Jurnal Pharmascience, Vol. 9, No.2, October 2022, page: 300-308

ISSN-Print. 2355 – 5386 ISSN-Online. 2460-9560

https://ppjp.ulm.ac.id/journal/index.php/pharmascience

Review Article

Database of Herbal Medicines from Various Scientific Sources

Oeke Yunita^{1*}, Titin Yolanni Sun¹, Farah Zalfa Rofifah¹, Dyas Kristanto², Krisyanti Budipramana¹

¹Pharmaceutical Biology Department, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia.

²Digital Business Department, Faculty of Technology and Business, Regent Christian Institute of Technology and Business, Surabaya, East Java, Indonesia Email: oeke@staff.ubaya.ac.id

ABSTRAK

Informasi baru untuk penelitian dan pengembangan obat herbal (jamu) tidak dapat dikumpulkan dari satu database (basis data). Sumber informasi harus lengkap dan menyeluruh sehingga memungkinkan adanya referensi silang untuk memberikan informasi baru dalam penemuan dan pengembangan obat herbal. Pada review ini, kami memberikan gambaran yang komprehensif tentang sumber-sumber informasi herbal, serta deskripsi dari semua basis data yang relevan dengan obat herbal. Basis data PubMed, Science Direct, Google Scholar dan Semantic Scholar ditelusuri dalam rentang waktu antara Juni dan Juli 2021 terkait publikasi yang relevan dengan basis data jamu. Hasil perbandingan menunjukkan bahwa ETM-DB adalah basis data yang paling lengkap dan menyeluruh untuk penelitian terkait penemuan dan pengembangan obat herbal dari semua basis data yang diulas dalam penelitian ini. Ketersediaan dan kelengkapan informasi, kemampuan pengguna atau peneliti untuk melakukan penelitian dan pengembangan tambahan terhadap suatu obat herbal, serta tersedianya fitur untuk mengunduh informasi dan struktur kimia dalam berbagai versi, semuanya dapat memberikan informasi penting bagi pengembangan suatu basis data obat herbal dalam bentuk situs web penelusuran online yang mudah digunakan yang dapat diakses oleh pakar dan masyarakat umum. Pengembangan herbal dapat menggunakan basis data obat herbal, seperti yang termasuk dalam ulasan ini, untuk mengumpulkan informasi herbal yang komprehensif dari berbagai sumber.

Kata Kunci: Database, Herbal, Informasi, Review

ABSTRACT

Multiple databases are utilized since new information for herbal medicine research and development cannot be obtained from a single database. Information sources must be comprehensive and complete in order to allow for cross-referencing and give new information in the discovery and development of herbal medicines. In this review, we provide a comprehensive overview of these resources, as well as descriptions of all databases that are relevant to the subject of herbal medicine. The databases PubMed, Science Direct, Google Scholar and Semantic Scholar were searched between June and July 2021 for publications relevant to herbal medicine databases. Comparison results show that ETM-DB is the most extensive database for herbal medicine drug discovery and development research of all the databases reviewed in this study. The availability and completeness of information, the ability of users or researchers to conduct additional research and development on herbal medicine, and the availability of features for downloading information and chemical structures in various versions, can all provide critical information for the development of herbal database in the form of an easy-to-use query website that is accessible. Herbal medicine development can use databases to collect comprehensive information from a variety of sources.

Keywords: Database, Herbal, Information, Review

I. INTRODUCTION

Herbal medicine has been widely used in the world for the treatment of several symptoms and the prevention of diseases before accessing the hospital for professional help. Herbal Medicine Market size was valued at USD 98.60 Billion in 2020 and is projected to reach USD 391.22 Billion by 2028, growing at a CAGR of 18.8 % from 2021 to 2028 (Verified Market Research, 2021). The high market for herbal medicines cannot be separated from the importance of herbal information because information plays a crucial role in modern society and it helps people to develop their health knowledge (Sørensen et al., 2012).

