36 healthy) in a typical clinical setting. A number of signal features were obtained, statistically
investigated, and ranked to identify the suitable feature sets. These were classified using machine learning
models. The results show that a combination of phonemes /a/4/o/+/m/ was most suited to differentiate the
voice of PD people from healthy control participants, with an average accuracy, sensitivity, and specificity
of 100%, 100%, 100%, respectively, using leave-one-out validation. The findings of this study could assist
in the clinical assessments and remote telehealth monitoring for people with parkinsonian dysarthria using
smartphones.

INDEX TERMS Dysarthria, Parkinson’s disease, smartphone, sustained phonemes, voice impairment.

I. INTRODUCTION

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder [1], which is expected to increase
with an ageing population. There are no biomarkers to diag-
nose the disease, which requires the observation of the com-
plex set of symptoms of the patients. Acoustic speech abnor-
malities have been reported even in early-stage PD patients
and even when there is no perceptible dysarthria [2]. Sev-
eral investigators have found impaired speech parameters
in early-stage PD using objective acoustic measures [3],
[4]. Several studies have investigated the difference between
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the voice of PD and healthy control (HC) using different
approaches [4], [5], [6], [7], [8], [9], [10], [11], [12].
Human speech requires fine-motor control, cognitive abil-
ities, auditory feedback, and muscle strength. Parkinsonian
dysarthria can be characterized by reduced vocal tract loud-
ness, reduced speech prosody, imprecise articulation, signif-
icantly narrower pitch range, longer pauses, vocal tremor,
breathy vocal quality, harsh voice quality, and disfluency
[4]. The differences in the voice parameters of sustained
phonemes have been examined for detecting and monitor-
ing PD [4], [13], [14]. A number of works have consid-
ered the signal features previously used for speech stud-
ies, such as speaker recognition [15], [16]. The investi-
gation of sustained phoneme and text-dependent speech
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modalities for PD screening is reported in [13]. However,
such analysis has confounding factors such as language
skills, vision and hearing [17]. Tsanas et al. [18] have
extended this to associate these with the motor disability score
of PD patients.

The use of non-linear and hybrid features such as the
fractal dimension (FD), entropy [19], deep multivariate fea-
tures [20], and linear predictive models [21], [22] has been
proposed. Godino-Llorente ef al. [12] proposed an articula-
tory biomarker based on the kinetic envelope trace of voice
that had an accuracy of 85%. In [6], 132 features were
extracted from phonemes recorded in a sound-treated booth
with a head-mounted microphone to train a support vector
machine (SVM) and random forest classifier which achieved
an accuracy of 97.7% and 90.2%, respectively to identify PD
from HC.

Signal features have often been selected based on the
understanding of the disease [23], [24]. The difference
between the voice of healthy people and those with PD has
been observed in their pitch frequency, jitter, shimmer, and
harmonics to noise ratio [25]. The pitch frequency or the
fundamental frequency of the vocal cords, fy, is the number
of cycles of the glottal vibration. Jitter, the perturbation of the
glottal vibration period, is influenced by the motor control,
rigidity, and tremor of the larynx. Shimmer, the amplitude
perturbation, is related to the glottal resistance and increases
with a lack of fine muscle control. Harmonics to noise ratio
(HNR) or noise to harmonic ratio (NHR) indicates the relative
harmonic strength are the ratios between the periodic (voiced)
and non-periodic (noise) components of the speech. These
reduce with diminished glottal vibration and low HNR is an
indicator of dysarthria. However, some of these parameters
may also be affected by other factors such as age, gender, and
ethnicity.

The above studies have shown that there are several
signal features that show significant differences between
the voice of PD and HC. However, most studies have
not considered real-world conditions where there is back-
ground noise, and there are differences between record-
ing devices and conditions [26], [27], [28]. There are only
a few studies that used data recorded in real-life clinical
setup [19], [29], [30]. Therefore, further work is required
to validate the use of this for real-life scenarios, especially
for remote monitoring of the patients and other telehealth
applications.

