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Abstract

The need for lithium as a raw material for battery production in electric vehicles has triggered the growth of the lithium indus-
try throughout the world, resulting in massive competition for the exploitation of lithium. Responding to these challenges,
lithium recovery technology continues to be developed, one of which is membrane technology. This research focuses on the
use of forward osmosis (FO) technology. The search for the best operating condition parameters for the process highlights a
major concern. The condition parameters include temperature, draw solution concentration, and flow rate. The temperature
varied from 30, 33, 36, 39 to 42 °C, the draw solution concentration varied from 1, 2 to 5 M, while the flow rate varied by 2,
3 and 4 L h™". The best conditions were obtained at a temperature of 42 °C, a concentration of 5 M draw solution, a flow rate
of 4 L h™! with a flux of 68.47 L m™2h~!, a normalized concentration ratio of 3.31, and an average solute rejection of 79.25%.
Meanwhile, the most suitable osmotic pressure model to explain the phenomenon in the FO process is the Extended Pitzer.
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Water flux (L m™2h™)

Water permeability coefficient
(ms~'atm™)

Solute permeability coefficient
(ms~'atm™)

Osmotic pressure of draw solution (atm)
Osmotic pressure of feed solution (atm)
The osmotic pressure of the bulk draw
solution (atm)

The osmotic pressure of the bulk feed
solution (atm)

Membrane structural parameter (m)
Solute resistivity (s m™")

Salt diffusion coefficient (m? s~
Resistance to salt transport in the porous
support (s m™)

Osmotic pressure (atm)

Ideal gas constant (L atm K~! mol™")
Concentration (mol L™")

Water molar volume (mL mol™")
Temperature (K)

Water activity

Molality (mol L™1)

Activity coefficient

Ionic charges

Solute-specific Pitzer constants

Mass transfer coefficient (m s™")

The hydraulic diameter of the membrane
channel (m)

Sherwood number

Reynolds number

The flow velocity of the solution (m s™')
The density of the solution (g mL™")
Schmidt number

Width of the membrane channel (m)
Height of the membrane channel (m)
Dynamic viscosity (cP)

Membrane thickness (m)

Membrane tortuosity

Membrane porosity

Kinematic viscosity (m~2s7h

Reverse osmosis

Forward osmosis

Cellulose Triacetate

Internal concentration polarization
External concentration polarization

Introduction

The crisis in fossil energy resources is a significant factor in
encouraging renewable energy development. Several renew-
able energy sources are being used intensively, including
hydropower, modern biomass, geothermal, solar, wind, and
seawater [1, 2]. In some cases, energy sources also have their
utilization problems: geothermal mineral deposits in pip-
ing systems. The mineral deposits at PLTU Dieng Indonesia
have been minimized by a precipitation process developed
by Setiawan et al. [3]. Besides the potential for energy and
the resulting problem of mineral deposits, geothermal brine
also contains valuable minerals, including boron, lithium,
and arsenic. In this case, lithium in the geothermal brine
creates a potential for downstream utilization of battery
loading [4].

Geothermal brine extraction and concentration techniques
are the determinants of the downstream efficiency of this
potential. Given these challenges, many techniques have
been developed, such as nanofiltration, ion exchange, liq-
uid-liquid extraction, adsorption, and electrodialysis (ED)
[5-8]. The nanofiltration extraction technique has the main
advantage of being compact (low footprint) [9, 10]. On the
other hand, high operating energy and membrane fouling
is still accompanying problem [11]. Other techniques, such
as ED extraction, can provide high product purity (>95%),
monovalent selectivity, and are environmentally friendly
[7, 12, 13]. Meanwhile, the concentration technique has not
been developed much and still refers to conventional evapo-
ration. This traditional method takes a long process, has a
large evaporation area, and depends on the weather [14—16].
Several developments in membrane-based concentration
techniques have been known and used for lithium recov-
ery, including reverse osmosis (RO), membrane distillation
(MD), and forward osmosis (FO) [17].

Potential exploration and development of FO as a geo-
thermal concentration technique will be carried out in this
research. Meanwhile, this potential is based on its advan-
tages: environmentally friendly, energy-efficient, and high
rejection processes. Research related to lithium concentra-
tion using FO has previously been carried out by Sun et al.
[18], showing that surface modification of polyethylene
membranes can improve its properties and performance. The
highest performance was obtained at 0.5 M NaCl with the
orientation of the active side facing the feed solution, which
showed water flux and reverses salt flux, respectively: 66.3
Lm 2h~'and 5.25 L g~!. Other research has also been car-
ried out by Pham et al. [19], using cellulose triacetate (CTA)
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and thin film composite (TFC) membranes. The concentra-
tion of five times higher than the initial concentration was
achieved after 30 h of processing using a thin film compos-
ite (TFC) membrane. In addition to the two researchers, Li
et al. [16] also carried out research using cellulose triacetate
(CTA) and thin film composite (CTA) membranes, which
examined the orientation of the active side towards the draw
solution-feed solution, which plays an important role in the
concentration factor. The highest concentration factor was
achieved with the orientation of the active side facing the
feed solution and MgCl, as the draw solution. The results
showed Li and Mg, respectively: 2.3 and 2.8 times the initial
concentration.