Our preliminary study about the availability and information needs of

traditional medicine Surabaya, at Indonesia, shows that information of traditional medicine availability was 84%. Most respondents (53%) admitted to having herbal information and their source of information from internet media, mostly (86%) through search engines, health websites, and health applications (Yunita et al., 2022). This preliminary survey provides valuable information how important Herbal Database for Drug Discovery and Development.

Herbal medicines are essential molecules in medical, chemical, and social study because of their unique properties. For the time being, there is no global, community-accepted database for the research and development of herbal medicines. Instead, there is an

extraordinarily large number of databases and datasets that are highly diverse, but not all of them are maintained or open access in 2022, resulting in a significant loss of information.

II. METHODS

A. Materials

To summarize the findings regarding Herbal database; a literature search was conducted using PubMed, Science Direct, Google Scholar, and Semantic Scholar databases especially for the literature of the last 10 years. All databases were downloaded during June-July 2021. The keywords used in the

searches included Herbal AND Information AND Database".

B. Methods

Only articles reporting single database which contain plant type, composition, recipe, disease type, and daily dose were included in the final review. There were 2.707 papers initially identified. After eliminating titles and abstracts related to the exclusion criteria. 11 selected articles were identified that met the criteria and purpose of this review (Figure 1). All network representations of database overlaps are created with Cytoscape ver. 3.7.1.

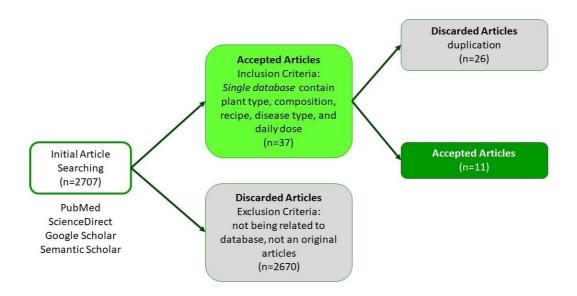


Figure 1. Flowchart for article searching, screening and selection in literature review

III. RESULTS AND DISCUSSION

The original sources of the 11 databases in this review are from various countries such as China, Bangladesh, Saudi Arabia, Ethiopia, and India (Table I). Each database has its own advantages and disadvantages. In addition to other advantages, researchers who visit the website can alter or contribute to the content of the current database by giving the correct citation or the same reference, and the data received or amended by the researcher will be certified by the Saudi Herbal Plant Information System (SHPIS) administration (Syed and Khan, 2017).

The Traditional Chinese Medicine (TCM-Mesh) and Traditional Chinese Medicine System Pharmacology (TCMSP) were created to provide up-to-date information on herbal plants to develop TCM. TCMSP, which is no longer maintained but used to include over 29,000 natural products, is likewise no longer maintained. There are several databases that focus on chemical compounds used in TCM, and the makers of the latter are aware of this database called Yet Another Traditional Chinese Medicine Database (YaTCM), which was established in 2018. The key distinctions between these databases are the amount of chemicals covered, the complexity of their content, and the availability of the datasets they provide (Ru et al., 2014; Zhang et al., 2017; Sorokina and Steinbeck, 2020).

There are two databases currently online and open listing natural compounds from plants, insects and animals used in Ayurveda, namely Uttarakhand Medicinal Plants Database (UMPDB) and Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT). The UMPDB includes detailed information on botanical names, common names, taxonomy, genomic taxonomy identification, habit, habitat, location in Uttarakhand, part usage, medicinal use, genomic information (including the number of nucleotides, proteins, and Expressed Sequence Tag/ESTs), chemical information, and scientific literature. The current edition of the database's annotated medicinal plants was compiled from existing books, databases, and literature. The present edition of the UMPDB has 1127 data of medicinal plants from 153 plant families spread over 13 districts in Uttarakhand (Kumar et al., 2018). IMPPAT is a manually curated database including over 10,000 phytochemicals isolated from 1700 Indian medicinal plants, as well as information about their phytochemistry and therapeutic effects. The **IMPPAT** phytochemicals' physicochemical, profile of absorption, distribution, metabolism, excretion, toxicity (ADMET), and druglikeness properties were assessed using

cheminformatic approaches. IMPPAT phytochemicals' stereochemical complexity and form complexity differ from commercial compound libraries or diversity-oriented synthetic compounds while being similar to other natural product libraries (Mohanraj et al., 2018).