The aim of this study was to identify the most suitable
signal classification method that can differentiate between
PD and HC when the recordings are made in real-world
conditions. We investigated the phonatory parameters of three
sustained phonemes and compared people with PD with HC.
The data were recorded in a typical clinical setting to check
for its real-world suitability using smartphones [31], [32].
Besides the statistical analysis, the SVM classifier was used
to classify the voice in two classes: PD and HC. The proposed
model provides the following advantages over the existing
alternatives:
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FIGURE 1. The block diagram of identifying PD from HC using sustained
phonemes. The model is trained and tested using 72 PD and HC
participants.

1. Data were recorded in a normal clinical setting and with
background noise conditions.

2. The recordings were made using commercially available
smartphone with default settings.

3. Only three phonemes were recorded and it was not depen-
dent on language skills.

4. The performance was perfect, with 100% sensitiv-
ity and specificity, outperforming the state-of-the-art
methods.

Il. MATETRIALS AND METHODS

A. PARTICIPANTS

Seventy-two age-matched volunteers comprising 36 people
with PD and 36 healthy age-matched participants as the HC
group participated in this study. The data can be found in
our previously reported work [30]. All the people with PD
had been diagnosed with PD within the last ten years based
on procedures complying with the Queen Square Brain Bank
criteria for idiopathic PD [33]. The presence of any advanced
PD clinical symptoms such as visual hallucinations, frequent
falling, cognitive disability, or need for institutional care was
an exclusion criterion [34]. People with PD were recruited
from the movement disorder clinic at Monash medical cen-
ter and Dandenong neurological clinic while the HC group
participants were recruited from several retirement centers.
Table 1 presents participants’ demographics, cognitive stage,
and health history. The UPDRS-III scores [35] of all the par-
ticipants show a clear difference between the groups, while
the MoCA score confirms that both PD and HC did not have
cognitive impairment.

The study protocol was approved by the ethics
committee of Monash Health, Melbourne, Australia
(LNR/16/MonH/319) and RMIT University Human Research
Ethics Committee, Melbourne, Australia (BSEHAPP22-
15SKUMAR). Before the experiments, written consent was
obtained from all the participants.

B. METHODS

Figure 1 illustrates the block diagram of the proposed method
of classifying PD from HC. As shown in Figure 1, three
phonemes were recorded from PD and HC participants using
a smartphone. Each phoneme was segmented before extract-
ing features from it. Machine learning based classification
was applied to identify PD from HC. The detail of each
section is described below:
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TABLE 1. Participants’ demographics and clinical characteristics.

Demographics HC PD
Number of subjects 36 36
Age 65.45+7.35 68.75 + 8.60
Duration of disease (years) N/A 6.40 +2.75
MDS-UPDRS-III score N/A 16.26 +17.28
MoCA 28.47 £ 1.59 25.57+4.16
Caption: PD=Parkinson’s disease, HC=Healthy control, MDS-

UPDRS=Movement disorder society-unified Parkinson’s disease Rating
scale, MoCA=Montreal cognitive assessment, N/A= Not applicable.

TABLE 2. Duration of the recordings.

Phoneme . HC . PD
min — max (mean =+ std) min — max (mean +std)
/a/ 5.1-19.1(11.3£2.7) 5.3-14.4(9.8+2.5)
/o/ 6.7-23.3(12.243.6) 52-16.8(11.34£3.1)
/m/ 5.7-16.5 (11.7£2.9) 5.6—153(10.2+2.4)

