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ABSTRACT Background: The COVID-19 pandemic has resulted in enormous costs to our society. Besides
finding medicines to treat those infected by the virus, it is important to find effective and efficient strategies
to prevent the spreading of the disease. One key factor to prevent transmission is to identify COVID-19
biomarkers that can be used to develop an efficient, accurate, noninvasive, and self-administered screening
procedure. Several COVID-19 variants cause significant respiratory symptoms, and thus a voice signal may
be a potential biomarker for COVID-19 infection.

Aim: This study investigated the effectiveness of different phonemes and a range of voice features in
differentiating people infected by COVID-19 with respiratory tract symptoms.

Method: This cross-sectional, longitudinal study recorded six phonemes (i.e., /a/, /e/, /i/, /o/, /u/, and /m/)
from 40 COVID-19 patients and 48 healthy subjects for 22 days. The signal features were obtained for the
recordings, which were statistically analyzed and classified using Support Vector Machine (SVM).
Results: The statistical analysis and SVM classification show that the voice features related to the vocal
tract filtering (e.g., MFCC, VTL, and formants) and the stability of the respiratory muscles and lung
volume (Intensity-SD) were the most sensitive to voice change due to COVID-19. The result also shows
that the features extracted from the vowel /i/ during the first 3 days after admittance to the hospital were
the most effective. The SVM classification accuracy with 18 ranked features extracted from /i/ was 93.5%
(with F1 score of 94.3%).

Conclusion: A measurable difference exists between the voices of people with COVID-19 and healthy
people, and the phoneme /i/ shows the most pronounced difference. This supports the potential for using
computerized voice analysis to detect the disease and consider it a biomarker.

INDEX TERMS COVID-19, voice features, sustained phoneme, support vector machine.

Clinical and Translational Impact Statement: The outcomes of this research can aid in the development of
an efficient screening device for COVID-19, as the testing is noninvasive and can be self-applied by patients
using an application running on smartphones.

I. INTRODUCTION

Covid-19 was declared a global pandemic by the World
Health Organization (WHO) in March 2020 [1]. The pan-
demic rapidly spread to over more than 200 countries with
more than 300 million confirmed cases and 5.5 million
deaths by January 2022 [2]. The disease affects multi-
ple body systems and organs [3], [4]. The main symp-
toms of COVID-19 are fever, dry cough, sore throat,

dyspnea, fatigue, headache, and multiple organ failure in
severe cases [4], [5].

The pandemic has caused enormous health, economic, and
social challenges, and the effective suppression of its con-
tinued spread is dependent on efficient testing methods and
strategies. The current gold standard for identifying infected
people is based on molecular and serology testing. The poly-
merase chain reaction (PCR) test has been widely accepted
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as the most accurate COVID-19 test [6], [7], [8]. However,
not all variants of the disease are serious, and variants such
as Omicron are generally considered to have lower morbidity
rates [9].

Since the seriousness of the disease is associated with the
effect it has on the respiratory system [10], one of the methods
used to detect severity is based on blood oxygen levels.
However, this information is often too late. Thus, a need exists
for inexpensive tools that can be used to detect COVID-19 in
patients that present with respiratory system symptoms.

Although several methods for this purpose have been
investigated as potential COVID-19 biomarkers [9], these are
nonspecific and require complex or invasive procedures [10].
Likewise, several parameters have been investigated as
potential COVID-19 biomarkers [11]. However, these are
also nonspecific and require complex or invasive proce-
dures. Alternatively, body temperature measurement has been
widely practiced as a frontline screening method, but due to
asymptomatic COVID-19 cases, it is insufficient as a primary
means of COVID-19 screening or detection [12].

One promising biomarker for detecting COVID-19 in
patients with a compromised respiratory system is voice
signals. Voice has been proposed as a biomarker for dis-
eases such as Parkinson’s disease, coronary artery disease,
pulmonary hypertension, and chronic obstructive pulmonary
disease [13], [14], [7]. The benefits of this method are that
it is noninvasive, does not require physical contact with
clinicians, and patients can easily record their voices with-
out clinical assistance using a smartphone. Since COVID-19
affects the respiratory system, it creates distinct signatures in
the patients’ voices [5]. COVID-19 patients may experience
shortness of breath that results in the disruption of voice
intensity [15]. The decrease in lung pressure changes the
subglottal pressure that affects voice intensity and vocal fold
vibration. Other COVID-19 symptoms, such as dry coughs
and infection or inflammation in the oral or nasal cavity,
may alter the vibration of the vocal folds as well as change
the vocal tract frequency modulation. All the above changes
will consequently modify the acoustic factors related to voice
quality and, therefore, change the parameters in the patient’s
voice.