Medicinal Plant Database of Bangladesh (MPDB) offers information on around 500 of Bangladesh's indigenous medicinal plants. It includes the scientific name of the plant, its family name, regional names, components used, active chemicals, and the PubMed IDs of linked studies. The database was created with reference to indigenous plant medicinal treatments that have been employed since ancient times. The purpose of this database is to decipher the underlying the success of these folk remedies and to identify the primary phytochemical compounds responsible for their efficacy, as well as to uncover innovative treatment approaches for both old and new ailments (Ashraf et al., 2014). Meanwhile, each database has gaps in terms of data on individual medicinal plants, disorders, and their pharmacology, which are still insufficient for each medicinal plant mentioned. And it must be redeveloped for the purpose of identifying therapeutic targets for deadly illnesses. Users continue issues to encounter information. downloading entire

necessitating the improvement of the application system.

Having imported the content type of database, we can map it onto the nodes in the network using the Cytoscape, as seen in Figure 2. Despite its origins in biological research, Cytoscape has evolved into a for universal platform sophisticated network analysis and visualization. The types of contents in the database are depicted in circles with varying colors. The darker the color of the circle, it means that there are more types of herbal databases that contain these contents. The circles on the right in blue are the type of database that contains the various contents in the circles on the left. The larger the circle size, the more complete the database type is.

All databases contain several data such as plant type, scientific classification, organoleptic characteristics, formula, habitat, chemical compound, and disease. Almost all databases (90.90 %) contain part used of the herbal except UMPDB, most databases contain herbal recipe, except Encyclopedia of Traditional Chinese Medicine (ETCM), MPDB, TCM-Mesh, although all of those databases contain the formula.

Only a small proportion of databases contain ADMET data from Pharmacology study results, namely Ethiopia Traditional Herbal Medicine Database (ETM-DB), MPDB, TCM-Mesh and TCMSP. There are five databases which contain genome information of herbal medicine namely Chinese Ethnic Minority Traditional Drug Database (CEMTDD), ETCM, ETM-DB, IMPPAT, and UMPDB, but only small proportion of databases contain phenotype data, namely

ETM-DB, IMPPAT, and UMPDB. CEMTDD, IMPPAT, TCMSP are three databases which contain almost all type of content except phenotype & ADMET data (CEMTDD), disease target & ADMET data (IMPPAT) and phenotype & genome information (TCMSP).

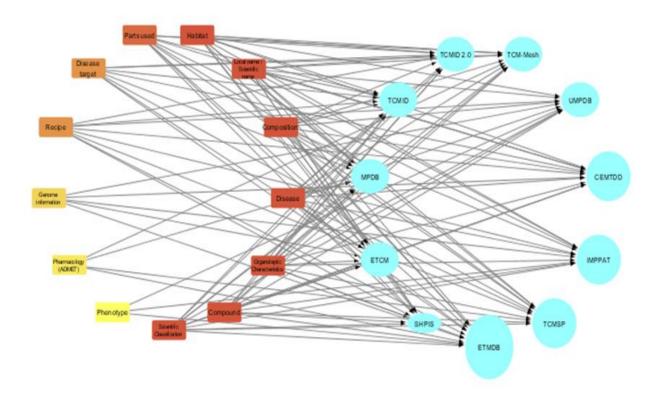


Figure 2. Network analysis of herbal database

Based on this analysis, ETM-DB is the most complete database reviewed. ETM-DB is the most comprehensive online resource on Ethiopian traditional medicine. Traditional herbal medicine entities and their linkages are well-structured with sources cited. Users can search for entities using the ETM-DB web interface's search menu. This database can assist speed up drug discovery and development studies by providing data on the chemical composition and human target gene/proteins of Ethiopian natural products (Bultum et al., 2019).

