The Selection of Bacterial Strain and Inoculum Concentration in Microbial Bioassay for the Development of Cefixime Potency Test in Pharmaceutical Preparations

Ridho Islamie*1,2,3, Dian Natasya Raharjo2,3, Nur Agustiningrum4

1Laboratory of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Surabaya Jl. Raya Kalirungkut Surabaya, East Java 60293, Indonesia.
2Department of Clinical and Community Pharmacy, Faculty of Pharmacy, University of Surabaya Jl. Raya Kalirungkut Surabaya, East Java 60293, Indonesia.
3Faculty of Pharmaceutical Sciences, Chulalongkorn University 254 Phayathai Rd. Wang Mai, Pathumwan, Bangkok 10330, Thailand.
4Pharmacy Study Program, Faculty of Pharmacy, University of Surabaya Jl. Raya Kalirungkut Surabaya, East Java 60293, Indonesia.

*Corresponding author email: ridhoislamie@staff.ubaya.ac.id

Received 24-06-2020 Accepted 01-08-2022 Available online 27-08-2022

ABSTRACT

Cefixime is one the antibiotic that use widely in the clinical setting. Microbiological bioassay is an essential step to ensure the efficacy of the antibiotic. Several factors including bacterial strain, inoculum concentration, and solvent, pH, reference concentration, storage time of antibiotic standard influenced the zone inhibition of the bioassay. This study was aimed to optimize two factors from microorganism aspect for the development antibiotic potency test of cefixime in pharmaceutical preparation. Cylinder cup method was used for this microbiological assay. Our results revealed that *Escherichia coli* ATCC 10536 with the concentration of 1.0% was the optimum bacterial strains for cefixime reference standard. In conclusion, the optimizing both factors from the test microorganism could be helpful to develop the appropriate method for microbial bioassay of Cefixime in pharmaceutical preparations.

Keywords: Antibiotic, cefixime, potency test, bacterial, inoculum concentration, *Escherichia coli*.

Introduction

Cefixime, a third generation of cephalosporin antibiotic, is used widely to treat several bacterial infections such as uncomplicated urinary tract infection, bronchitis chronic, and uncomplicated gonorrhea (Brogden at al., 1989). It is synthetic a broad-spectrum antibiotic that active against Gram-negative and Gram-positive bacteria. Cefixime inhibits...
bacterial growth by inhibit cell-wall synthesis (Matsumoto et al., 2001). Cefixime is the antibiotic with molecular formula C_{16}H_{15}N_5O_7S_2 and a molecular weight of 453.3 g/mol (Roche, 1989).

The accurate evaluation of antibiotics’ potency and bioactivity is crucial for ensuring the efficacy and its safety use. A slight variation in the concentration of the active ingredient in antimicrobial preparations may have an effect on their actual activity. Therefore, the measurement of the active pharmaceutical ingredient (API) in antimicrobial preparations is crucial (Hewwit, 2012). It is known that these chemicals at extremely low concentrations harm or partially inhibit pathogens (Denyer, 2008).

Antibiotic potency can be measured using chemical and biological techniques. The microbiological bioassay for determining the potency of Cefixime has not yet been published in any monograph. The biological method is the most practical way to measure antibiotic potency (Cazadey and Salgado, 2011). Determining antibiotic potency is crucial for the quality control and quality assurance of pharmaceutical preparations; therefore, it is required to create practical and cost-effective procedures that may be used in the validation and dosing of pharmaceuticals (Yamamoto and Pinto, 2020). Antibiotics can be evaluated for their active components, biological activity, and stability via microbiological bioassay. Any minor alteration in the antibiotic molecule could change the biological activity. However, the chemical assay such as HPLC cannot directly detect or reflect the bioactivity (Dafale et al., 2015). As a result, microbiological analysis is extremely important for solving issues regarding potential changes in antimicrobial potency and their preparations.