Asiaee et al. [15] evaluated the change in voice qual-
ity of patients with COVID-19 using two-way ANOVA
and Wilcoxon’s rank-sum test. They identified significant
changes in cepstral peak prominence (CPP), harmonics mea-
sures (HNR and H1H?2), the standard deviation of pitch,
as well as time and amplitude perturbation. The parame-
ters were evaluated on sustained vowel /a/ recorded from
COVID-19 patients and healthy subjects of Persian speakers.
Quatieri [16] found reduced complexity in the coordina-
tion of the voice production subsystem due to COVID-19.
The author identified the change in speech envelope, CPP,
pitch, and formant center frequency. These studies indi-
cated the possibility of using voice parameters as COVID-19
biomarkers. However, the study by Asiaee et al. only focused
on parameters related to vocal fold vibration of vowel /a/.
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Orlandic et al. [17] created a crowdsourcing dataset of
over 25,000 cough recordings representing a wide range of
COVID-19 statuses. This dataset provides the possibility for
researchers to identify COVID-19 biomarkers.

Other researchers developed biomarkers using black-box
approaches of deep learning. Suppakitjanusant [3] devel-
oped a deep-learning model to identify people infected with
COVID-19 based on the log Mel spectrogram of vowel /a/,
coughing, and polysyllabic words. The deep-learning clas-
sification with polysyllables achieved the best accuracy of
85%. Lower accuracies were produced if the model was
given vowel /a/ of coughing parameters. A similar result
was reported by Despotovic [18], who developed an ensem-
ble and MLP model with 88.50% accuracy. Maor [7] con-
structed a CNN-based voice biomarker of COVID-19 using
the Mel spectrogram. The biomarker achieved a classification
AUC of 0.72. The above studies indicate the effectiveness of
the voice Mel spectrum to indicate COVID-19. Verde [19]
reported a machine learning that can classify COVID-19
patients with 97% accuracy, however, the study was based
on unbalanced data. On the other hand, Loey [20] reported
a deep-learning model that can classify COVID-19 patients
with 95% accuracy based on the parameters of coughing.

As the research in this area is still in the preliminary stage,
more studies are needed to identify a reliable COVID-19
biomarker extracted from voice features that could be imple-
mented as operable devices or testing procedures. The above
research indicates a possible biomarker in the voice param-
eter. However, the studies investigated some limited voice
features and extracted only from vowel /a/. Furthermore,
the use of voice features in COVID-19 identification may
lead to over-optimistic or misleading results due to demo-
graphic, subjective, and acoustic bias as shown in the work of
Han et al. [21]. To limit the bias this study extracted voice
parameters from only sustained phonemes.

Expanding on previous findings, this study investigated a
wider range of features related to voice production mecha-
nisms or organs, including the features related to air pres-
sure production by the lung, vocal cord vibration, and voice
modulation in the vocal tract (oral and nasal cavity). This
study also extracted the features from a wider range of sus-
tained phonemes to capture any possible alteration due to
COVID-19 that might occur in voice production mechanisms
and organs.

This study aimed to determine the most effective features
that could be used as a COVID-19 biomarker. Once these
features are identified, they can be used to develop a non-
invasive device or testing procedure to screen people infected
with COVID-19.

Il. MATERIALS AND METHODS

A. PARTICIPANTS

The sustained phonemes were recorded from 40 (21 males
and 19 females) COVID-19 patients (CV) and 48 (21 males
and 27 females) age-matched healthy participants (HC)
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TABLE 1. Participants’ demographics.

CcVv HC ANOVA
Male Female Male Female p-value

# Participants 21 19 21 27
Age (years) 44.5 +18.7 4294+ 13.7 43.7+15.2 459+ 12.8 0.921

as the control group. The CV patients were hospitalized
in the COVID-19 ward of Husada Utama Hospital in
Surabaya, Indonesia in June and July 2021. The period
was the beginning of the second wave of the COVID-19
pandemic in Indonesia, which was dominated by the Delta
variant [22]. Each CV patient was confirmed with a pos-
itive result of the reverse-transcriptase polymerase chain
reaction (RT-PCR) test performed upon admission by the
hospital.

The CV patients tested positive and had one or more symp-
toms of COVID-19 (e.g., fever, cough, sore throat, malaise,
headache, muscle pain, nausea, vomiting, diarrhea, loss of
taste and smell). About 52% (21 patients) of the CV group
were given 3-5 LPM of oxygen supplementation due to
shortness of breath with SpOy > 94%. Seven CV patients
were given 8 LPM of oxygen supplementation with SpO,
of less than 94%, while the other CV patients did not need
oxygen supplementation. All 40 patients had recovered from
COVID-19 following hospitalization.