Table I. Herbal databases from various countries

Country		Database Name	Hyperlink
China	CEMTDD	Chinese Ethnic Minority Traditional Drug Database	http://www.cemtdd.com/index.ht ml
	ETCM	Encyclopedia of Traditional Chinese Medicine	http://www.nrc.ac.cn:9090/ETC M/
	TCMID	Traditional Chinese Integrated Medicine	http://www.megabionet.org/tcmi d/
	TCMIID 2.0	Traditional Chinese Integrated Medicine 2.0	http://www.megabionet.org/tcmi d/
	TCM-Mesh	Traditional Chinese Medicine	http://mesh.tcm.microbioinforma tics.org/
	TCMSP	Traditional Chinese Medicine System Pharmacology Database	http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.
Bangladesh	MPDB	Medicinal Plant Database of Bangladesh	www.medicinalplantbd.net
Saudi Arabia	SHPIS	Saudi Herbal Plant Information system	http://www.SHPIS.com
Ethiopia	ETM-DB	Ethiopia Traditional Herbal Medicine Database	http://biosoft.kaist.ac.kr/etm.
India	UMPDB	Uttarakhand Medicinal Plants Database	http://www.ars-grin.gov/
	IMPPAT	Indian Medicinal Plants, Phytochemistry and Therepeutics	https://cb.imsc.res.in/imppat

To construct ETM-DB, researchers examined internet research papers, theses, books, and public databases for information Ethiopian herbal medicine and phytochemicals. These resources were extensively reviewed, and the relevant data obtained manually and using was Python/Java scripts. Additionally, ETM-DB utilized cheminformatics methods to determine the phytochemicals' physicochemical and **ADMET** characteristics. The ETM-DB internet interface enables users to search for entities and relationships by utilizing the search menu's available choices. This database will aid in the discovery and development of new drugs from Ethiopian natural products since it provides information on the chemical makeup and associated human target genes/proteins (Bultum et al., 2019; Sorokina et al., 2020).

IV. CONCLUSION

Of all the databases considered in this study, ETM-DB is the most extensive in terms of herbal medicine drug discovery and development research, outpacing the comparation. The benefits of various herbal databases include the availability and completeness of information, the ability for users or researchers to conduct additional research and development on herbal medicine, and the availability of features for downloading information and chemical structures in various versions, can give critical information for the development of a herbal database in the form of an easy-to-use query website that is accessible to both specialists and the general public.

CONFLICT OF INTEREST

No conflict of interest

ACKNOWLEDGEMENT

The authors would like to express their thanks to the Republic of Indonesia's Ministry of Research, Technology, and Higher Education for financial assistance for O.Y. The views expressed in this article are those of the individual authors and do not necessarily reflect those of the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia.

REFERENCES

- Ashraf, M.A., Khatun, A., Sharmin, T., Mobin, F., Tanu, A.R., Morshed, T., Fakir, T.A., Begum, R.A., AHM Nurun, N. (2014). MPDB 1.0: A Medicinal Plant Database of Bangladesh. Biomedical Informatics, Bioinformation, 10(6), 384-386.
- Bultum, L.E., Woyessa, A.M., Doheon, L. (2019). ETM-DB: Integrated Ethiopian Traditional Herbal

- medicine and Phytochemicals Database. BMC Complementary and Alternative Medicine, 19 (212), 1 11.
- Kumar, A., Kumar, R., Sharma, M., Kumar, U., Gajula, M.N.V.P., Singh, K.P. (2018). Uttarakhand Medicinal Plants Database (UMPDB): A Platform for Exploring Genomic, Chemical, and Traditional Knowledge, Data, 3(7), 1-10.
- Mohanraj, K., Karthikeyan, B.S., Vivek-Ananth, R.P., Chand, R.P.B., Aparna, S.R., Mangapalandi, P., Samal, A. (2018). IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Scientific Reports, 8(4329), 1 17.
- Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y., Yang, L. (2014). TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6(13), 1-6
- Sørensen, K., Broucke, S.V., Fullam, J., Doyle, G., Pelikan, J., Slonska, Z., Brand, H. (2012). Health Literacy and Public Health: A Systematic Review and Integration of Definitions and Models, BMC Public Health, 12(80), 1-13.
- Sorokina, M., Steinbeck, C. (2020). Review on natural products databases: where to find data in 2020, Journal of Cheminformatics, 12(20), 1-51.
- Syed, A.H., Khan, T. (2017). SHPIS: A Database of Medicinal Plants from Saudi Arabia. International Journal of Advanced Computer Science and Applications, 8(5), 49 53.
- Verified Market Research. (2021). Herbal Medicine Market Size and Forecast, https://www.verifiedmarketresearch. com/product/herbal-medicinemarket/. [Acessed December 28, 2021].
- Yunita, O., Heriwana, F.R.P., Theterissa, E., Jimmy. (2022). Availability and