The FO movement force is a different osmotic pres-
sure, which is an advantage in energy demand because no

hydraulic pressure is involved [20, 21]. By relying only on
osmotic pressure, the transfer process takes place sponta-
neously. Therefore, the resulting membrane fouling value
is not as high as pressurized processes such as RO, nanofil-
tration (NF), and so on [22]. The water transfer mechanism
in FO occurs by moving some water from the feed liquid
body to the draw solution liquid body through the semiper-
meable membrane [22, 23]. Rejection and Water flux are
measurable parameters that show the performance of FO
as a concentration technique. In this case, various oper-
ating parameters and their effects are reviewed. Several
operating parameters have been selected in this research,
including temperature, draw solution concentration, and
flow rate (Table 1).

Table 1 Technologies used for lithium recovery from various lithium resources

Membrane technology Water resource

Performance Reference

Reverse osmosis (Hydraulic pressure as driving
force)

Membrane distillation (temperature different as
driving force)

Synthetic brine

Forward osmosis (osmotic pressure as driving
force)

Synthetic brine

Chaerhan salt lake brine

Current studies

Industrial lithium wastewater The research evaluates the energy consumption [24]

between the RO and ED processes. The RO
operating pressure is varied between 15 and
20 bar. The RO concentration process stops
when the conductivity of the solution reaches
50 mS cm™!. The measured energy consump-
tion is 7.58 and 7.81 kWh m™>, respectively. In
addition, the average permeates flux was 14.42
and 20.25 L m~2 h™!, respectively

A combination of membrane distillation (MD) [16]
and nanofiltration (NF) was performed for
lithium recovery. The NF process takes place
before MD, which aims to increase the lithium
concentration before processing and reduce the
multivalent ion fouling on the membrane. After
140 h of operation, the solution was success-
fully concentrated from 100 to 1200 ppm

The research evaluated two types of TFC and [19]
CTA membranes, and two types of draw solu-
tions with varying concentrations of 1-5 M.
Effects of concentration, membrane orientation,
and pH were also evaluated. The results show
that the CTA membrane has a lower reverse
flux value than TFC. The final concentration
of lithium in the retentate solution after 30 h of
processing was 12 g L™

The research applies two types of membranes [25]
CTA and TFC. Reports show that the mem-
brane side orientation provides lithium
separation and different concentration rates.
In addition, the type of draw solution was also
observed in the research. The highest concen-
tration was obtained using the CTA membrane
with the orientation of the active side facing the
draw solution of magnesium chloride

The main operating conditions are evaluated by
testing variations in temperature, draw solution
concentration, and flow rate. The variations in
temperature and flow rate have not been carried
out by previous research

@ Springer
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Materials and Methods
FO Membrane

This research used an asymmetric cellulose triacetate
(CTA) membrane supplied from FTS H20 (Sterlitech)
USA [26]. Meanwhile, the cellulose triacetate membrane
has hydrophilic properties, which are characterized by
a low contact angle (<90°) [27, 28]. Hydrophilic mem-
branes tend to have high fouling resistance and stable flux
[19]. According to a study by M.T. Pham et al. [19], the
membrane has a pore size of 0.37 nm, a contact angle
of 48 +2°, and is hydrophilic, with a rejection of sodium
chloride (NaCl) > 98%. The membrane has recommended
operating conditions in the pH range of 2—7 with a maxi-
mum operating temperature of 50 °C.

Feed and Draw Solution
Feed

Geothermal brine in this research was synthesized by dis-
solving several types of chloride salts into demineralized
water. The composition used is presented in Table 2 as
follows,

The composition refers to the real geothermal brine
data approach from Dieng, Central Java, Indonesia, but
does not include other components such as boron, arsenic,
and silica. This research will only be oriented towards a
large part of the study where the content of other impuri-
ties has been eliminated first using another process. All
chemical compounds were purchased from Sigma Aldrich,
the following purity: sodium chloride (NaCl, 99%), potas-
sium chloride (KCIl, 99%), magnesium chloride hexahy-
drate (MgCl,.6H,0, 99%), calcium chloride hexahydrate
(CaCl,.6H,0, 99%), and lithium chloride (LiCl, 99%).
Demineralized water is produced independently using a
RO system, while the measured purity in total dissolved
solids (TDS) is about+ 5 ppm.

Table 2 Synthetic brine

. Component Concentra-
geothermal composition tion (ppm)
NaCl 7500
KCl1 2500
MgCl, 50
CaCl, 400
LiCl 50

@ Springer

Draw Solution

Draw solution was synthesized by dissolving a mass
amount of sodium chloride (NaCl) regarding the maxi-
mum solubility in water, which is 357 g L' at 25 °C so
that the variations in this research were taken below these
values, including 1, 2, and 5 M. Apart from being based
on the maximum solubility of sodium chloride, another
reason for choosing this concentration variation is also
related to the stability of the solute flux with increasing
concentration of sodium chloride solution. [29, 30]. On
the other hand, the effect of flow rate on flux and solute
flux has been carried out. The results show that a moderate
flow rate significantly reduces the formation of concentra-
tion polarization [31, 32]. The thermodynamic properties
of the feed solution and draw solutions' thermodynamic
properties are approximated from the Aspen Plus® data.