The HC participants were recruited randomly from peo-
ple who had never been diagnosed with COVID-19, had no
history of any disease related to respiration or voice produc-
tion mechanism, and did not have any COVID-19 symptoms
within 14 days before and after the recording.

The study protocol complied with the Helsinki Decla-
ration and was approved by the Institutional Ethics Com-
mittee of the University of Surabaya, Surabaya, Indonesia
(159/KE/V/2021) and Husada Utama Hospital, Surabaya,
Indonesia (582/RSHU/Dir./V/2021). Before the experiments,
written informed consent was obtained from all the partici-
pants. Table 1 presents participants’ demographic and clinical
information.

B. PHONEME RECORDING

Six sustained phonemes (i.e., /a/, /e/, /i/, /o/, lu/, and /m/)
were recorded from each participant. These phonemes were
selected to examine a wide range of voice production aspects,
including the nasal voice. All the participants were asked to
produce the phonemes as long as it was comfortable within a
single breath at their natural pitch and loudness while keeping
the tone as flat as possible.

The phonemes of CV patients were recorded by two nurses
from the hospital who were trained for the data collection
using an Android application developed in this study. The
application recorded the phonemes via the phone’s micro-
phone and the recordings were saved in a single-channel
3GP format with a sampling rate of 8 kHz and a 32-bit
sampling quantization. The sampling rate was selected to
support the aim of this study, which is to develop a sys-
tem that would be functional with minimum resources, such
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that these can also be used in less affluent societies. The
8 kHz sampling is the norm for 2G/3G phones and hence
was chosen for this study. The files were transferred to the
FireBase cloud database. The duration of each recording was
between 3 to 15 seconds. The recording was performed in
COVID-19 hospital wards while keeping the ambient noise
as low as possible. The average SNR of the recordings
was 27.80 dB.

The six sustained phonemes were expected to be recorded
from the CV patients once every day while hospitalized.
However, due to the patients’ health conditions and some
technical considerations, the recording could not be prop-
erly acquired from each CV patient every day as expected.
Table 2 provides the list of valid phoneme recordings from
each CV patient during their stay in the hospital.

The recording of HC participants was acquired using the
same Android application with a similar setting of 8 kHz
and 32-bit resolution. The recording process occurred in a
common room while the ambient noise was kept at the lowest
possible level (mean SNR = 30.10 dB).

C. FEATURES EXTRACTION

Before the feature extraction process, each recording was
manually observed using Audacity, an open-source sound
editing software. A segment of 1.0 seconds with a clean
phoneme recording was extracted from each segment. The
uniform duration of 1.0 seconds was selected based on the
optimum length of recording without interference from other
sounds in the hospital ward. The 1.0 seconds segment of each
recording was converted to WAV format at a sampling rate
of 8 kHz and 32-bit resolution.

A Praat [23] code was used to extract all voice fea-
tures from the recordings. The extraction process was per-
formed using the Praat default settings with a pitch range
from 75 to 600 Hz. Thirty-four features were extracted
from each recording as shown in Table 3. Jitter [24],
Shimmer [24], SD of pitch frequency, and the harmonics
features were expected to capture the change in vocal cord
vibration due to COVID-19 infection. The features corre-
spond to the time and frequency perturbation, and noise of
glottal vibration [24].

The formants features (F1 to F4) [25], the apparent vocal
tract length [26], [27], and the 13 coefficients of MFCCs [28]
represent the change in vocal tract formation due to
COVID-19. The voice intensity is controlled by the sub-
glottal pressure, which is controlled by the respiratory mus-
cles and lung volume [29], and thus the intensity features
were expected to represent a change in lung condition due
to COVID-19.

D. STATISTICAL ANALYSIS
The effectiveness of the features to separate CV from
HC subjects was firstly assessed using statistical anal-

ysis. The statistical analyses were performed using
MATLAB 2018b (MathWorks). The normality of the
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TABLE 2. Falid phoneme recordings from CV patients.