Information Needs of Traditional Medicine in Urban Community, Surabaya, Indonesia, Proceedings of the 7th International Conference on Biological Science (ICBS 2021), Advances in Biological Sciences Research.

Zhang, R.Z., Yu, S.J., Bai, H., Ning, K. (2017). TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Scientific Reports, 7(2821), 1-14.

Publikasi Resmi Penelitian Bidang Kefarmasian dan Kesehatan

ISSN-Print: 2355-5386; ISSN-Online: 2460-9560 https://ppjp.ulm.ac.id/journal/index.php/pharmascience jps@ulm.ac.id

JRNAL PHARMASCIENC

Publikasi Resmi Penelitian Bidang Kefarmasian dan Kesehatan

ISSN-Print : 2355-5386; ISSN-Online: 2460-9560 https://ppjp.ulm.ac.id/journal/index.php/pharmascience jps@ulm.ac.id

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS FOCUS&SCOPE ETIKA PUBLIKASI ARTICLE IN PRESS

Home > About the Journal > Editorial Team

EDITORIAL TEAM

CHIEF IN EDITOR

Dr. Sutomo Sutomo, Program Studi Farmasi Universitas Lambung Mangkurat, Indonesia

EDITORIAL BOARD

Dita Ayulia Dwi Sandi, Prodi Farmasi, FMIPA Universitas Lambung Mangkurat, Indonesia Normaidah Normaidah, Program Studi Pendidikan Profesi Apoteker Universitas Lambung Mangkurat, Indonesia Dr Lutfi Chabib, Prod Farmasi ; Prodi PSPA Universitas Islam Indonesia, Indonesia Nani Kartinah, Program Studi Farmasi Universitas Lambung Mangkurat, Indonesia Dr. Awik Puji Dyah Nurhayati, Departemen Biologi Fakultas Sains Institut Teknologi Sepuluh Nopember, Indonesia Muhammad Ikhwan Rizki, Program Studi Farmasi Universitas Lambung Mangkurat, Indonesia Destria Indah Sari, Program Studi Farmasi Universitas Lambung Mangkurat, Indonesia Khaerul Anwar, Program Studi Farmasi Universitas Lambung Mangkurat, Indonesia

Jurnal Pharmascience Published by:

Program Studi Farmasi Universitas Lambung Mangkurat

Banjarbaru, Indonesia

Jurnal Pharmascience is indexed by:

work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Google Scholar Citation : JPS in google scholar Since AII 2018 Citations 1823 1755 h-index 22 21 i10-index 50 51

ADDITIONAL MENU

ONLINE SUBMISSION

JPS in google scholar

KEBIJAKAN OPEN ACCES

AUTHOR GUIDELINES

EDTORIAL TEAM

REVIEWER

KEBIJAKAN PLAGIARISME

AUTHOR(S) FEE

JOURNAL HISTORY

CONTACT US

Login

Username Password Remember me

Journal Template

JURNAL PHARMASCIENCE Publikasi Resmi Penelitian Bidang Kefarmasian dan Kesehatan

ISSN-Print : 2355-5386; ISSN-Online: 2460-9560 https://ppjp.ulm.ac.id/journal/index.php/pharmascience jps@ulm.ac.id

