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Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) requires finding new drugs or repurposing drugs 
for clinical use. Molecular docking belongs to structure-based drug design providing a fast method for identifying the hit com-
pounds with antiviral activity against SARS-Cov-2. However, the weakness of the docking method is compounded by the limited 
crystallographic information and comparison drugs due to the novelty of this virus can present challenges in identifying hits of anti-
SARS-Cov-2. In the current review, we highlighted several aspects, especially those related to the target structure, docking validation, 
and virtual hit selection, that need to be considered to obtain reliable docking results. Here, we discussed several cases pertaining to 
the issue highlighted and approaches that could be used to solve them.
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Introduction

The drug discovery process and development are common-
ly time-consuming for almost 20 years and have an im-
moderate cost. Drug discovery can be initiated by screen-
ing millions of compounds into smaller sizes and, finally, 
the best compound, the hit or lead compound, is found. 
New methods are still being developed to shorten the time 
and save money (Talele et al. 2010) and for this purpose, 
virtual screening has gained a lot of popularity lately.

Virtual screening comprises two approaches: struc-
ture-based drug design (SBDD) and ligand-based drug 
design (LBDD). LBDD is based on the principle that com-
pounds with similar structures tend to exhibit similar bi-
ological activity. Thus, the screening will focus on finding 

compounds similar to the known active compounds. 
Meanwhile, in SBDD, it is assumed that biologically active 
compounds will be able to bind to target molecules (pro-
teins, enzymes, DNA, RNA). Molecular docking is one of 
the structure-based virtual screening methods commonly 
used in drug discovery (Vázquez et al. 2020).

The emergence of novel coronavirus disease at the end 
of 2019 has opened a new chapter in the drug discovery 
field. Many studies have been carried out to find anti-
SARS-Cov-2 drugs. Interestingly, the current treatment of 
SARS-Cov-2 is dominated by reusing existing drugs such 
as chloroquine/hydroxychloroquine, lopinavir/ritonavir, 
ribavirin, oseltamivir, remdesivir, and favipiravir (Singh 
et al. 2020), indicating that the need for Covid-19 drugs 
is urgent. Therefore, rapid strategies to shorten the hit 
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identification process are needed, and molecular docking 
is one of the most frequently used strategies, probably be-
cause the method is relatively simple, fast, and does not 
require many tools, especially if the compounds being 
screened are already available for clinical use.

According to our search in the PubMed search engine 
using “docking screening covid” as a query, there were 398 
articles in 2020 and an increase to 709 articles in 2021, 
indicating that scientists are interested in applying the 
molecular docking method for anti-SARS-Cov-2 drugs 
discovery. Unfortunately, several articles have suggest-
ed that caution is required in concluding the molecular 
docking results because there are some limitations to mo-
lecular docking (Kolb and Irwin 2009; Scior et al. 2012; 
Chen 2015). Hence, we are interested in discussing some 
aspects that can affect the quality of docking results, in-
cluding the target structure, docking protocol validation, 
and virtual hit selection, when dealing with a novel case 
of SARS-Cov-2. Out of 1107 articles from 2020–2021, 
we solely analyzed 318 articles that met the inclusion 
criteria: free full-text access, thus we can obtain the com-
plete methodology and the topic should be about virtual 
screening against a single target. Hopefully, this review 
will provide useful information in developing molecular 
docking-based virtual screening, especially when dealing 
with a novel target.

Target structure selection

In structure-based drug design, molecular docking will 
model the interaction between a ligand and the target 
molecule and then calculate the complex binding energy 
to distinguish between the binder and non-binder ligands. 
For good results, this method requires the high-resolution 
3D structure of the target generated from X-ray crystal-
lography, nuclear magnetic resonance (NMR) spectros-
copy, or homology modeling (Cerqueira et al. 2009). 
X-ray structures are considered more accurate than NMR 
structures, so they are highly recommended for use in 
molecular docking simulation. Since NMR structures are 
determined in solution, there will usually be up to ten 
conformers and one of them must be chosen which is the 
most representative for docking simulation. Huang and 

Zou (2007) reported that this method resulted in a poor 
prediction of binding modes and docking scores. On the 
other hand, a homology structure is usually used when 
X-ray and NMR structures are not yet available. Homol-
ogy modeling generally consists of three major stages: 
finding the template structure; aligning target sequences 
to the template; building the model. Errors may occur 
at each stage (Rockey and Elcock 2006; Bordogna et al. 
2011), thus using it in docking studies becomes riskier.