FO System

The research was conducted on a laboratory scale FO cell
supplied from Sterlitech with type CF042. This cell has
an active area of 42 cm” (3.2 in?). Variations in operating
conditions were 30, 36, and 42 °C, while the flow rates
were 2, 3, and 4 L h™!. Based on previous research, the
effect of operating temperature has a significant impact
on flux and solute flux, as well as membrane structure
parameters [33-35]. Moreover, attention regarding the
preservation of the membrane is also taken in select-
ing temperature variations. Previous research by A.M.
Awad et al. [37] and N. Niksefat et al. [38] only limited
its operation to the 5-40 °C range. The structure of the
CTA membrane, which is cellulose-based, is easy to leach
when exposed to high temperatures. V. Vatanpour et al.
[36] also noted that operating temperatures that are too
high, around 50 °C, decrease water permeability and a
non-uniform membrane size. Thus, selecting temperature
variations in the operating temperature range close to the
previous research reference can be used. However, analysis
regarding the effect of low flow rate on the significance of
concentration polarization is also the aim of this research.
Meanwhile, the flow rate value variation considers fluid
dynamics (laminar, turbulent, or transitional), calculated
through the Reynolds number on the 42 cm? active areas
(which will be explained in the next section). The closed-
loop controlled system uses two peristaltic pumps. Mass
change data were collected every 5 min for 2.5 h using a
digital scale. Samples before and after the process were
analyzed using ICP-OES (PlasmaQuant—Model PQ 9000
Elite). Meanwhile, the concentration diagram using FO is
presented in Fig. | as follows:
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Feed Tank

Periodic measurement

Pump

CTA Membrane

Feed in

Fig. 1 Experimental apparatus for FO cell

Theoretical Model
Water Flux Modelling

As the driving force for the FO process, Osmosis impacts the
concentration difference gradient between the bulk feed and
bulk draw solution, which is the main factor for the magni-
tude of the resulting flux value [37, 38]. In general, Eq. (1)
is commonly used to calculate the resulting flux value as
follows,

Ty = Az — 7). (1)

The osmotic pressure of the solution is generally denoted
7, the index D as the draw solution, and F as the feed. The
water permeability coefficient of the membrane is denoted
A. The water flux model (1) does not consider the impact
of concentration polarization. Thus, this model needs to be
developed for more complex processes. The two main polar-
izations that need to be included are internal and external
concentration polarization [39, 40]. The water flux model
that considers the two polarizations is written in Eq. (2) as
follows,

nD’bexp(—¥> - nF’bexp<JTW>
e () —ee(=5)]

The osmotic pressure of the bulk liquid is sub-indexed as
b. The mass transfer coefficient values and solute resistance
are k and K, respectively. Some other symbols or notations
include solute permeability coefficient (B), structural param-
eter (S), and diffusivity coefficient (D).

Jy=A )

Feed out

Forward Osmosis

Pump

Draw solution out

Draw solution in

Osmotic Pressure

Theoretically, the value of the osmotic pressure can be calcu-
lated through several approaches. The most straightforward
method is Van't Hoff as Eq. (3) follows [41],

n =nCRT. 3

The Van’t Hoff factor is denoted n, implementing the exist-
ing ionization values. The concentration of the feed solution
and draw solution is denoted C, and the temperature of the
solution is denoted 7. In contrast, the ideal gas constant is
denoted R. The application of Eq. (3) is limited to aqueous
solutions. Another equation that can be used for calculating
osmotic pressure is the activity model in Eq. (4) as follows,

7z=—<R—VT>1n(aW). 4)

The molar volume of the solution is denoted V, while the
water activity is denoted ay, [39]. The value of ay, can be calcu-
lated using an approximation derived from the Pitzer equation
for the electrolyte solution in Eq. (5) as follows,

ay = exp(-0.018020 ), M, ). )

The solute molality and activity coefficient are denoted M;

and @, respectively. The value of the activity coefficient is
calculated by Eq. (6-10) as follows,

1.5
Vi,V Vi Vs
-1 =szxF+2m( m X)Bmx+2m2 lﬁ] C,.\
A
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_0.3921%°
T 1+ 1.2105

1=05(, mz) ®)

(N

|Zmz,| = 5— )
i
B, = By (0) + B exp(—2.01°7). (10)

The ion charge is denoted z, and z,,. The stoichiomet-
ric coefficients are denoted v, and v, while the specific
constants of Pitzer's solution are denoted B,,(0) and C,,,.
All calculation equations related to activity coefficients are
derived from the equations obtained from Pitzer's research
[42].