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS FOCUS&SCOPE ETIKA PUBLIKASI ARTICLE IN PRESS

Home > Archives > Vol 9, No 2 (2022)

VOL 9, NO 2 (2022)

JURNAL PHARMASCIENCE

TABLE OF CONTENTS

JURNAL PHARMASCIENCE

Analisis Akar Penyebab Masalah dalam Meningkat-kan Overall Equipment Effectiveness (OEE) Mesin Pengisi Bedak ke Kaleng PT. Coronet Crown

Abstract view: 160 times DOI: 10.20527/jps.v9i2.12195

Yanuar Hadi Irawan, Agnes Nuniek Nuniek Winantari, Sagitha Devina

Uji Aktivitas Antioksidan Ekstrak Etanol dan Fraksi N-Heksan Kulit Buah Naga Merah (Hylocereus polyrhizus)

Abstract view: 872 times DOI: 10.20527/jps.v9i2.13135

Sri Wahdaningsih

Review: Kandungan Kimia Jahe Merah (Zingiber officinale var. Rubrum) dan Pembuktian In Silico sebagai Inhibitor SARS-CoV-2

Abstract view: 1236 times DOI: 10.20527/jps.v9i2.13149

Putri Natasya Br Siregar, Katrina Imaculata Tema Pedha, Katharina Floransia Walburga Resmianto, Noviayanti Chandra, Vinsensia Nalita Maharani, Florentinus Dika Octa Riswanto

Aktivitas Renoprotektif Daun Kelor (Moringa oleifera Lamk) pada Tikus Model Diabetes

Mellitus Tipe 2 Abstract view: 130 times

DOI: 10.20527/jps.v9i2.13188

Miranda Dewi, Suryono Suryono, Pipiet Wulandari

Efek Afrodisiaka dari Ekstrak Batang Bajakah Kalalawit (Uncaria gambir Roxb.) terhadap Tikus Jantan Galur Wistar (Rattus novergicus)

Abstract view: 541 times

DOI: 10.20527/jps.v9i2.13289

Rollando Rollando, Arum Ardanareswari, FX Haryanto Susanto, Eva Monica

Pengaruh Konsentrasi Ekstrak Metanol Biji Pepaya (Carica papaya) Terhadap Aktivitas Antioksidan dalam Sediaan Masker Gel Peel-Off

Abstract view: 365 times

DOI: 10.20527/jps.v9i2.13296

Nita Safitri, Dina Rahmawanty, Destria Indah Sari

Hasil Uji Toksisitas Subkronis Temulawak Terhadap Nilai Hemoglobin, Hematokrit, dan

Leukosit Tikus

Abstract view : 566 times DOI: 10.20527/jps.v9i2.13374

Akhmad Endang Zainal Hasan, Husnawati Husnawati, Siti Wachidatun Zulaikha

Evaluasi Docking Molekular Potensi β-Sitosterol dari Kelakai (Stenochlaena palustris)

sebagai Inhibi-tor Estrogen Receptor

Abstract view: 142 times DOI: 10.20527/jps.v9i2.13412

Noer Komari, Tazkia Safarina, Mirza Maulana Ahmad, Nugi Maulana, Eko Suhartono, Samsul Hadi

Sitotoksisitas dan Selektivitas In Vitro Daun Benalu Cengkeh (Dendrophthoe pentandra L.

Miq) terhadap Sel Kanker Serviks HeLa Abstract view: 405 times

DOI: 10.20527/jps.v9i2.13514

Susilowati Susilowati, Truly Dian Anggraini, Nurul Kotimah

Perbedaan Tingkat Pengetahuan Siswa SMA Darul Kholil Burneh Bangkalan tentang Obat Generik Antara Sebelum dan Setelah Edukasi

PDF (BAHASA INDONESTA) 271-279

Google Scholar Citation : JPS in google scholar Since ΔΙΙ 2018 Citations 1823 1755 h-index 22 21 i10-index 51 50

PDF (BAHASA INDONESIA)