1) VOICE RECORDING
Three sustained phonemes /a/, /o/, and /m/ were recorded
from each participant. The phonemes were selected to exam-
ine a range of voice production models [36]. The vowel /a/,
as in ‘“car”, is an open-back or low vowel, produced while
the jaw is wide open, with the tongue that is inactive and
low in the mouth. In this, the vibration of the vocal folds
dominates the sound of the vowel. The vowel /o/, as in
“oh”, is a closed-mid-back vowel. The back of the tongue
is positioned mid-high towards the palate, and the lips are
rounded. The phoneme /m/ is a nasal phoneme produced by
the vibration of the vocal folds with the air flowing through
the nasal cavity. Although all three phonemes require control
of the respiratory and laryngeal vocal fold muscles, there are
considerable differences in patterns of activation of the rostral
muscles of articulation (of pharynx, tongue, jaw, and lips).
The participants were asked to speak the phonemes for as
long as it was comfortable, in their natural pitch and loudness.
During the recording, they held the smartphone as if they
were talking a phone call. The voice of 72 participants (36
PD and 36 HC) was recorded using an iOS-based smartphone
(iPhone 6S plus) with its built-in microphone and default set-
tings, while the participants were located in typical Australian
clinics or office settings. The recordings were saved into a
single-channel uncompressed WAV format with a sampling
frequency (f;) of 48.1 kHz and a 16-bit resolution. Each file
contained one single sustained phoneme with varied duration,
as shown in Table 2. In between each recording, there was
minimum 15 seconds rest time.

2) AUTOMATED SEGMENTATION AND FEATURE
EXTRACTION

All computations, including pre-processing, automated seg-
mentation, and statistical analysis, were performed using
Matlab2018b (MathWorks) and Python. All the recorded
phonemes were segmented using an envelope detection and
thresholding approach. The signal features were computed
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from each segment. Recordings with the voice of the instruc-
tor were removed. In the original recordings, the signal-to-
noise ratio was 16-24 dB (average 19.26 dB), similar to
typical Australian clinical conditions. The first step for fea-
ture extraction was to locate the time instances (z;) and the
amplitude (A;) of the pulses in the recording representing the
glottal vibration. The instantaneous period of the glottal wave
(T;) was calculated as the difference between subsequent
instances of the pulses, 7; = t;11 — t;.

The first set of features were six jitter parameters: jitter
absolute (jitter abs), jitter relative (jitter rel), period pertur-
bation quotient-3 (jitter ppq3), period perturbation quotient-
5 (jitter ppg5), period perturbation quotient-11 (jitter ppql1),
and frequency modulation (Jitter FM). Here, ppq3, ppg5, and
ppqll1 are the perturbation of the difference between 7; and
the moving average of 7; with a window size of 3, 5, and 11,
respectively. The equations to calculate jitter parameters [32]
are shown in equations 1 to 6:

. 1 N—1
Jitter (abs) = N_1 Zi:l [Tiv1 — Til (1)
1 N-1
1 2ie1 | Tiv1 — Tl
Jitter (rel) = X=1 zi'_l v " ! )
N Zizl T;
N—1 i+1
Jitter (ppq3) e |- (X5 ) 3)
itter pq = 5
]LV Y Ti
N-2 i+2
) N£4 >ims |Ti— (% Z:{;;z Tn)
Jitter (ppqS) = % )
v 2zt Ti
N-2 5
Jitter (ppq11) 2 ’T" _ (11_1 Lis T”> ©)
itter (ppq = v
%v Y Ti
max(T)Y_, — min(T;)Y
Jitter (FM) = (Ti)izy (T ©6)

max(T,-)?]: s min(Ti)f.V: |

Six shimmer parameters that were extracted from the
segments are the absolute shimmer (shimmer abs in dB),
the relative shimmer (shimmer rel), amplitude perturbation
quotient-3 (apg3), amplitude perturbation quotient-5 (apg5),
amplitude perturbation quotient-11(apglI), and amplitude
modulation (Shimmer AM). Here, apq3, apq5, and apqll
represent the perturbation of the difference between A; and
the moving average of A; with a window size of 3, 5, and 11,
respectively. The calculations to compute shimmer parame-
ters are described in equations 7 to 12.

. 1 N-1 Aiyl
Shimmer (abs, dB) = —— i 20 x log | —
N —1 i=1 A,‘
@)
1 N—1
o1 2im1 A1 — Ail
Shimmer (rel) = Nl 2:11_1 i o : 8)
N Zizl A
1 N—1 1 i+l
N—=2 Zi:2 Ai — (§ Z;:i—l An)

Shimmer (apq3) =
N i1 Ai
©)
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Teager-Kaiser energy operator (TKEO) measures the
energy of a time varying signal. It detects the amplitude and
frequency modulation of a signal by estimating the product
of time varying amplitude and frequency. Mean, standard
deviation, and percentile values of TKEO for the contour T
and Ag were computed.