In the case of SARS-Cov-2, the availability of some 
crystal proteins is still limited due to their novelty. Thus, 
the structures of these proteins were ordinarily generated 
using homology modeling based on the SARS-Cov struc-
ture as the template (Sharma et al. 2020; Hosseini et al. 
2021; Liu et al. 2021). According to the molecule being 
attacked, there are two categories of drug targets of SARS-
Cov-2, one from the host including angiotensin-convert-
ing enzyme 2 (ACE2), transmembrane serine protease 2 
(TMPRSS2), and the other from the virus itself consisting 
of structural proteins namely membrane (M), spike (S), 
envelope (E), nucleocapsid (N). In addition, there are 
1–16 non-structural proteins (nsp) such as main prote-
ase (Mpro), papain-like protease (Plpro), and RNA-de-
pendent RNA polymerase (RdRp) (Wu et al. 2020). Fig. 1 
shows that out of the total articles reviewed, Mpro was the 
most used target. This might be due to its co-crystal com-
plex structure having been solved and available in the pro-
tein data bank (PDB) thus providing useful information 
about the binding site and interaction profile for selecting 
the virtual hits.

According to our findings, 11.6% of articles used ho-
mology structure in their docking studies for several tar-
gets such as TMPRSS2 (Barge et al. 2021; Idris et al. 2021; 
Mahmudpour et al. 2021), S (Mathew et al. 2021), ACE2 
(Srivastava et al. 2021), and helicase (White et al. 2020). 
Indeed, the similarity between the protein sequence of 
SARS-Cov-2 and SARS-Cov as the template is high (Dong 
et al. 2020). The degree of similarity between the query 
and template sequences highly determines the quality of 
a homology structure where the lower the similarity, the 
worse the quality (Robinson et al. 2014). However, a study 
by McGovern and Shoichet (2003) demonstrated that three 
homology structures with 80% similarity to the template 
showed the worst enrichment factors (EF) (see validation 

Figure 1. The number of articles for each target of antiviral SARS-Cov-2.
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of molecular docking section) when used in molecular 
docking-based screening, indicating poor screening power.

Meanwhile, to answer the question of whether the gen-
eral rule that only homology models built from templates 
with a sequence identity > 50% of the template are suit-
able for docking study, Bordogna et al. (2011) revealed 
that in many cases of their study, models with sequence 
identity > 50% showed distance root-mean-square devia-
tion (dRMSD) of values in the range of 2–8 Å, whereas in 
some cases, models with sequence identity < 50% showed 
acceptable values of dRMSD (< 2 Å). dRMSD is a devia-
tion in the relative position of the ligand to the binding 
site residues after the superimposition of the model onto 
the target structure. These results are in line with a study 
conducted by Fernandes et al. (2004) with EF values as 
the parameter, indicating that sequence identity does not 
guarantee the quality of a homology model used in dock-
ing studies. Moreover, Bordogna et al. (2011) pointed out 
that the success rate of docking simulation depends on the 
accuracy of modeling the binding site. Here, the binding 
site geometry of the template will be transferred to the tar-
get, thereby possibly contributing to the screening accura-
cy. For this purpose, ligand binding information from the 
holo template (protein structure complexed with a ligand) 
might play an important role. Rockey and Elcock (2006) 
demonstrated that kinase homology models generated 
from other kinases as the template complexed with stau-
rosporine showed better results for redocking of stauros-
porine than apo (protein structure without any ligand) or 
template complexed with a different ligand.

Concerning SARS-Cov-2, we found several studies have 
already been carried out before the targets are available in 
the protein data bank. As a result, homology structures were 
used in their virtual screening process. Two studies com-
pared their homology models of Mpro (Jiménez-Alberto et 
al. 2020) and RdRp (Narayanan and Nair 2020) with the 
corresponding actual structures that were solved and de-
posited in the PDB by other studies before publication. The 
authors reported that their models overlap with the actual 
structure. We noted that the templates have sequence iden-
tity > 90% of the targets. Nevertheless, just like the other 
studies that used homology in this review, the performance 
of their docking protocols was not tested thus they just re-
lied on the model’s quality in terms of sequence identity. 
The use of the lowest sequence identity (35.2%) was found 
in modeling TMPRSS2 using serine protease hepsin as the 
template (Durdaği 2020; Chikhale et al. 2021).