248-257

258-270

213-224

225-233

164-175

176-184

185-200

ADDITIONAL MENU

ONLINE SUBMISSION

JPS in google scholar

KEBIJAKAN OPEN ACCES

AUTHOR GUIDELINES

EDTORIAL TEAM

REVIEWER

KEBIJAKAN PLAGIARISME

AUTHOR(S) FEE

JOURNAL HISTORY

CONTACT US

USER

Username Password

Remember me

Login

Journal Template

Abstract view: 175 times DOI: 10.20527/jps.v9i2.13517

Abdul Hakim, Arief Suryadinata, Pradita Fiqlyanur Isna Primadana

Uji Preklinik: Aktivitas Penyembuhan Luka Bakar Ekstrak Air Daun Singkong (Manihot esculenta)

Abstract view: 789 times DOI: 10.20527/jps.v9i2.13707

Havizur Rahman, Raudhatul Jannah, Elisma Elisma, Fathnur Sani

Formulasi dan Uji Antioksidan Formula Granul Effervescent Ekstrak Kulit Buah Pulasan (Nephelium mutabile Blume)

Abstract view: 383 times DOI: 10.20527/jps.v9i2.13717

Tribudi Julianti, Ika Ayu Mentari, Erindyah Retno Wikantyasning, Salsabila Azzahra, Indah

Database of Herbal Medicines from Various Scientific Sources

Abstract view: 220 times DOI: 10.20527/jps.v9i2.13757

Oeke Yunita, Titin Yolanni Sun, Farah Zalfa Rofifah, Dyas Kristanto, Krisyanti Budipramana

Uji Aktivitas Antibakteri Ekstrak Etanol Daun Gaharu (Aquilaria Malaccensis Lamk.) Dan Identifikasi Senyawa Dengan Metode GC-MS

Abstract view: 417 times DOI: 10.20527/jps.v9i2.13803

Misrahanum Misrahanum, Cut Aja Dian Zahira, Nurdin Saidi

Penentuan Aktivitas Antioksidan Ekstrak Etanol Bunga Ceguk (Combretum Indicum L.) Tipe Membulat pada Beberapa Wilayah di Kalimantan Selatan

Abstract view: 287 times DOI: 10.20527/jps.v9i2.13859

Amalia Khairunnisa, Samsul Hadi, Sri Oktaviana Sari

Aktivitas Rimpang Temulawak sebagai Antibakteri Berdasarkan Lokasi Tumbuhnya: **Narrative Review**

Abstract view: 674 times DOI: 10.20527/jps.v9i2.14007

Catur Aryanto Rahman, Djoko Santosa, Purwanto Purwanto

Profil FTIR dan GC/MS Ekstrak Jamur Endofit dari Akar Seluang Belum (Luvunga sarmentosa (Blume) Kurz.) Asal Kabupaten Tabalong Kalimantan Selatan

Abstract view: 239 times DOI: 10.20527/jps.v9i2.14221

Pratika Viogenta, Nashrul Wathan, Sunardi Sunardi, Jehan Azizah

Identifikasi Fitokimia dan Uji Aktivitas Antiinflamasi In vitro Fraksi n- heksana Kapur Naga (Calophyllum soulattri Burm F) Dengan Metode Uji Penghambatan Denaturasi Protein Menggunakan Spektrofotometer Uv-Vis

Abstract view: 477 times

DOI: 10.20527/jps.v9i2.14372

Fadlilaturrahmah Fadlilaturrahmah, Jariyah Amilia, Yuana Sukmawaty, Nashrul Wathan

Jurnal Pharmascience Published by:

Program Studi Farmasi Universitas Lambung Mangkurat

Banjarbaru, Indonesia

Jurnal Pharmascience is indexed by:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

SUPPORT TOOLS

Visitors

PDF (BAHASA INDONESIA)