HNR and NHR quantifies noise in the speech signal, which
is due to the incomplete closure of vocal folds. The standard
deviation of pitch was computed from the instantaneous pitch
frequency fo = 1/To. The HNR and NHR were calculated
based on the normalized autocorrelation function of the seg-
ment. Ry [Tp] is the peak at Ry, corresponding to the T of the
recordings, the HNR and NHR were calculated as described
in equations 13 and 14 [37], [38]:

HNR = 10 logM (13)
1 — Ry [To]
NHR = 1 — Ry [To] (14)

Glottal Quotient (GQ) measures the required time to open
or close the glottis. The mean and standard deviation of
the time when vocal folds were apart (glottis is open) or in
collision (glottis is closed) were also computed. The voice
analysis toolbox [7], [8], [39], which used DYPSA [40] algo-
rithm, was used to compute GQ.

Glottal to Noise Excitation ratio (GNE) measures the noise
in the signal and the turbulent noise created due to incomplete
closure of vocal fold could be captured by GNE features [41].
GNE was computed using the following steps proposed by
Michaelis et al. [42].

o Down sampling the phonemes recordings to 10 kHz and
inverse filtering to detect each glottal cycle.

o Computing the Hilbert envelopes to each glottal cycle
with a different frequency.

o Obtaining the maximum value among the cross-
correlation of pair-wise envelopes where the central fre-
quencies of the bands are greater than half the band-
width.

Vocal fold excitation ratio (VFER) is a measure to detect
dysphonia. Proper glottis cycle results in synchronous exci-
tation on different frequency bands; however when this is
impaired, there is turbulence and there is asynchronous and
uncorrelated excitation on a different frequency and thus
reduced VFER.

The above-mentioned features are mainly targeted for char-
acterizing vocal fold dynamics as it is affected in PD patients.
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Since the coordinators of articulator of vocal tract such as
tongue, jaw, lips are also affected by PD [43], we incorporated
those features that best characterize the vocal tract coordina-
tors such as mel-frequency cepstral coefficients (MFCCs).

MFCCs measures the energy of speech signal in each
frequency band (equation 15). Since the coordinators of artic-
ulators of the vocal tract such as the tongue, jaw, lips are also
affected by PD [43], it is hypothesized that MFCC will be
different for PD and HC.

K
MFCC,, = Zk_l Eycos[n(k — 0.5)%] (15)

where n = 0,.....,L. L is the number of MFCC. Ej
is the mean energy of kth frequency band. In addition to
MFCC:s, features from the first- and second- time derivative
of MFCC that are known as delta and delta-delta coefti-
cients respectively were computed which have been used for
voice quality assessment [39], [44]. We computed 22 MFCC
features.

Spectral analysis is used to understand the oscillatory trend
of the signal but does not carry the temporal information.
Wavelet transform (WT) is a technique that is based on the use
of time limited waves, referred to as wavelets, and performs
multi-resolution, time-frequency analysis. In this context,
it converts the single dimension time domain signal to two-
dimensional time-frequency domain without losing the tem-
poral information. The discrete WT (DWT) decomposes the
signal into different frequency bands into approximation and
detail coefficients, with each scale corresponding to scaling
of the frequency by half. In this study, the recordings were
decomposed at level 10 which covers the entire audible range
of the recordings. Daubechies 10 (Db10) mother wavelet
was chosen as the vanishing moment. Energy, entropy, and
TEKO features were computed from each DWT decomposed
approximation and detail coefficients.

C. FEATURE SELECTION

A large number of features increases the risks of overfitting,
can lead to higher error, and increases the computational
complexity [45], [46]. That is why the exclusion of redundant
features is necessary [46]. During feature selection, the first
step was to identify those features that were tested to be
statistically different (p < 0.0001) for the two groups using
the Mann-Whitney U test. Next, feature selection algorithms
were applied to identify the best features. For the removal
of algorithm bias, four different feature selection algorithms
were compared: 1) infinite latent feature selection (ILFS), ii)
least absolute shrinkage and selection operator (LASSO), iii)
Relief-F, and iv) unsupervised discriminative feature selec-
tion (UDFES).