Mass Transfer Coefficient

External concentration polarization (ECP) is influenced by
the mass transfer coefficient value (k). The value of this
parameter is approximated by Eq. (11) as follows:

ShD
k=22
0 an

The hydraulic diameter, Sherwood number, and diffusiv-
ity coefficient are denoted d;,, Sh, and D, respectively. The
hydraulic diameter (d;,) value can be calculated through
Eq. (12) as follows [43],

4WH

d = .
" W+H (12)

The Reynold number (Re) as the implementation of
hydrodynamics in the system needs to be calculated using
Eq. (13) to determine a laminar, turbulent, or transitional
flow. If the value of Re < 2000, the flow is laminar, while
Re > 4000, the flow is turbulent, and between the two values
means transition flow.

d,vp

Re = . 13
*= (13)

The solution’s viscosity, density, and flow viscosity are
denoted by 1, p, and v. The Sherwood number (Sh) calcula-
tion for laminar flow follows Eq. (14) as follows,

d 0.33
Sh=1.85 <ReScfh> , (14)

Meanwhile, for turbulent flow, the Eq. (15) follows,

@ Springer

Sh = 1.85Re*77Sc"3. (15)

The Schmidt number (Sc) in Egs. (14) and (15) can be
calculated using Eq. (16) as follows,
0
Sc = —,
°=5 (16)
v in Eq. (16) is the kinematic viscosity. The equation for
calculating the Reynold number (Re), Sherwood number
(Sh), Schmidt number (Sc) and mass transfer coefficient
(k) refers to the research of McCutcheon et al. [35, 39, 44].

Solute Resistivity

The effect of internal concentration polarization (ICP) is
influenced by the value of solute resistance [45]. The sol-
ute resistance value can be calculated through Eq. (16) as
follows,

T
K=—.
De (17)

The thickness, tortuosity, and porosity of the membrane
are denoted as t, T, and €.

Diffusivity Coefficient

In this research, the effect of temperature on the diffusivity
coefficient can be approximated using the Stokes—Einstein
Eq. (18) as follows [46]:

DT] _ T, M, (18)
Dy, T, pq, .

The diffusivity coefficients of various ions are presented
in Table 3 as follows:

Rejection

The calculation of rejection of each cation is calculated by
Eq. (19), as follows:

.. Cry
Rejection(%) = [ 1 — —= | x 100, (19)
Cr,i

where, Cr., and Cp; are the initial and final feed concentra-
tions, respectively.

Table 3 Diffusivity coefficient (D) of various ions contained in the
geothermal brine at a temperature of 25 °C

Ton Mg*? Lit  Nat K'Y  Ca**

Diffusivity coefficient (D) (10°
m?%s™h)

0.720 1.030 1.330 1.957 0.792
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Results and Discussion
Effect of Operating Conditions
Effect of Temperature on Water Flux

The performance of FO is determined by the amount of
water taken during the process and the rejection value that
can be achieved. As for the research, the effect of oper-
ating temperature varied from 30, 33, 36, 39 to 42 °C.
Meanwhile, other variables are kept constant in research
related to the effect of temperature: (1) Draw solution
concentration at 5 M, and (2) Flow rate at 4 L h™'. The
determination of the draw solution concentration is based
on considerations related to osmotic pressure as a function
of concentration. This was discussed in “Materials and
Methods” section, and high osmotic pressure is expected
to result in high flux. Meanwhile, the determination of the
flow rate is based on similar considerations. A high flow
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rate decreases external concentration polarization (ECP)
due to high fluid circulation.

Evaluation of the flux produced by FO with cellulose tri-
acetate (CTA) membranes at various temperatures, as well
as other constant operating conditions, is shown in Fig. 2A.
Observations show that the effect of temperature is quite
clearly observed for each variation, it is also shown that the
tendency of flux decreases in each variation. It should be
noted that various reasons can cause this decreased flux,
including (1) The amount of water transferred from the bulk
feed through the CTA semipermeable membrane to the bulk
draw solution. This results in a decrease in the draw solution
concentration, which is directly related to osmotic pressure,
(2) The formation of external concentration polarization
(ECP) on the membrane surface due to the gradation of the
draw solution dilution on the membrane surface. If further
evaluated, the flux formed due to temperature variations has
a quite observable difference.

It can be observed in Table 4 that the highest water
flux under these conditions was 38.16 L m™2 h™! at 42 °C.

|B. Average Water Flux|
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Fig.2 Effect of various temperatures: A Water Flux, B average water flux, C the normalised concentration ratio, D solute rejection
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Table 4 Water flux at various temperatures, at a concentration of 5 M
and a flow rate: 2 L h™!

Temperature (30 °C) 30 33 36 39 42
Initial (L m~>h™") 2925 3106 33.07 3691 38.16
Final (L m~2h7}) 1243 1372 1472 1555 1771

Generally, the influence of temperature on flux cannot be
independent. Several factors are related to the feed solution’s
properties and draw solution, including osmotic pressure,
diffusivity coefficient, density, viscosity, and so on [34].
Mathematically and linearly, the view of increasing osmotic
pressure as a function of temperature can be observed from
Egs. (3) and (4). Thus, an increase in temperature inevitably
increases osmotic pressure. The observations also prove that
at high temperatures, the flux is also high, and vice versa
(see Fig. 2A, B). Thus, the effect of temperature on the
osmotic pressure gradient between the draw solution and
the feed solution, which is the driving force of FO, is one
of the critical processes. On another note, the draw solution
concentration is much higher than the feed solution, so it
becomes a more dominant factor. The dominance factor is
related to the direction of displacement and the driving force
that arises due to differences in osmotic pressure. Based on
the solubility properties of chloride salts, the solution has
a positive enthalpy. An increase in temperature tends to
increase the solubility of the salt so that the osmotic pres-
sure increases, which increases the resulting water flux [47].