280-286

PDF

301-309

310-318

319-326

327-343

344-354

00273514

View My Stats

NOTIFICATIONS

View Subscribe

LANGUAGE

elect Language	
English	~
Submit	

JOURNAL CONTENT

Search		
Search Scope		
All	~	
Search		

Browse By Issue By Author By Title Other Journals

INFORMATION

For Readers For Authors For Librarians

PHARMASCIENCE

UNIVERSITAS LAMBUNG MANGKURAT

2017 2018 2019 2020 2021 2022 2023 2024 2025

History Accreditation

Garuda Google Scholar

□ 2023

Aktivitas Minyak Atsiri Bunga Lili (Lilium auratum) terhadap Bakteri Pseudomonas aeruginosa

Program Studi Farmasi FMIPA Universitas Lambung Mangkurat Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 102-109

<u>Uji Aktivitas Antioksidan Kombinasi Ekstrak Kulit Pisang Kepok (Musa paradisiaca L.) dan Kulit Buah Naga Merah (Hylocereus polyrhizus (Weber) Britton & Rose) dengan Metode DPPH</u>

Program Studi Farmasi FMIPA Universitas Lambung Mangkurat

□ 2023
□ DOI: 10.20527/jps.v10i1.14863
□ Accred: Sinta 4
□ Accred: Sinta 4

<u>Uji Sediaan Krim Ekstrak Daun Kratom (Mitragyna Speciosa Korth.) yang Berpotensi sebagai Antinosiseptif pada Mencit Jantan Galur</u> DDY

Program Studi Farmasi FMIPA Universitas Lambung Mangkurat
□ 2023 □ DOI: 10.20527/jps.v10i1.12146 □ Accred: Sinta 4

Tingkat Pengetahuan, Tindakan dan Persepsi Petugas Kesehatan Terhadap Obat Sisa, Obat Rusak dan Kedaluwarsa di Rumah

Program Studi Farmasi FMIPA Universitas Lambung Mangkurat

Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 152-164

□ 2023 □ DOI: 10.20527/jps.v10i1.15007 ○ Accred : Sinta 4

Evaluasi dan Potensi Daya Hambat Gel Antiseptik Tangan Ekstrak Etanol Daun Kemangi (Ocimum sanctum L.) terhadap Bakteri Patogen Pseudomonas aeruginosa dan Staphylococcus epidermidis <u>Program Studi Farmasi FMIPA Universitas Lambung Mangkurat</u> ■ Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 23-35 **□** 2023 Formulasi dan Evaluasi Sediaan Masker Peel-Off dari Ekstrak Buah Kasturi (Mangifera casturi Kosterm.) dengan Variasi Konsentrasi <u>Program Studi Farmasi FMIPA Universitas Lambung Mangkurat</u> ■ Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 82-92 □ 2023 □ DOI: 10.20527/jps.v10i1.15569 ○ Accred : Sinta 4 Pengaruh Penyakit Penyerta terhadap Toksisitas Obat Metamizole <u>Program Studi Farmasi FMIPA Universitas Lambung Mangkurat</u> ■ Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 110-119 **□**2023 Penurunan Produksi Reactive Oxygen Species (ROS) Fibroblas dengan Nano Kitosan Kumbang Tanduk (Xylotrupes gideon) <u>Program Studi Farmasi FMIPA Universitas Lambung Mangkurat</u> ▶ Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 165-174 **□**2023 Isolasi Fungi Tanah Muara Sungai Desa Kalinaun Sulawesi Utara serta Skrining Antibakteri terhadap Pseudomonas aeruginosa <u>Program Studi Farmasi FMIPA Universitas Lambung Mangkurat</u> ■ Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 36-50 □ 2023 □ DOI: 10.20527/jps.v10i1.13825 ○ Accred : Sinta 4 Evaluasi Tingkat Kepatuhan Konsumsi Obat pada Pasien Hipertensi Rawat Jalan di Rumah Sakit Dewi Sri Karawang Menggunakan Metode MMAS-8 ■ Jurnal Pharmascience Vol 10, No 1 (2023): Jurnal Pharmascience 93-101 <u>Program Studi Farmasi FMIPA Universitas Lambung Mangkurat</u> □ 2023 □ DOI: 10.20527/jps.v10i1.14075 ○ Accred : Sinta 4 View more ...