D. MODEL TRAINING AND CLASSIFICATION

Support vector machine (SVM)-based machine learning clas-
sifier was deployed to label the selected features into two
classes: PD and HC. The details of the SVM classifier and
cross-validation are described below.
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FIGURE 2. Performance evaluation of the proposed model. The dataset
consists of 72 PD and HC participants. The model performance is
evaluated using the leave one out cross validation.

1) SUPPORT VECTOR MACHINE

Support vector machine (SVM) is a widely used supervised
machine learning technique for classification. The decision
boundaries or hyperplanes are developed based on the support
vectors during training.

Let, vector x denotes the feature to be classified and its
label is denoted by y where ye(+41, —1). Now, for a given
set of training data, {(x;,y;),i=1,2,....,n}, the separat-
ing hyperplanes can be obtained by maximizing the margin,
which is the minimization of the following function.

1
J(w, B) = §WTW+CZ/3i
With the following constrain function
yiw x +b) > 1 — B; where ; > 0

Here, w is the weight vector, b is a constant, C is a positive
regularization parameter, and f; is the slack variable. Apply-
ing the Lagrange multipliers «;, for vector x, the solution of
the decision function can be expressed as:

W= oy
f@) =) ayix]x+b
For the nonlinear SVM, a nonlinear mapping function ¢(x)

is used to map the input feature into a higher dimensional
feature space, thus making the samples more separable:

)= oK (x.x) +b

where, x; are the support vectors and K (x;, x) is the kernel
function, for the polynomial kernel K (xj, x) = (xj.x + ¢
and radial basis function (RBF) kernel K (xj, x) =
exp (—y ”xj —x||2>. SVM details can be found in [47].

In this study, SVM with linear, polynomial and RBF kernels
were used.
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FIGURE 3. The classification accuracy using Relief-F based feature
selection techniques for phoneme /a/, /m/, /o/, and /a/+/m/+/o/
respectively. These results were computed using leave one subject out
cross validation techniques.

TABLE 3. The performance of the model is assessed on both individual
and combination of phonemes.

Phonemes Acf:z‘)acy Sen(soi/f)i)vity Spe(c‘;)ﬁ)dty FlScore
/a/ 97.22 100 94.44 0.97
/m/ 95.83 94.44 97.22 095
/o/ 98.66 97.22 100 0.98
/a/+/m/ 97.22 100 94.44 0.97
/m/+/o/ 98.66 97.22 100 0.98
/a/+/o/ 100 100 100 1.00
/al+/m/+/o/ 100 100 100 1.00

2) CROSS VALIDATION

We evaluated the model performance using leave one out
cross validation (LOOCYV) techniques [48]. The LOOCV
method uses N-1 subjects for model training, 1 for testing,
and is repeated N times, so that each subject gets a chance
to be tested. The final result is the mean of the individual
evaluations. The detail of the model training and testing
using LOOCYV is illustrated in Figure 2. Accuracy, sensitiv-
ity, specificity, and F1-score were computed as performance
metrics.

Ill. RESULTS

A. STATISTICAL ANALYSIS AND PD CLASSIFICATION
Anderson-Darling test confirmed that the voice parameters of
three different sustained phonemes for two groups were not
normally distributed and thus unsuitable for the parametric
test. So, the group differences and significance of each feature
for PD vs. HC were computed using Mann-Whitney U test
[49]. Features having p-value < 0.0001 were the input to
the Relief-F feature selection algorithms to sort the most
significant features from the pool of feature sets. The model
performance with the variation of the sorted features of each
phoneme using SVM classifier is shown in Fig 3. For all
phonemes, the accuracy of the model increases with the
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FIGURE 4. Confusion matrix for PD vs. HC classification. The confusion
matrix for individual and combination of phonemes are shown in the top
and bottom of the figure respectively.

increasing number of features till 15. The model performance
remained almost unchanged between feature number 15 to
40 and the performance decayed after any inclusion of fea-
ture beyond 40. Since, the non-significant features have a
very low separable capability, the inclusion of large num-
ber of insignificant features may mislead the classifier and
decreases the classification accuracy. As is observed from
Fig. 3, inclusion of features above 40 reduces the model
performance.