Before developing the validated method of antibiotic potency, several factors are needed to establish, including the test of microorganism and inoculum concentration from the aspect of microorganism, the solvent of antibiotic, the pH of the certain solvent, and the duration of storage time stock solution from the aspect of the antibiotic standard (United State Pharmacopeia, 2010). Those factors must be considered in determining a potential antibiotic preparation using the cylinder cup method due to can affect the inhibition zone produced against the test bacteria. On the other hand, the clarity of zone inhibition will be also affected by those factors, which could affect the measurement of the appropriate zone inhibition. This study is aimed to optimize two factors from microorganism aspect including the proper of bacterial strains and the optimal inoculum concentration.

Research Method

Chemical and Reagents

United States Pharmacopoeia (USP) reference standard of Cefixime was purchased from Sigma Aldrich. Cefixime standard was dissolved in sterile phosphate buffer pH 7.0.
Analytical grade of chemicals and reagents was used in this study.

Preparation of Microbiological Media

Dehydrated media of antibiotic assay medium no. 1 was used as the bioassay medium. Medium were dissolved in the deionized water and pH was adjusted as per manufacturers instruction. Then, medium was sterilized for 15 min at 121°C in the autoclave.

Optimization of Bacterial Strains

Different Gram-positive and negative bacteria were used for the microbiological assay. Several microbial cultures were purchased from American Type Culture Collection (ATCC, USA) including *Escherichia coli* (ATCC-10536), *Staphylococcus aureus* (ATCC-29213), *Pseudomonas aeruginosa* (ATCC-27853) and *Bacillus cereus* (ATCC-11778). In this study, all bacterial strains were tested with cefixime standard solution with five different concentrations with a ratio of 1:1.25 based on the USP recommendation. Then, 5 µg/mL as the median dose or reference concentration “S3”. All plates were incubated at 37°C for 24 hours and applied for further optimization.

Optimization of Inoculum Concentration

The stock of selected microbial strain was sub-cultured on the nutrient agar media. Then, the media was incubated for 24 hr at 37°C for the growth of bacteria. Microorganism on the agar media were washed with 3 mL of sterilized saline solution (0.9%) followed by dilution which showed 25% light transmission at 530 nm. Then, six inoculum concentration were prepared in a volume of 1 mL with concentration of 0.5; 1.0; 1.5; 2.0; 2.5; and 3%, respectively. Furthermore, 1 mL of the prepared inoculum was poured in the petridish with the agar medium using pour plate technique. During the study, new cultures were used for all experiments. In this experiment, 5 µg/mL was selected as the concentration for cefixime standard. All plates were incubated at 37°C for 24 hours.

Results and Discussion

A literature review revealed the use chemical techniques like spectrophotometry for determining the potency of Cefixime in pharmaceutical preparations (Azmi et al., 2013). However, a microbiological assay to determine the potency of Cefixime was not available in any pharmacopoeia. Although chemical method is a rapid technique to assess the potency of an antibiotic, it is incapable of determining bioactivity. However, the microbiological assay measures both the potency and bioactivity of antibiotics. In particular, a bioassay can be performed to determine the effective dose against bacteria resistant to antibiotics. For further study, we propose to create a microbiological bioassay as an appropriate and straightforward technique for measuring Cefixime in pharmaceutical preparations.

The microbiological assay measures the actual effect of antibiotics on a biological system and is used to
provide more accurate and specific evaluations of potency than chemical procedures. The bioassay methods used for potency measurement are the most critical factors in obtaining reproducible and reliable data required for quality control of the pharmaceutical product (Shah et al., 2000). Microbiological bioassay is beneficial due to the similarity between the parameters assessed by these techniques and the characteristics of the drug being evaluated. Thus, impurities and associated compounds do not interfere with the analytical method’s precision. Therefore, the microbiological bioassay remains the standard for addressing doubts regarding probable activity loss of antibiotics (Dafale et al., 2016).

The selection criteria of the bacterial strain were based on the response of the bacteria to cefixime in the form of sensitivity, susceptibility and the clarity of zone inhibition (Dafale et al., 2015). As shown in Table 1, the results showed that S. aureus, P. aeruginosa and B. cereus did not respond to cefixime. In contrast, only E. coli as a bacterial strain responded against cefixime (Figure 1B). As a result, the E. coli (ATCC-10536) strain was selected for further analysis in this study.