02
ID |Gender Age |Supleme | Day1 | Day2 | Day3 | Day4 | Day5 | Dayb | Day7 | Day 8 | Day9 | Day 10 [ Day 11 | Day 12 | Day 13 | Day 14 | Day 15 | Day 16 | Day 17 | Day 18 | Day 19 | Day 20 | Day 21 | Day 22
ntation
1 ] EE - aeiou-
2 F 46 aeioum aeioum
3 F 3 aeioL- agi-um aeiourm
4 F [ - BBi-Li-
g ] - agioum &E-0Lim
3 F - aeiou- aeigum
7 [N 4 8lpm -giourn
5 [ [ 5 lpm “siounm
3 F 4 8lprn agioum &sioum asioumn | asiourn asioum
0 ¥ &7 Slpm ari-u- agio-m | -gioumn | aeioun | aeioumn | aeiourn
il [N 50 Slpm aeiou- aeloum aelourn | aeiourm
2 F 23 - 8oL~ i
3 X iE] 36 1pm agiou- | -giourn | asiourn | aeiourn | asiourn | aeiourn agioum | asioumn agiourn | asiourn EET
4 [N 78 35lpm | se-o-m | ae-o-m | aeo-m [ se-om | aeo-m | ae-o-m ae-o-m ae-o-m | ge-oum ae-oum
5 F ] Slpm ae0- | ge-ou- | acioum aeioum griou- | -eiourn aeioum -giourn aeloum
B ¥ 57 3-51pm agiou-_| asiourn | asioumn agiol- | -sio-m agioum | asioum agiourm
7 [ g B lpm aeioL- | seiourn aeio- | seiourn asio- | seiourn asioum
F 55 35lpm | aeioumn | aeiourn | aeioum aeioum | aeiourn | aeioumn aeioum aeioum | aeiourn
F 5 35lpm | aeioumn | aeiourn | aeioum aeioum | aeiourn | aeioumn aeloum aeigum
[ 4 36 |prm | asioumn | asiourmn | asiounn agi-urm
[ 77 36 |pm_| asioum | asiourn | seiourn | asiourn | asiourn | aeioum | asioum | ssiourn | asioum
F 53 35lpm | aeioun | aei-un | ae-o-m aeioumn | aeiourn aeioum aeigum aeioum aeioum
[N il 35lpm | aeioumn | geiou- | aeioum aeioum [ -eioum | aeio-m aeloum -gi-umn | aeiourn | aeioum
F &5 36 |pm | asioum asiourn agiou- | -siourn | asioum asioum asioum
[ 36 |pm | asioum | asioum aeioum | aeioum | asioum asiourm
¥ [ 35lpm | aeioum | aeiourn aeioumn | aeioum | -eioumn aeioum
[N 35lpm | aeiou- | aeioumn aeioumn | aeioum | aeiourn aeioum
2 F 3-5lprm [ aeiourn aeioumn | -sioumn | -siourmn asiourmn | aeiourn
29 ] 57 - & ourn agi-um | aeioum
0 F r - agiou- aelou- | aei-u- | aeiou- aeiou- | aeiou-
1 F 46 35lpm g-i-u- aeioum | aeiourn | asiourn aeioum aeioumn | aeioum
¥ ind - &eiourn aeiou- | aeiourn | seiourn BEiou- aeiou- | aeiourn
F 57 6 Ipm | asiou- | ssiou- | -eiourn asiouT
F kT 3hlpm | aeloumn | aeioum | aeiou- aeloum | aeiounn asioum
¥ 23 35lpm | aeiou- | aeiou-
¥ 53 - -in-- aeiou- aeioum aeioL-
53 - 8oL~ TS a8 0L~
F 55 3-5lpm Eioum 58I 0Unn
F 23 35lpm eioum aeioumn | aeioum | -gioum
F 27 36lpm [ asiou aeiou- agi-um

TABLE 3. List of voice features extracted from the recordings.

No Feature (unit) Description
| Jitter-abs (s) Absolute time perturbation of glottal
pulses
2 Jitter-rel (%) Relative time perturbation of glottal
pulses

Absolute amplitude perturbation of
glottal pulses

Relative amplitude perturbation of glottal
pulses

SD of pitch frequency
Harmonics-to-noise ratio
Noise-to-harmonics ratio

Mean of formants F1 frequency
Mean of formants F2 frequency
Mean of formants F3 frequency
Mean of formants F4 frequency

3 Shimmer-abs (dB)

Shimmer-rel (%)

4

5 Pitch-SD (Hz)
6 HNR (dB)
7

8

NHR

Fl-mean (Hz)
9 F2-mean (Hz)
F3-mean (Hz)
11 F4-mean (Hz)

12 F1-SD (Hz) SD of formants F1 frequency

13 F2-SD (Hz) SD of formants F2 frequency

14 F3-SD (Hz) SD of formants F3 frequency

15 F4-SD (Hz) SD of formants F4 frequency

16 VTL-FI (cm) Apparent vocal tract length based on F1

17 VTL-F2 (cm) Apparent vocal tract length based on F2

18 VTL-F3 (cm) Apparent vocal tract length based on F3

19 VTL-F4 (cm) Apparent vocal tract length based on F4

20 Intensity-mean (dB) | Mean of voice intensity

21 Intensity-SD (dB) SD of voice intensity

MFCC .