Apart from affecting osmotic pressure, the viscosity of
the solution also plays a significant role in increasing the
water flux that can be achieved. Based on the hypothesis put
forward by Phuntsho et al. [34], it is stated that the lower
viscosity of the draw solution has an impact on increasing
the rate of water transfer through the membrane support

A. Density

—s— Density at 30°C
—e— Density at 36°C
2 0.980 H—— Density at 42°C
—J 0978

0.984

0.982 -

G 0.976 4

S

=, 0.974+

£

@ 0.972-

c

D 0,970
0.968 -
0.966 -

120 140 160 180 200 220 240 260

Volume (mL)

layer, thereby reducing the effect of internal concentration
polarization (ICP) [34]. In this research, the effect of viscos-
ity is not directly carried out in the laboratory but through
a theoretical approach using Aspen Plus®. The approach
shows that the effect of temperature on viscosity is quite sig-
nificant. On another note, the transfer of water only occurs
from the feed solution to the draw solution, so the viscosity
of the feed solution is quite representative. In addition, in the
approach process using Aspen Plus® there are several notes
or/and assumptions, including: (1) Changes in the concentra-
tion of dissolved ions in the feed solution are considered to
have no significant effect on the density or viscosity because
the feed concentration is relatively dilute [48], (2) Select the
equation of state (EOS) electrolyte nonrandom two liquid
(eNRTL), (3) The approach due to changes in feed volume
from the beginning to the end of the process (250 — 125 mL)
can be represented. The results of the approach using Aspen
Plus® for density and viscosity can be seen in Fig. 3 as
follows.

The Stokes—Einstein approach appraised ion diffusiv-
ity’s effect as a temperature function (Eq. 18). From these
equations, it is shown that the effect of temperature also
plays a direct role in the diffusivity and indirectly on the
viscosity that has been mentioned previously. Increasing
temperature affects the diffusivity value, at which a higher
temperature will increase the diffusivity. The increase in the
diffusivity value is expected to reduce the resistance in the
support layer, reducing the effect of internal concentration
polarization (ICP). A thorough evaluation of flux can be
done by looking at the flux trend on average. In this case,
the average flux is obtained by the simple moving average
method, which is the sum of all fluxes for each data collec-
tion time divided by the number of data. The overall results
showed that water flux at 42 °C was the highest, 39, 36,
33 and 30 °C. Comparing the average flux as a function of

B. Viscosity

0.80 - —e=— Viscosity at 30°C
0.78 —e— Viscosity at 36°C
_.0.764 —— Viscosity at 42°C
5 0.741 \\‘\‘\
=072
B 0.70-
§ 0.68- ‘\\\
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0.62- \‘\*\x
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Fig.3 A Density and B viscosity as a function of volume at various temperatures
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temperature, it is observed that the increase in temperature
in the range of 30—42 °C produces a fairly linear gradient of
increasing flux. This can be observed in Fig. 2B. From the
trend presented in Fig. 2B, the increase in flux with tem-
perature changes has a behaviour that is in line with flux
at various times for each temperature variation. This trend
of change in average flux is linear with temperature change
and supports the related fact that flux is proportional to the
change in osmotic pressure, which is directly a function of
temperature (Egs. 3 and 4).

The water flux value achieved during the process will
affect the concentration rate of the geothermal brine solution
using the FO process. This effect is presented in Fig. 2C,
which displays the ratio of concentration rates expressed in
normalized concentrations at various times. Therefore, the
relation that states that temperature changes will affect the
normalized concentration can be determined (as opposed to
flux). The best conditions are obtained at a temperature of
42 °C followed by a temperature of 39, 36, 33 and 30 °C, as
shown in Fig. 2C. The highest value at 42 °C was reached in
the range of 2.74, while the lowest was at 30 °C with 1.84.
In detail, the normalized concentration in each variation has
a similar pattern, but at 42 °C, temperature variations show
quite different behaviour at 120—150 min. This is possible
because, at the time of data collection, the homogeneity of
the feed solution has not been achieved, so the concentra-
tion has not implemented the overall concentration of the
solution.