Figure 1. The effect of Cefixime in several bacterial strains at different concentration. S. aureus ATCC-29213 (A), E. coli ATCC-10536 (B), P. aeruginosa ATCC-27853 (C), and B. cereus ATCC-11778 (D)
Table 1. Response of several bacterial strains to Cefixime standard at different concentration

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Code</th>
<th>Concentration of standard Cefixime (µg/mL)</th>
<th>Inhibition zone diameter (mm)</th>
<th>Mean (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Staphylococcus aureus (ATCC-29213)</td>
<td>K</td>
<td>Solvent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td>7.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>Solvent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Escherichia coli (ATCC-10536)</td>
<td>S1</td>
<td>3.2</td>
<td>12.6</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>4.0</td>
<td>13.1</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>5.0</td>
<td>15.2</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>6.2</td>
<td>18.6</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td>7.8</td>
<td>19.3</td>
<td>18.9</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (ATCC-27853)</td>
<td>K</td>
<td>Solvent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td>7.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bacillus cereus (ATCC-11778)</td>
<td>K</td>
<td>Solvent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S5</td>
<td>7.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Response of E. coli to Cefixime (5 µg/mL) at different inoculum concentration

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Inoculum concentration (%)</th>
<th>Inhibition zone diameter (mm)</th>
<th>Mean (mm)</th>
<th>SD</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Replication</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Phosphate buffer pH 7.0</td>
<td>0.5</td>
<td>21.2</td>
<td>21.5</td>
<td>21.1</td>
<td>21.267</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20.52</td>
<td>20.3</td>
<td>20.2</td>
<td>20.333</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>20.1</td>
<td>19.9</td>
<td>19.6</td>
<td>19.867</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>19.4</td>
<td>18.9</td>
<td>18.7</td>
<td>19.000</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>18.3</td>
<td>18.1</td>
<td>17.9</td>
<td>18.100</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>17.9</td>
<td>18.3</td>
<td>17.0</td>
<td>17.967</td>
</tr>
</tbody>
</table>

Variation in the number of microorganisms led to differences in the diameter of the inhibition zone. While other variables were constant, this experiment was conducted to establish how crucial the concentration of the test organism might have been in the current system. The optimal inoculum concentration was determined using zone diameter, edge sharpness, and low
RSD. A small zone diameter was seen with a high inoculum concentration, but a diluted inoculum concentration produced a bigger zone diameter and weak growth. The optimal concentration of inoculum should range between these profiles. In the current experiment, six different inoculum concentrations, including 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%, were evaluated and their effects on the diameter of the zone of inhibition were identified (Table 2 and Figure 2). The optimal E. coli ATCC-10536 inoculum concentration for microbial bioassay was determined to be 1%.

To measure an antibiotic by a microbiological bioassay, the inoculum concentration must be confirmed, exhibiting a distinct antibiotic zone of inhibition (Dafale et al., 2013). An effect of inoculum concentration on resultant zone size is widely known. This study evaluated how crucial the inoculum concentration could be when all other variables remain constant (Dafale et al., 2013; Hewwit, 2003). Different zone diameters are the result of a wide range of microorganism concentrations. A high inoculum concentration of the test bacteria resulted in a small zone diameter and a cloudy growth stage. In contrast, a low inoculum concentration resulted in a broad zone diameter and a light growth stage. Consequently, optimizing the inoculum concentration is required for a bioassay.

Conclusion

For the development of antibiotic potency test of cefixime in pharmaceutical preparation, our study suggested that E. coli ATCC 10536 can be used as the bacterial strain with the concentration of 1.0% as the optimal inoculum concentration. For further study, several factors from the aspect of antibiotic such as the proper solvent, pH, and duration of storage time should be optimized.