22-34 Mell Frequency Cepstral Coefficients

(13 coefficients)

extracted features was examined with the Anderson-Darling
test [30]. Mann-Whitney U test [31] was used to compare
the group differences for each of the features and phonemes
between the CV and HC groups. The 95% confidence level
was considered for the analysis and a p-value < 0.05 indi-
cated that the mean of the groups was significantly different.
The differences between the groups were also examined
using effect size (ES) [32]. The ES between two groups of
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data (A and B) was calculated using Cohen’s d [33]
ineq. (1).
X4 — X3
(na—1)SDA2+(ng—1)SDg>
(ng+np—2)

D

An ES of 0.50 or above indicates a medium to a large differ-
ence between the compared groups.

E. CLASSIFICATION METHOD
The effectiveness of the voice features to separate CV from
HC subjects was also be examined based on the feature’s
performance in a Support Vector Machine (SVM) [34] classi-
fier. The SVM used in this work was trained with a Gaussian
kernel and validated using “‘leave-one-subject-out” (LOSO)
cross-validation. The Gaussian kernel was selected because it
showed the best result compared to the other kernels.
Several combinations of voice features were selected to
be used in the SVM training and validation. The accuracy,
sensitivity, and selectivity were recorded as the measure of the
features’ effectiveness as a COVID-19 biomarker. The feature
selection was based on the statistical analysis and a rank
calculated by ReliefF algorithm [35]. The ReliefF algorithm
ranks the features based on k nearest hits and misses and
averages their contribution to the weights of each feature. The
ReliefF algorithm was implemented using MATLAB 2018b
with 10 nearest neighbors (k = 10).

Ill. RESULTS

A. STATISTICAL ANALYSIS

The result of the Anderson-Darling normality test showed
that most of the features were not normally distributed, and
thus the Mann-Whitney U test, a nonparametric test, was
used to test for group differences in each of the features.
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TABLE 4. The effect size and Mann Whitney U-test results of voice features.

Phoneme Phoneme Phoneme
Features (All recordings) (Recorded on Days 1, 2, and 3) (Recorded on Days 4, 5, and 6)
/a/ e/ il o/ v/ /m/ /a/ e/ /il /o/ / /m/ /a/ le/ il /o/ u/ /m/

Jitter-abs - - - - - - 0.52 - - - - - - - - - - -
Jitter-rel - - - - - - - - - - - - -0.63 - -
Shimmer-abs - - - - -0.53 - - - -0.53 - - -0.70 | -0.73 -0.80 -1.09
Shimmer-rel - - - - -0.50 - - - -0.51 - - -0.71 -0.74 -0.78 -0.99
Pitch-SD - - - - - - - - - - - - - - -
HNR -0.56 - - - - - -0.75 - - - = = = 0.60 0.91
NHR - - - - - - - - - - - - - - - -0.52 - -
Fl-mean - - -0.56 - - - - -0.60 -0.89 - -0.67 -0.73 = = = = = -0.54
F2-mean 0.51 - - - - - - - - - - 1.29 - - 0.77 0.63 0.70
F3-mean - - - - - - - - - - - - - - -0.80
F4-mean - - - - - - 0.55 - - 0.56 - - - - -0.71 - -1.06
F1-SD = -0.54 -0.60 - - - 0.64 -0.73 -0.61 - - - - -1.00 -1.03 -0.61 -0.69 -
F2-SD = = -0.66 - - - - - -0.62 - - - = - -1.14 - - -0.71
F3-SD 0.50 -0.55 -0.56 - - - 0.71 -0.78 - - - - - -0.82 -1.16 - - -
F4-SD = = -0.80 - - - - - -0.84 - - - - - -1.34 - - -
VTL-F1 = = 0.58 = = - - 0.65 0.86 0.52 0.66 0.84 = = = = = 0.55
VTL-F2 -0.61 = - - - - - - - - - -1.39 = - -0.82 -0.59 -0.69
VTL-F3 - - - - - - - - - - - - - 0.77
VTL-F4 - - - - - - -0.57 -0.56 - - = = 0.68 - 1.06 -
Intensity-mean - - - - - - - - - 0.83 = = - - 0.86 0.86
Intensity-SD - - - - -0.56 -0.62 - - - -0.68 -0.91 = -0.67 -0.88 -0.79 -1.39 -1.24
MFCC-c0 0.55 0.74 0.57 - - - 0.72 0.72 - - - 0.97 1.42 1.33 0.70 0.96 0.79
MFCC-cl g S = o = = - - - - - -0.65 -0.79 -0.85 - -0.51 -0.55
MFCC-c2 - - - o o = - - - - -0.54 = = -0.57 -0.66 -0.66
MFCC-c3 5 = 052 = 053 | 056 B B B B 0.57 B 075 | 063 | 068 = 073 | 080
MFCC-c4 1.15 0.87 1.07 0.60 - 0.58 1.50 1.15 1.49 0.64 - 0.93 1.51 0.88 0.89 0.65 - 0.74
MFCC-c5 - 5 o o = - -0.62 -0.67 - 0.86 - = S
MFCC-c6 - o = = = = -0.70 - - - - -0.51 -0.68 - - -
MFCC-c7 o = = = - - - 0.52 - - 0.59
MFCC-c8 = - - - - - - - - - -
MEFCC-c9 = - - - - - - - - - -
MECC-c10 = - - - - - - - - - -
MFCC-cl1 = = = = = = - - - - - - - - -
MFCC-c12 o = = = - 0.51 - 0.55 - - - - -