The solute rejection value was also observed for its effect
on changes in operating temperature. At the same time, the
results are presented in Fig. 2D. As discussed in the previ-
ous section, an increase in ionic diffusivity can occur due to
an increase in temperature. Therefore, ion migration across
a semipermeable membrane is possible. Figure 2D shows
that the ions can diffuse across a semipermeable membrane.
However, the ability to diffuse is not the only reason ions can
move across the membrane. The low viscosity of water due
to an increase in temperature also encourages the dissolved
ions to move along with the water flux. The size of the ions
passing through the membrane is essential in achieving sol-
ute rejection. The ion size of the solution system is known
as the hydrated ion radius. In Table 5, the hydration radius
(r,) and hydration enthalpy (AG) of various ions contained
in geothermal brine at a temperature of 25 °C is observed
as follows [49, 50],

Research by Yamaguchi et al. [51] has shown an increase
in solution temperature impacts decreasing the ionic radius
of hydration. Besides impacting the ionic hydration radius,
the temperature increase also impacts the membrane's pore
size due to the swelling phenomenon in the polymer mak-
ing up the membrane. As for the increasing temperature, the
membrane experiences swelling in the constituent polymer
chains, resulting in a widening pore size [52]. These effects

Table 5 Hydration ionic radius (r,) and hydration enthalpy (AG) of
various ions contained in the geothermal brine at a temperature of
25°C

Ton Li* Na* K* Mg** Ca’*

Hydration 0.382 0.358 0.331 0.428 0.412

radius (1)
(nm)
Hydration -519 — 409 - 322 — 1921 - 1577
enthalpy
(AG)

(kJ mol™h)

make it easier for the ions to move through the membrane.
In this research, the distribution of hydration pore size (ry,)
has not been determined with certainty, but according to the
literature, the hydrated pore size of the CTA membrane will
range from 0.300 to 0.348 nm [53]. Previous research con-
ducted by Pham et al. [19] showed that the CTA membrane
had a hydration pore size (r;,) of 0.370 nm.

The results presented in Fig. 2D have not shown the phe-
nomenon of decreasing solute rejection due to increased
temperature. Further observations found an anomaly at
42 °C, indicating that the overall ion rejection was higher
than 36 °C. It is possible that at 42 °C, the swelling of the
membrane is already at its maximum limit, while the ions’
hydration radius is widening due to the loosening of the
molecular bonds of water rather than ions. This causes the
ions to not move across the membrane even though other
factors, such as the viscosity of the solution, decrease.

According to Tansel et al. [48, 54], water molecules will
experience stronger bonds to ions with small sizes than
large ones. Therefore, the hydration enthalpy indicates the
hydration bond strength (Table 5). If based only on the
enthalpy of hydration, the first hydration shell of the row:
Mg** > Ca®* >Li">Na* > K*. However, research data show
different results, so other factors must be considered as the
basis for the rejection of monovalent (K*, Na*, Li*) higher
than divalent (Mg?* and Ca*). In contrast to the research
conducted by Coday et al. [55], which showed that monova-
lent and divalent rejected more than 90%, specifically Mg>*
was close to 100%.

Meanwhile, this indicates that the research results
obtained have anomalies due to certain things, possibly due
to interactions between monovalent ions. This interaction
has been described in research conducted by Zangi [56],
which alludes to the effect of charge density ions (ex: Cl™,
I, Li*, Na") on water molecules. The presence of water is
considered a bridge between ions to interact with each other,
which can be formed when these ions form hydrogen bonds
with water. However, this analogy does not fully represent
the phenomenon that occurs for the dominant ions (Na* and
K*). The mechanism for the formation of the hydration layer
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begins with the attraction of oxygen by positive ions, result-
ing in the attraction of hydrogen. The presence of hydrogen
will form a skin that will bind to oxygen from other struc-
tures [48]. Overall, the solute rejection results ranged from
71.41 to 80.53%. Potassium (K*) has the highest rejection
value, ranging from 75.95 to 88.47%, while the lowest value
is occupied by Ca?*, with a value of 62.61-73.45%.

Effect of Draw Solution Concentration on Water Flux

The effect of the draw solution concentration in this research
was determined by varying the concentrations of 1, 2, and
5 M, respectively. The operation occurs at a temperature of
42 °C and a flow rate of 2 L h™!. The results showed that
the 5 M concentration produced the highest water flux with
a 38.16 L m~2 h™!. The comparison of the results of the
concentration variation is presented in Fig. 4A.

—a— 1T M——2M—a—5M

Water Flux (L.m?2.h™")

—_
o
1

R

0 2b ‘ 4IL'J r6‘0 8|0 160 1éO 1:‘10 1é0
Time (minute)

w

C. The Normalize Concentration Ratio

50

——3IM——2M——1M

N
o
|

g
(=}
1

-
o
i

o
(&)

o
o

0 20 40 60 80 100 120 140 160
Time (minute)

Normalize Concentration (C,/C,)

The effect of increasing the concentration can be observed
in Fig. 4A, which shows that increasing the concentration of
the draw solution results in an increase in water flux. This
phenomenon occurs because the change in the ionic activity
value of the draw solution has increased. When comparing
the effect of increasing temperature, a more significant result
is obtained by varying the concentration of the draw solu-
tion. This is because ionic mobility in solution tends to be
more limited, resulting in easier collisions between ions. The
average water flux is presented in Fig. 4B.