The accuracy of the proposed model with top 15 sorted
features extracted from individual phoneme /a/, /m/, and o/
using SVM with RBF kernel is 97.22%, 95.83%, and 98.66%
respectively. Based on the combined features extracted from
two phonemes, PD classification was 97.22%, 98.66%, and
100% for /a/4+/m/, /m/+/o/, and /a/4-/o/, respectively. The
proposed model accuracy became 100% when the features
obtained from the three phonemes /a/+/m/+/o/ were com-
bined. The detailed performance of the proposed model using
the different combinations of phonemes is shown in Table 3.
It is found that features extracted from phoneme /o/ identi-
fied PD from HC with higher accuracy compared to other
phonemes and the inclusion of features from phonemes /a/
and /m/ improved the performance. It showed the highest
performance when features from all three phonemes were
combined to train the model. The confusion matrix is shown
in Fig. 4. The confusion matrix summarises the predicted
and actual classes, providing an accurate assessment of the
performance by providing true positives, true negatives, false
positives, and false negatives.

B. COMPUTING THE EFFECT SIZE AND SPEARMAN
CORRELATION OF EACH SIGNIFICANT FEATURE

The statistically significant features of each phoneme were
sorted and ranked by the ReliefF-based feature selection tech-
nique. The effect size computed by Cohen’s d and the Spear-
man correlation coefficient of each selected phonemes are
shown in Table 4. Based on the Mann-Whitney U test, each
feature was assessed for statistical significance, and the cor-
responding p-value is listed in Table 4. The two-dimensional
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(right).

TABLE 4. Effect size, Spearman correlation and p-value of top five
features from each phoneme /a/, /m/, and /o/ using ReliefF based
feature selection algorithm.

Spearman

Phoneme Feature Effect size Correlation

coefficient
'a-app_TKEO _std_3_coef' -0.79 -0.46
'a-app_det TKEO mean 2 coef -0.71 -0.46
'a-mean_ MFCC_2nd coef' 1.57 0.70
'a-app_det TKEO _mean_3_coef -0.77 -0.47
'a-std MFCC_8th coef' 0.96 0.52
'm-ShimmerPQ]1 1 ClassicalBaken' -1.16 -0.51
'm-std 4thd - d" 0.87 0.47
'm-mean_3rdd - d" -0.74 -0.46
'm-stdCycleOpenGQ' 1.68 0.67
'm-det_entropy log 8 coef -1.05 -0.48
'o-stdHNR' -1.16 -0.51
'0-ShimmerTKEOprc75' 0.872 0.47
‘o-std Sthd-d -0.74 -0.46
'0-ShimmerTKEOprc95' 1.68 0.67
'o-det_entropy_log 4 coef' -1.05 -0.48

# Effect size was computed using Cohen’s d, the p-value of the above-
mentioned features were less than 0.0001.

representation of the top two features of each phoneme is
demonstrated in Fig. 5.

C. ROBUSTNESS OF THE MODEL

A larger sample size is necessary for the training to repre-
sent modelled phenomena. However, with limited labelled
data samples, which is often the case with medical data, the
resultant model needs to be tested for robustness. Hence, the
system performance as a function of the minimum number
of data points (participants) was conducted and is presented
in Fig. 6. The performance was obtained by increasing the
number of participants from 8 to 50 at an increment of 6.
For this purpose, the complete dataset was subdivided into
two groups to construct the training set and they were ran-
domly subdivided to get the training set by stratified random
sampling. This ensured that class balance was maintained
for the training set. Each step was iterated ten times and the
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TABLE 5. The comparison of the proposed model with the existing studies in literature for two class (sleep-wake) classification problem.