Note: The number indicates the features with Mann- Whltney U test p-value < 0.05 and ES > 0.50, while ‘-

The group differences were also examined by calculating
the ES. In this analysis, a feature is considered significant
if the Mann-Whitney U test p-value was equal to or less
than 0.05 and the ES was 0.50 or above. Table 4 pro-
vides the ES and the results of the Mann-Whitney U test
between CV and HC for all the features. The numbers in
the table are the ES of the significant features (features with
p-value < 0.05 and ES > 0.50).

The table presents the significant features when analyzed
using all the recordings (Days 1-22) and recordings from
Days 1-3 only and Days 4-6 only. The table shows that the
voice features were less sensitive to the COVID-19 biomarker
if all the recordings were included in the analysis. Only
27 significant features were found with an average |ES|
of 0.63. The number of significant features was increased
to 41 (average |[ES| = 0.72) when the statistical analysis only
considered the features extracted from the phoneme recorded
on the first 3 days after testing positive with COVID-19.
The highest number of significant features was observed on
the phoneme recorded on Days 4-6 after testing positive
(73 significant features, average |ES| = 0.83).

Figure 1 presents the number of significant features and
average |ES| for each day of recordings. The recordings
from Day 4 contain the most significant features to dis-
criminate CV patients from HC participants. Features from
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¢ indicates features with p-value > 0.05 or ES < 0.50.

F 4

— N A%

HI “hn i

FIGURE 1. The number of significant features and average effect size (ES)
of statistical test between control subjects (HC) and COVID-19 patients
(CV) for each day of recordings.

Days 4-6 recordings were the most effective features to mark
COVID-19. The phonemes recorded after Day 7 were not
effective to identify COVID-19.

Figure 2 compares the effectiveness of each phoneme
in differentiating CV and HC based on the recordings on
Days 4-6. The figure shows that the significance of the six
phonemes was relatively equal. Phoneme /a/ had the highest
average |ES| but with the least number of significant features.
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FIGURE 2. The number of significant features and average effect size (ES)
of statistical test between control subjects (HC) and COVID-19 patients
(CV) for each phonemes recorded on days 4 to 6.

On the other hand, phoneme /u/ had the highest number of
significant features but with a low average |ES|. Phoneme /i/
was the most effective phoneme with a relatively high number
of significant features with a relatively high average |ES].

Table 4 shows that the features corresponding to fre-
quency modulation of vocal tracts (MFCC c0 to c4, for-
mants, and VTL) were more sensitive to a change in voice
due to COVID-19. The amplitude perturbation (shimmer)
and STD of voice intensity were also significantly affected
by COVID-19.

B. SVM CLASSIFICATION

Figure 3 presents the performance of SVM classification (F1-
score, accuracy, sensitivity, and selectivity) with a different
number of ranked features as the inputs. The features were
ranked using the ReliefF algorithm with k¥ = 10 nearest
neighbors. The ranked features for the six phonemes are
shown in Table 5. The features were extracted from the
phonemes recorded from the CV patients in the first 3 days
after being admitted to the hospital. The SVM classification
of these recordings outperformed the classification results if
using the recordings from Days 46 or if the whole recordings
(Days 1-22) were considered.

The figure shows that SVM with input features extracted
from phoneme /i/ produced the highest classification per-
formance. F1 scores of more than 90% were achieved with
16 to 21 ranked features. The highest SVM classification
performance was achieved with 18 ranked features of /i/ (F1
score = 94.3%, accuracy = 93.5%, sensitivity = 96.7%,
selectivity = 89.6%). Figure 4 provides the confusion matrix
of the classification.