On the other hand, although some studies in our review 
have used the actual target structures, it still poses challeng-
es, especially when dealing with the apo-form (Seeliger and 
De Groot 2010). A study by McGovern and Shoichet (2003) 
has demonstrated that the screening power using apo-form 
to distinguish active and decoys were generally weaker than 
holo-form. Moreover, the presence of a native ligand in ho-
lo-form provides binding pose information in addition to 
docking scores which can be a reference for selecting virtu-
al hits. So far, Mpro was the most used target in this review, 
with some holo-forms available in PDB (Table 1).

Naturally, a protein may have several binding site 
shapes depending on the type of ligand bound to it as a 
result of the induced-fit effect and side-chain flexibility. 
For example, the crystal structure of monoamine oxidase 
B (MAO-B) complexed with pioglitazone (PDB: 4A79) 
has a binding site volume of 97 Å whereas when MAO-B 
complexed with 1,4-diphenyl-2-butene (PDB:1OJ9), the 
binding site volume increases to 289 Å (Ramírez and 
Caballero 2018). Therefore, in addition to the resolu-
tion of the crystal structure, the use of a holo-structure 
with a native ligand similar to the ligand to be docked 
will increase the probability of successful docking (Fan 
et al. 2009; Tuccinardi et al. 2010). Most of the Mpro ar-
ticles in this review used 6LU7 in their docking studies, 
in line with the finding by Llanos et al. (2021). When a 
study analyzed the docking results of natural compounds 
against 6LU7 (holo) and 6Y2E (apo), authors found that 
the selected compounds exhibited different binding pos-
es, as well as their rank based on the docking score on 
each target (Hastantram et al. 2020), confirming that the 
target structure could affect docking results, especially for 
screening purposes.

Validation of molecular docking

Molecular docking consists of two main stages, namely 
sampling the binding pose of ligand in the active site of 
the macromolecule and predicting the binding energy 
expressed as a docking score for each pose using scoring 
functions (Meng et al. 2011). So far, the existing docking 
tools are generally able to generate the correct binding 
pose. Unfortunately, not always the correct binding pose 
is scored with the lowest energy. Verkhivker et al. (2000) 
in their docking simulation of the transthyretin-thyroxine 
complex (PDB: 1ETA) using two scoring functions found 
that the lowest energy conformation was at RMSD values 
of 8.97 and 6.74 Å respectively from the native state, indi-
cating that the two scoring functions failed to predict the 
correct binding pose. If these docking protocols are still 
used for virtual screening, the use of the ranking order 

Table 1. Crystal structure of several targets used in the arti-
cles reviewed.

No Targets PDB ID
1 Spike 6LZG, 6M0J, 6M17, 6VSB, 6W41, 6X6P, 7BZ5
2 ACE2 1R4L*, 1R42, 6LZG, 6M0J, 6VSB, 2AJF, 6VW1
3 TMPRSS2 7MEQ*
4 RdRp 6M71, 7BV2*, 7BW4
5 Nucleocapsid 7M4R, 6VYO, 6ZCO
6 Mpro 6LU7*, 4MDS*, 6Y2E, 6Y2F*, 6Y2G*, 6Y7M*, 6Y84, 6YB7*, 

5R7Y*, 5R80*, 5R82*, 5R84*, 5RF7*, 5RFS*, 6LZE*, 6M03, 
6M0K*, 6M2N*, 6W63*, 7BQY*, 7BRP*, 7JYC*

7 Plpro 4OVZ*, 4OW0*, 6W9C, 6WX4*, 7JN2*, 7JRN*
8 Nsp3 6W02*, 7BF6*
9 Nsp9 6W4B
10 Nsp10 6W4H*, 6YZ1*
11 Nsp15 6VWW, 6W01*
12 Nsp16 6W4H*, 6YZ1*, 6WKQ*

*Holo structure.
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of the compounds based on their docking score becomes 
unreliable as a guide in virtual hit selection.