Figure. 2. The effect of Cefixime at different concentration of E. coli inoculum
Reference

Yamamoto CH, Pinto TJA. 2020Rapid determination of neomycin by analyt
EDITORIAL TEAM

Editor in Chief

- Suparman Suparman, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto, Indonesia

Editorial Boards

- Wiranti Sri Rahayu, Universitas Muhammadiyah of Purwokerto, Indonesia
- Indri Hapsari, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto, Indonesia
- Fauzan Zein Muttaqin, Sekolah Tinggi Farmasi Bandung, Indonesia
- Retno Wahyuningrum, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto
- Dwi Hartanti, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto, Indonesia
- Githa Fungie Galistiani, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto, Indonesia
- Azis Saifudin, Fakultas Farmasi, Universitas Muhammadiyah Surakarta, Indonesia
- Rina Herowati, Fakultas Farmasi, Universitas Setia Budi, Indonesia

Recent Edition Reviewer

- Retno Wahyuningrum, Fakultas Farmasi, Universitas Muhammadiyah Purwokerto
- Zainur Rahman Hakim, Universitas Muhammadiyah Purwokerto, Indonesia
- Much Ilham Novalisa Aji Wibowo, Fakultas Farmasi | Universitas Muhammadiyah Purwokerto, Indonesia
- Fitriyani Fitriyani, Universitas Muhammadiyah Purwokerto, Indonesia
- Nadia Mira Kusumaningtyas, Indonesia
- Galar Sigit Prasuma, Universitas Muhammadiyah Purwokerto, Indonesia
- Shintia Lintang Charisma, Universitas Muhammadiyah Purwokerto, Indonesia
- Alwani Hamad, Program Studi Teknik Kimia, Fakultas Teknik, Universitas Muhammadiyah Purwokerto
- Dina Ratna Juwita, Universitas Muhammadiyah Purwokerto, Indonesia

ISSN: 2579–910X

P-ISSN: 1693–3591 (http://u.lipi.go.id/118042834616)
e-ISSN: 2579–910X (http://u.lipi.go.id/1489390649)
SINTA Score: SINTA 3 (http://sinta.ristekbrin.go.id/journals/detail?id=237)
PHARMACY

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanolic Sisyrinchium palmifolium L. Extract as Natural Preservative for Indonesian Tofu Preparation</td>
<td>Sophi Damayanti, Vanya Maharani, Marlia Singgih, Benny Permana, Andhika B Mahardhika, Defri Rizaldi, Rika Hartati, Indra Wibowo</td>
<td>10.30595/pharmacy.v19i1.8691 (http://dx.doi.org/10.30595/pharmacy.v19i1.8691)</td>
</tr>
<tr>
<td>Determinasi Vitamin C dalam Sediaan Losion Pemutih dan Serum Pencerah Wajah secara Spektrofotometer UV</td>
<td>Normaidah Normaidah, Dina Rahmawanty, Samsul Hadi, Mia Fitriana, Aditya Maulana Perdana Putra, Alya Agustiya, Siti Sarah</td>
<td>10.30595/pharmacy.v19i1.10381 (http://dx.doi.org/10.30595/pharmacy.v19i1.10381)</td>
</tr>
<tr>
<td>Studi HKSA Senyawa Turunan 4-(3-nitrophenyl)-thiazol-2-ylhidrazone sebagai Inhibitor Monoamin Oksidase B</td>
<td>Purwaniati Purwaniati, Fahmi Imanulloh, Aiyi Asnawi</td>
<td>10.30595/pharmacy.v19i1.8780 (http://dx.doi.org/10.30595/pharmacy.v19i1.8780)</td>
</tr>
<tr>
<td>Effectiveness of lotion preparations as emollients from pure palm oil and crude palm oil</td>
<td>Uce Lestari, Syamsurizal Syamsurizal, Fadhilah Yahya, Ahmad Fudholi</td>
<td>10.30595/pharmacy.v19i1.6574 (http://dx.doi.org/10.30595/pharmacy.v19i1.6574)</td>
</tr>
<tr>
<td>Analisis Kualitatif dan Penetapan Kadar Total Naftokuinon Ekstrak Etanol 96% Umbi Bawang Dayak (Eleutherine bulbosa (Mill. Urb.)</td>
<td>Rahmi Muthia, Wahyudin Bin Jamaludin, Helmina Wati, Kartini Kartini, Yatasya Salsabila</td>
<td>10.30595/pharmacy.v19i1.11804 (http://dx.doi.org/10.30595/pharmacy.v19i1.11804)</td>
</tr>
</tbody>
</table>
Formulasi dan Evaluasi Krim Daun Teh Hijau (Camellia sinensis (L.) Kuntze) dengan Kombinasi Emulgator