The 18 ranked features of /i/ are shown in the fourth
column of Table 5 and indicate the highest-ranked features
were dominated by features related to vocal tract filtering
(e.g., MFCC, VTL, and formants) and the stability of the
respiratory muscles and lung volume (Intensity-SD). Among
the MFCC features, the MFCC-c4 was the most effective
feature. This result suggests that features related to vocal
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tract modulation carry the most information as COVID-19
biomarkers. This result was consistent with the statistical
analysis.

IV. DISCUSSION

Several studies had reported the possibility of using voice
features as COVID-19 biomarkers [3], [7], [15], [16], [18].
This study investigated a range of voice features that were
related to vocal cord vibration (jitter, shimmer, SD of pitch,
HNR, and NHR), vocal tract modulation (formants, VTL,
and MFCC), and lung function (intensity). In this work, the
authors extracted the features from six sustained phonemes
(i.e., /a/, /el, /i, /ol, /u/, and /m/). These phonemes were
selected to examine the whole aspect of the voice production
system.

The statistical analysis and SVM classification indicated
that the voice features of sustained phoneme corresponding to
vocal tract modulation (MFCC, formants, and VTL) and lung
pressure stability (Intesity-SD) were sensitive to COVID-19
infection and, therefore, could potentially be adopted as a
COVID-19 biomarker compared to the features of vocal fold
vibration (jitter, shimmer, pitch, HNR, and NHR). The results
suggest that COVID-19 symptoms that affect laryngeal activ-
ity and the oral and nasal cavities create the most alter-
ation to the voice quality of sustained phonemes. This result
explained the findings of Suppakitjanusant [3], Quatieri [16],
Maor [7], and Loey [20] that parameters related to frequency
modulation of the vocal tract (log Mel spectrogram, formants,
and scalogram) contributed significantly to the performance
of the classifiers. The low to medium MFCC coefficients (cO,
c3, ¢4, c5, ¢6, and c10) were the most sensitive features.
These coefficients represent vocal tract impulse responses in
the range of low to medium frequency [36].

Among the investigated phonemes, the features extracted
from /i/ were the most effective features to distinguish
COVID-19 patients from healthy subjects. A large number
of features from /i/ produced a p-value of less than 0.05 and
a relatively high average |ES|. The SVM classification with
features extracted from /i/ produced the highest F1 score
of 94.3%.

The phoneme /i/ is a cardinal vowel produced while the
tongue is at a high-front position with spread lips [37], [38].
The tongue is very close to the hard palate while its sides
are pressed against the teeth. The production of /i/ requires
precise control of the air gap between the tongue and hard
palate as well as maintaining proper lips position and shape.
In contrast, the vowel /a/, which was used commonly in the
previous studies, is a back-open cardinal vowel that requires
less precise control as long as the jaw is open wide and the
tongue is at the lowest position. Any change of vocal tract
muscle control due to infection, pain, or inflammation caused
by COVID-19 will, therefore, affect the production of /i/ more
than /a/.

The statistical analysis of features extracted from the
phonemes recorded on Days 4-6 shows better separation
between COVID-19 patients and healthy subjects, followed
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FIGURE 3. The performance (F1 score, accuracy, sensitivity, and selectivity) of SVM classification with different number of ranked features. The input to

SVM is the recordings from Days 1-3.
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FIGURE 4. Confusion matrix of SVM classification between COVID-19
patients (CV) and control subjects (HC) based on 18 ranked features of
phoneme /i/ recorded during the first 3 days in the hospital.

by the recordings from Days 1-3. On the other hand,
SVM classification gave the best classification with record-
ings from Days 1-3. The difference between these two
approaches was because statistical analysis attempted a linear
separation, whereas SVM with Gaussian kernel used a non-
linear approach. These results suggest that the most sen-
sitive COVID-19 biomarkers were possibly extracted from

VOLUME 10, 2022

voice recordings during the first 6 days after testing positive.
This result agrees with the COVID-19 life-cycle and
symptoms [39].

The novelty of this study is the finding that sustained
phoneme features related to frequency modulation in the
vocal tract contains the most information to be used as
COVID-19 biomarkers. The other significant novelty is that
the features extracted from /i/ gave better differentiation
between COVID-19 patients and healthy subjects. This study
also indicates that the features recorded in the first 6 days
gave the best results.