At various concentrations, the increase in water flux is
proportional to the increase in the concentration of the draw
solution. This will affect the concentration rate of the geo-
thermal brine solution that can be achieved during the pro-
cess. If observed, the increasing average water flux gradient
due to increasing concentration does not form a linear model
for increasing concentration. This condition also proves that
changes in concentration have a more significant impact than

B. Average Water Flux
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Fig.4 Effect of various draw solution concentrations: A Water flux, B average water flux, C the normalised concentration ratio, D solute rejec-

tion

@ Springer



Journal of Sustainable Metallurgy

temperature changes. Another process performance review is
carried out by considering the concentration rate (Fig. 4C).
The comparison of the normalized concentration ratios pre-
sented in Fig. 4C shows that increasing the concentration of
the draw solution results in an increase in the normalized
concentration that can be achieved. The highest value was
obtained at the 5 M draw solution concentration in the range
of 2.74, while the lowest was obtained at 1 M with a value
of 1.29.

The solute rejection value is used to determine the con-
centration performance due to variations in the concentra-
tion of the draw solution. The results of the comparison of
solute rejection at various variations in the concentration of
the draw solution are presented in Fig. 4D. The effect of the
concentration of the draw solution on solute rejection cannot
be separated from the amount of water flux produced. The
extensive water flux results in the tendency for concentration
polarization to form on the active surface of the membrane
facing the feed. This concentration polarization increases
the chances of its transfer by diffusion on the membrane
surface. This is evidenced by the research results in Fig. 4D.
It was observed that the 5 M variation of the draw solution
produced smaller solute rejection compared to 2 and 1 M.
Overall, it appears that the rejection decreased along with
the increase in the draw solution concentration. However, at
Na and K, deviations were found. Meanwhile, the average
deviation between the two is around +5%. The best value of
solute rejection is occupied by variation 1 M with 93.36%.

Effect of Flow Rate on Water Flux

The effect of flow rate in the FO process was determined
by comparing several flow rate variations, namely 2, 3, and
4 L h™!. The effect can be seen from the water flux’s value,
concentration rate, and rejection. The following are the
results of the flow rate variations carried out at a 5 M draw
solution concentration at 42 °C:

The results presented in Fig. 5A show that the influence
of the flow rate on the FO process is quite different from one
another at the beginning of the process. Still, over time the
resulting flow rate becomes more uniform. This is possible
because the membrane’s concentration polarisation phe-
nomenon was not formed at the beginning of the process,
so water can easily move from the feed side to the draw
solution. However, the concentration polarization began to
form on the membrane surface over time. The results of the
comparison of the average water flux as a function of the
variation in flow rate are presented in Fig. 5B.

The research results presented in Fig. 5C show that the
increase in the process flow rate is not very influential com-
pared to other variations (temperature and draw solution
concentration). This is evidenced by increasing the flow
rate from 2 to 4 L h™! does not significantly differ. This

condition is related to the hydrodynamics of the solution
on the membrane surface, which has not been able to elimi-
nate the influence of the external concentration polariza-
tion formed so that water diffusion on the active surface of
the membrane is still blocked by the layer formed on the
membrane surface. The cross-flow configuration mechanism
plays a role in the hydrodynamic system. Meanwhile, previ-
ous studies have proved that FO configuration plays a role
in the hydrodynamics of the fluid on the membrane surface
[57]. The study compared the cross-flow configurations of
spiral wound forward osmosis (SWFO) and flat sheet for-
ward osmosis (FSFO), and it appears that the membrane
parameters (e.g. A, B, S) are different from each other.

Figure 5D presents the effect of flow rate on ion rejection.
The rejection at the flow rate variation of 2 L h™! appears to
be the highest. Theoretically, increasing the flow rate results
in a decrease in concentration polarization, leading to high
rejection. However, in this research, there is no agreement
with this theory. This condition is evident in the research
results in Fig. 5C. It is observed that the variation of 4 L h™!
produces minor solute rejection than 3 and 2 L h™!. The
highest solute rejection value was obtained at a flow rate
of 2 L h™! with 93.36%. This condition occurs because an
increase in the flow rate also impacts the mobility of ions
through the membrane [48]. This is related to a higher shear
force with an increased flow rate. Thus, ions can release
hydrated water in the presence of high shear forces to move
across the membrane. Conversely, the tendency to lose
hydrating water on the ion surface will be small [48]. The
loss of hydrating water on the ion surface makes it easier for
ions to pass through the membrane pores.

Evaluation of Parameters and Models

The variation of several parameters showed that the effect
of temperature, concentration, and the process flow rate was
quite significant. Related to this, the process parameters need
to be evaluated. A suitable model is expected to accurately
predict the water flux during the FO process. Meanwhile, a
comprehensive model considers the effect of external and
internal concentration polarization (ECP and ICP) (Eq. 2).
In this regard, the van der Waals osmotic pressure (VDW)
model (Eq. 3) and extended Pitzer (EP) (Eqgs. 4-10) were
used.

Temperature Variation Model

The effect of temperature on water flux, rejection, and con-
centration rate has been discussed previously. An increased
operating temperature increases water flux and the concen-
tration rate. The factors that cause this phenomenon need
to be analysed, including the effect of the osmotic pressure
value and its suitability to the phenomenon. The results of
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Fig.5 Effect of various flow rates: A Water flux, B average water flux, C the normalised concentration ratio, D solute rejection

comparing several activity models for calculating osmotic
pressure as a function of temperature variations are pre-
sented in Fig. 6A.