Arfiani Arfin, Nurul Jummah, M. Arifuddin

Analisis Total Fenol Dan Flavonoid Ekstrak Etanol Kulit Batang Sungkai (Peronema canescens Jack)

Nurjirin Ramadhani, Agung Giri Samudra, Reza Pertiwi, Cyntia Dwi Utami, Annisa Muslimah, Wafa Syahidah, Petri Siti Khodijah

Method Validation of Silica Dispersive Solid Phase Extraction Combined with Spectrophotometer UV-Vis for the Determination of Allopurinol in Herbal Medicine

Eviomitta Rizki Amanda, Anisa Suci Rosmawati, Lilik Nurfadlilah, Gama Prakoso Buono, Yani Ambari

Uji Efektifitas Gel Antijerawat Ekstrak Daun Sirsak (Annona muricata L.) dan Ekstrak Herba Meniran (Phyllanthus niruri L.)

Adrianto Dimas, Kumala Shirly, Indrawati Teti

Penggunaan Antibiotika Aminoglikosida pada Pasien Anak di RSUP Dr. Sardjito Yogyakarta

Wahyu Utaminigrum, Ika Puspitasari, Ida Safitri Laksanawati, Endang Lukitaningsih

The Selection of Bacterial Strain and Inoculum Concentration in Microbial Bioassay for the Development of Cefixime Potency Test in Pharmaceutical Preparations

Ridho Islamie, Dian Natasya Raharjo, Nur Agustiningrum

ISSN: 2579–910X

P-ISSN: 1693-3591 (http://u.lipi.go.id/118042834616)
e-ISSN: 2579–910X (http://u.lipi.go.id/1489390649)
Kutipan dari Keputusan Direktur Jenderal Penguatan Riset dan Pengembangan, Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia
Nomor: 23/E/KPT/2019
Tentang Hasil Akreditasi Jurnal Ilmiah Periode 4 Tahun 2019

Pharmacy: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia)
E-ISSN: 16933591
Penerbit: Fakultas Farmasi Universitas Muhammadiyah Purwokerto

Ditetapkan sebagai Jurnal Ilmiah

TERAKREDITASI PERINGKAT 3

Akreditasi berlaku selama 5 (lima) tahun, yaitu
Volume 15 Nomor 2 Tahun 2018 sampai Volume 19 Nomor 2 Tahun 2022
Jakarta, 08 Agustus 2019
Direktur Jenderal Penguatan Riset dan Pengembangan

Dr. Muhammad Dimyati
NIP. 195912171984021001

Copyright Transfer Form

https://drive.google.com/open?id=1qqObNtTmpK-L53-PMRgyjU_Ak-MQ9DmT
Preservation Potential of Galangal Water Extract on Tofu
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto

Uji Aktivitas Antioksidan Masker Gel Peel-off Ekstrak Etanol Kelopak Bunga Rosela (Hibiscus sabdariffa L.) dengan Metode DPPH (1,1-Diphenyl-2-picrylhydrazyl)
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto

Isolasi dan Karakterisasi Selulosa Mikrokristal dari Nanas (Ananas comosus L.) Meri
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto

Analisis Hubungan antara Kualitas Pelayanan dan Kepuasan Pasien Rawat Jalan Instalasi Farmasi Rumah Sakit Universitas Muhammadiyah Malang
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto

Studi Etnofarmasi Bahan Alam pada Suku Anak Dalam (SAD), Desa Tanah Garo, Kecamatan Muara Tabir, Kabupaten Tebo, Provinsi Jambi
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto

Potensi Fraksi Kayu Secang (Caesalpinia sappan L.) terhadap Penghambatan Xantin Oksidase dalam Menurunkan Kadar Asam Urat pada Hiperurisemia
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto

Efek Sari Buah Cherry (Prunus avium (L.) L.) terhadap Efek Sedasi dan Waktu Tidur pada Mencit Putih Jantan
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto

Aktivitas Antibakteri Ekstrak Etanol Herba Krokot (Portulaca oleracea L.) Dari Beberapa Metode Ekstraksi
Pharmacy Faculty, Universitas Muhammadiyah Purwokerto