Reference Cross validation Modality Dataset Recording Environment Accuracy
B ith - h with h
Little et al. [5] oo.t strap with 50 Sustained vowel 23 PD, 8 Con s‘?‘md treated booth with head mounted 91.4%
replicates microphone
Sustained Sound-treated booth with head ted
Tsanas et al. [6] 10-fold ustaine 33 PD, 10 Con ound-treated booth withi head mounted g7 704
phonemes microphone
Noi trolled dproof booth with
Orozcoet. al. [11] | 10-fold Jal, Iel, fil, fol, /u/ | 50 PD, 50 Con O18¢ controtied Souncproot booth With 1 g1 34,
dynamic omnidirectional microphone
Rekha et al. [19] Leave one out /m/ 18 PD, 22 Con Normal clinical setting 93%
% of total 1 - h with h
Das et al. [26] 35% of total samples Sustained vowel 23 PD. 8§ Con Sgund treated booth with head mounted 92.9%
selected randomly microphone
. Sound-treated booth with head ted
Guo et al. [27] 10-fold Sustained vowel | 23 PD, 8 Con ound-treated booth with head mounted | g3 1o,
microphone
Sound-treated booth with head ted
Psorakis et al. [28] | 10-fold Sustained vowel | 23 PD, 8 Con ound-treated booth with head mounted | g9 5o,
microphone
30% of total 1
Nemuel et al. [29] 70 of total samples /al, lm/, /o/ 22 PD, 22 Con Normal clinical setting 81.3%
selected randomly
Rekha et al. [30] Leave one out /al, lm/, lu/ 24 PD, 22 Con Normal clinical setting 81%
Proposed Leave one out o/ 36 PD, 36 Con Normal clinical setting 98.6%
Proposed Leave one out ;:;:;?1:/3—70 / 36 PD, 36 Con Normal clinical setting 100%
105 — T T T T T T T

-
o
S

-

[

[

\

80r 1

Classification Accuracy (%)

751 1

1 1 1 1 1 1

8 14 20 26 32 38 44 50
Number of Training Subjects

FIGURE 6. Evaluation of model performance with different number of
training subjects. The boxplot represents the distribution of accuracy of
the model for a different number of training subjects varies from 8 to 50.
The box represents the 15t, median, and 3'¢ quartile of the accuracy using
a varying number of subjects from the training pool randomly for ten
iterations. The average accuracy of ten iterations is shown as a circle in
each box.

results were averaged. The average system performance as a
function of the minimum number of data points (participants)
is shown in Fig. 6. The figure shows that accuracy improved
with the increasing number of training subjects and plateaued
with 14 subjects with classification accuracy reaching above
95.00%.

IV. DISCUSSION

People with PD often have dysarthria or speech impairment
which may appear in phonatory, articulatory, prosodic, and
linguistic aspects. The change is complex and character-
ized by reduced loudness, reduced speech prosody, impre-
cise articulation, significantly narrower pitch range, longer
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pauses, vocal tremors, breathy vocal quality, harsh voice
quality, and dysfluency [4]. Speech disorders are related to
several factors such as inability to perform habitual tasks, loss
of fine control, weakness, tremor, and rigidity of the speech
production muscles.

This study has investigated the use of the utterance of
phonemes /a/, /o/, and /m/ for differentiating the voice of
people with PD from HC. The classification results confirm
that identifying the voice of HC from PD improves when the
combination of phonemes /a/4-/m/+/o/ are used. The results
also indicate that among the single phonemes, /o/ is more
effective in differentiating the two groups than phoneme /a/
and /m/. The phoneme /a/ is produced while the tongue is
pressed towards the jaw and the lips are wide open. Similarly,
the production of the phoneme /m/ does not require voice
box muscles because the lips are closed, and the air is passed
through the nasal cavity. On the other hand, the production
of phoneme /o/ requires precise positioning of the tongue
at a mid-height position and the small-rounded position of
the lips [50] than /a/ and /m/. Since the production of the
phoneme /a/ and /m/ does not require the precise control of
the tongue and lips, the tremor or weakness in the tongue or
lips positioning should be more prominent in the production
of /o/ than /a/ and /m/. This supports our finding that PD and
HC are better distinguished with /o/ compared to /a/ and /m/.
However, these are only logical deductions at this stage, and
further research needs to be conducted to confirm these.