The results presented in Fig. 6A show that the Van der
Waals (VDW) and Extended Pitzer (EP) osmotic pressure
models can be used in water flux modelling. Evaluation of
model accuracy is assessed through statistical methods. The
coefficient of determination (r?) between the EP and VDW
models was 0.994 and 0.986, respectively. Based on these
values, the EP model is more representative than the VDW
model. The average value of parameters A and B from the
EP model is 0.2141 x 10~ and 0.005 x 10~". Besides affect-
ing molecular and ionic interactions in solution, an increase
in temperature also affects the phenomena on the membrane
surface. The increase in temperature results in increased dif-
fusion of water in the membrane. This significantly decreases
the ECP value due to increasing the mass transfer coefficient
value (k). Increasing water diffusion decreases solute resist-
ance (K), significantly reducing the ICP value [39]. Research

@ Springer

from Yong et al. [30] and Field et al. [58] also explains the
relationship between the mass transfer in the membrane and
the resistance and structural parameters formed.

Concentration Variation Model

The results of qualitative analysis on the effect of concentra-
tion variations have been described previously, which show
significant differences in water flux, rejection, and con-
centration rate. In the previous explanation, it was known
that an increase in the concentration of the draw solution
increased water flux and concentration rate and a decrease
in rejection. Quantitative analysis of this phenomenon must
be conducted to determine the effect of the activity model
used in calculating the osmotic pressure on the FO process
parameters, A and B, on the resulting water flux. The com-
parison in Fig. 6A shows that the EP model provides the best
approximation value (r>=0.992). The average value of the
A and B parameters from the EP model is 0.3728 x 1077 and
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0.005x 1077, respectively. These parameter values indicate
that the increase in water flux due to the increased concen-
tration of the draw solution is closely related to the molecu-
lar and ionic activities in the solution. Solutions with high
concentrations tend to produce high collision interactions
between molecules, ions, and ions so that the activity of
the solution increases. As the molecular activity increases,
the draw solution's osmotic pressure increases, thereby
increasing the driving force. This is already implied from
the osmotic pressure model in Egs. (3) and (4).

Flow Rate Variation Model

The effect of process flow rate has been previously
described. The results show that an increase in flow rate
increases water flux and concentration rate and decreases
rejection generated during the process. These conditions

indicate that the effect of changes in flow rate needs to
be analyzed. As for the FO process, the increase in flow
rate affects the hydrodynamics on the membrane surface,
which is related to the ability of water to move from the
feed to the draw solution. This ability is expressed in the
mass transfer coefficient (k). The effect of the mass trans-
fer coefficient (k) can be seen in Fig. 6D. The increase in
water flux is closely related to the mass transfer coefficient
(k) value, observed in Fig. 6D. The comparison results in
Fig. 6C show that the increase in the EP model (r?=0.998)
has better compatibility with the experimental water flux
model than VDW. Theoretically, it has been explained that
the VDW method does not consider the ionic activity as a
determinant of osmotic pressure and vice versa; EP con-
siders it. Thus, experimental and theoretical results are
coherent.
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Product Characteristics

The results of ICP analysis on the feed solution after the
FO process can implement the concentration that the
process can achieve. It is important to obtain this data to
determine the maximum limit of lithium concentration that
can be achieved. The final lithium concentration at the best
conditions in this research was measured at a temperature
of 42 °C, a concentration of 5 M, and a flow rate of 4
L h~!. The lithium concentrate yield reached + 120.21 ppm
or almost three times more concentrated than the feed
used. While the yields for other ions, including potassium,
sodium, calcium, and magnesium, are 1993.85, 5264.86,
160.10, and 332.27 ppm, respectively. Lithium concen-
trations are still low in industrial applications and can-
not be processed further. In future research, developing
a sustainable draw solution that can form high osmotic
pressure is necessary. In addition, research on membrane
synthesis with high rejection and selectivity needs to be
developed. It is planned that the extraction of lithium from
the concentrate will be carried out using an ED process,
which has shown high selectivity. This is done when the
synthetic brine geothermal solution has been concentrated
to the expected value. The minimum lithium concentration
needed to achieve 60-80% recovery in the precipitation
process is 20-30 g L™! [59].

Conclusion

The research conclusion confirms that various parameters
have been evaluated for their effect on the lithium con-
centration process using FO. These parameters affect the
flux, rate of concentration, and rejection. Draw solution
concentration showed the most significant effect compared
to temperature and flow rate. In addition, tests at a prede-
termined operating temperature range showed a theoretical
increase in osmotic pressure as a function of temperature,
although it was not significant. Rejection can be achieved
by more than 70% for all ions, which has the potential
for further expansion to increase selectivity even more.
The analysis of the osmotic pressure model between the
extended Pitzer (EP) and van der Waals (VDW) shows
that both models can be used to approximate the selected
operating condition range. Still, it is also emphasized that
the extended Pitzer model is more appropriate.
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