The limitation of this study is that this study investigated a
relatively small number of subjects in the hospital environ-
ment. Due to the condition of the patients, the recordings
could not be taken every day from all the patients. Further
study needs to be conducted with a large number of patients
under a standardized recording environment and protocol.
The other limitation of this study is that the recordings were
taken after the patients tested positive with RT-PCR. It could
be more useful if the recordings were taken from the subjects
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Rank /a/ /e/ /il /o/ Ju/ /m/
1 VTL-F4 MFCC-c4 MFCC-c4 VTL-F4 MFCC-cl Intensity-SD
2 F4-mean VTL-F4 VTL-F4 MFCC-c3 F4-SD F1-SD
3 MFCC-c4 F4-mean F4-mean F4-mean MFCC-c9 VTL-F2
4 MFCC-c3 Intensity-mean F2-mean MFCC-cl1 F2-mean F2-mean
5 MFCC-cl1 Pitch-SD VTL-F2 MFCC-cl VTL-F2 MFCC-cl
6 F2-mean F2-SD Intensity-SD F2-mean VTL-F3 F3-mean
7 F3-SD MFCC-c0 MFCC-c0 VTL-F2 F3-mean MFCC-c4
8 Fl-mean Intensity-SD F4-SD MFCC-c2 MFCC-c3 F4-SD
9 F2-SD MFCC-c3 VTL-F3 VTL-F3 MFCC-c0 F2-SD

10 MFCC-c6 MFCC-c2 F3-mean F2-SD F3-SD VTL-F4

11 F4-SD F4-SD Jitter-abs F3-SD Fl-mean MFCC-cl1

12 VTL-F3 VTL-F1 MFCC-c10 MFCC-cO MFCC-c7 F4-mean

13 F3-mean Fl-mean MEFCC-c6 F4-SD MFCC-c2 VTL-F3

14 MFCC-c7 MFCC-cl MFCC-c3 Jitter-abs VTL-F1 MFCC-c3

15 F1-SD F3-SD Jitter-rel F3-mean VTL-F4 Fl-mean

16 MFCC-c2 F3-mean MFCC-c5 MFCC-c10 MFCC-c4 Jitter-rel

17 MFCC-cl VTL-F3 MFCC-cl MFCC-c12 F4-mean F3-SD

18 VTL-F1 MFCC-c5 Pitch-SD HNR Intensity-SD NHR

19 MFCC-c12 MFCC-c12 Fl-mean Pitch-SD MFCC-c10 Jitter-abs

20 MFCC-c0 HNR F3-SD MEFCC-c4 F1-SD MFCC-c5

21 Intensity-mean VTL-F2 F2-SD MFCC-c6 MFCC-c8 Pitch-SD

22 Jitter-abs F2-mean F1-SD Intensity-mean F2-SD MFCC-c12

23 HNR MEFCC-c6 MEFCC-c2 MFCC-c9 HNR VTL-F1

24 VTL-F2 MFCC-c9 Intensity-mean MFCC-c5 Jitter-abs MFCC-c2

25 NHR MEFCC-cl1 MFCC-cl1 MFCC-c7 MEFCC-cl1 Shimmer-rel

26 Jitter-rel MEFCC-cl10 VTL-F1 Fl-mean Pitch-SD Shimmer-abs

27 MFCC-c10 NHR Shimmer-abs VTL-F1 NHR MFCC-c10

28 Pitch-SD Shimmer-rel Shimmer-rel Intensity-SD Intensity-mean Intensity-mean

29 MEFCC-c5 Shimmer-abs MFCC-c8 Shimmer-abs Jitter-rel MFCC-c0

30 Intensity-SD F1-SD MFCC-c7 Jitter-rel MEFCC-c5 HNR

31 MFCC-c8 MFCC-c7 NHR Shimmer-rel Shimmer-abs MFCC-c9

32 Shimmer-abs Jitter-rel HNR NHR MFCC-c12 MFCC-c8

33 Shimmer-rel Jitter-abs MFCC-c9 MFCC-c8 Shimmer-rel MFCC-c6

34 MFCC-c9 MFCC-c8 MFCC-c12 F1-SD MFCC-c6 MFCC-c7
before being declared COVID-19 positive by other means. REFERENCES

Therefore, the features will be reliable as COVID-19 screen-
ing parameters.

V. CONCLUSION

This study investigated the effectiveness of features extracted
from six sustained phonemes to differentiate people infected
with COVID-19 from healthy subjects. The findings indicate
the most effective features were those related to vocal tract
modulation from sustained phoneme /i/. The highest SVM
classification accuracy (93.5%) was achieved with 18 ranked
features extracted from phoneme /i/ recorded during the first
3 days after being admitted to the hospital. The results from
this study have the potential for developing a noninvasive
device or testing procedure that can be developed to screen
people infected with COVID-19.
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