It was also found that the MFCC and the features from the
first and second derivatives of MFCC of phonemes /a/, /m/,
and /o/ were significantly different between PD and HC. The
cepstral analysis identifies the changes to the source and vocal
cord factors, and this observation confirms that Parkinsonian
dysarthria is associated with these changes. The average log
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energy of phoneme /a/ was found to be significantly different
which also indicates the reduced source strength of PD.

The significant difference between PD and HC of HNR and
GNER of phoneme /o/ indicates the weakened vocal cords,
due to which the relative voiced noise compared to resonatory
sound is higher in the voice of PD. The classification results
show that the inclusion of these features improves the model
performance. The classification accuracy was 100% when
using these features from the three phonemes, /a/, /m/, and /o/.
Since, PD is a multi-symptom disease with complex display
of the symptoms, and while the analysis of each phoneme
captures some of the symptoms, it is the combination of
all the three that appears to be capturing all the symptoms
of the disease. The study has also investigated the effect of
sampling frequency in differentiating between PD and HC.
For sampling frequencies, fs = 48.1 kHz and 8 kHz, the
model shows exactly similar results. This indicates that the
relevant frequency of interest is less than 4kHz.

Further, this work explored the performance of the four fea-
ture selection algorithms for phoneme-based PD classifica-
tion. Though ReliefF and ILFS slightly performed better than
LASSO and UDFS, similar performance was noticed for the
higher number of features. It was also observed that any top
twenty features selected by any of the four-feature selection
algorithms showed above 95% classification accuracy.

The performance comparison of our approach with the
existing state-of-art techniques in the literature is summarized
in Table 5. As shown in Table, the model performance for
phonemes recorded in noise-free soundproof environment
with a microphone varies from 89.5% to 97.7%. On the other
hand, the model performance varies from 81% to 93.1% for
phonemes recorded in a normal clinical setting. While the
ambient noise resulted in a fall of performance of the models
in literature by 5.6% to 8.4%, our proposed model was less
prone to the ambient noise and capable of identifying PD
from HC with 100% accuracy.

There are four major achievements of this study. Firstly,
it has been found that people with PD and healthy
age-matched have the most significant difference in the pro-
duction of the phoneme /o/ which is differentiable even with
background noise and recorded using handheld smartphone.
The statistical analysis and classification results confirm that
the voice features of phoneme /o/ can discriminate people
with PD from HC participants more accurately than /a/ and
/m / but the combination of phonemes /a/, /m/ and /o/ is
the most accurate. Secondly, it has shown that computerized
assessment of the voice of people with PD is suitable for
real-world, regular clinical settings with background noise
and using low sampling rate smartphone. Thirdly, this model
requires only phonemes and thus, it is language independent.
Finally, the model is trained and tested without favoring
hyperparameters that are tailored to a specific gender, so this
is a gender independent model.

The limitation of this study is that we did not consider
factors such as accents because all participants were of sub-
urban Melbourne only. There is also the need to test the
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individual multiple times to check for the repeatability of the
results and to use multiple devices while this study used one
phone only. Another weakness of this study was that people
with PD were more than two years post-diagnosis and not in
the very early stage of the disease.

V. CONCLUSION

This study has investigated the use of sustained phonemes
for computerized diagnosis of PD based on the utterance of
three phonemes /a/, /o/, and /m/ recorded using a handheld
smartphone in real-world clinical conditions with ambient
noise conditions of about 20 dB. It has been found that there
were number of features with significant differences between
PD and HC. After feature selection from the three phonemes,
/a/4+/m/+/0o/, the classifier differentiated between HC and PD
with 100% accuracy. Two prominent differences between PD
and HC based on the selected features are a decrease in voice
energy and increase in relative voice-noise. The novelty of
this study is the selection of the acoustic features that are
suitable for differentiating between PD and HC while using a
handheld smartphone and is not sensitive to clinical ambient
noise conditions. This study shows the potential of using
phoneme based computerised diagnosis of PD that can be
performed remotely using a smartphone. It has applications
for assisting in the clinic or for telehealth.
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