The inaccuracy of the scoring function in molecular 
docking could be caused by neglecting some parameters 
(e.g., solvation effects, flexibility, polarization effects) re-
quired for the binding energy calculation (Pantsar and 
Poso 2018). If all these parameters must be covered in the 
molecular docking process, the computational cost be-
comes high and time-consuming. Consequently, molec-
ular docking is no longer effective for screening millions 
of compounds. Here, the validation process before dock-
ing simulations, known as redocking, plays an important 
role to confirm the docking power, whether the docking 
algorithm can reproduce the experimental binding pose 
(RMSD < 2 Å), and whether the scoring function can rank 
it at the top position (lowest energy) compared to other 
conformations (Meng et al. 2011). To perform this step, a 
crystal structure in holo-form is required.

In addition to docking power, there is another valida-
tion type commonly used in molecular docking, namely 
screening power assessment, by conducting a retrospec-
tive study where a docking protocol is used to screen a 
database consisting of active and inactive (decoy) com-
pounds (Empereur-Mot et al. 2015). The screening results 
are then ranked based on their docking score and then 
the area under the curve (AUC) of receiver operating 
characteristic (ROC) curves or enrichment factor (EF) is 
calculated. An acceptable AUC value of ROC for virtual 
screening is > 0.7. It is noteworthy, that even though two 
docking protocols show the same AUC values, they may 
differ in their ability to recognize the active compounds 
at the beginning of the ranking list (Braga and Andrade 
2013). In this case, EF can be relied on to select the best 
protocol where the greater the EF value, the more active 
compounds are found at the top of a certain fraction, 
generally 1% of the ranked database (Huang et al. 2006). 
Here, EF1% is defined according to the equation below 
(Asampled (1%) = number of active compounds found at 1% of 
the database screened, Nsampled (1%) = number of compounds 
screened at 1% of the database, Atotal = number of active 
compounds in the entire database, Ntotal = number of com-
pounds in the entire database) (Braga and Andrade 2013).

As shown in Fig. 2, models A and B result in the same 
AUC values. However, model B has a stepper ROC curve 
than model A, indicating a larger EF value. Therefore, 
model B is superior to model A.

In this review, we found that 71% of the articles per-
formed their docking screening without validation data 
(Fig. 3). It was not surprising because the targets used 
were in the apo-form or homology models so it was not 
possible to carry out the redocking process. Even so, arti-
cles with holo-form targets also did not perform this val-
idation. On the other hand, only 25% of articles involved 
redocking, and Mpro was the most commonly used target. 
Regarding screening power, only 2% of articles used this 

type of validation, and 2% of the others used a combina-
tion of docking and screening power. The lack of known 
inhibitors could be a reason for infrequent testing of the 
screening power. Without the validation process, the re-
sult of the docking screening might be questionable, es-
pecially when using a homology structure that has mul-
tiple layers of prediction compared to an actual structure. 
Rather than relying solely on the docking score to select 
virtual hits, additional confirmation is required, such as 
molecular dynamics (MD) simulation followed by rescor-
ing the binding free energy using molecular mechanic/
Poisson–Boltzmann or generalized Born and surface area 
(MM/PB(GB)SA).

MD simulation can overcome some limitations of mo-
lecular docking as mentioned previously. The complex of 
ligand-protein with an incorrect binding pose obtained 
from docking simulation can be identified by MD sim-
ulation where this complex will produce an unstable MD 
trajectory during the simulation characterized by increas-
ing the ligand-RMSD profile. Moreover, an improvement 
of enrichment hit in retrospective virtual screening ex-
periments was obtained when the docking poses were 
rescored using MM/PB(GB)SA after MD simulation (De 
Vivo et al. 2016). Chen (2015) found some articles with 
inconsistent docking results compared to MD in their 
report where the top score docking pose showed huge 
differences after a 20 ns MD simulation. Here, MD sim-
ulation provides further computational validation before 
summarizing the docking results.

On the other hand, MD plays a role in generating multi-
ple conformations of the protein targets of interest in addi-
tion to multiple experimental structures which can be used 
for ensemble docking aimed to solve the flexibility of the 
binding site in molecular docking (Huang and Zou 2010; 
Salmaso and Moro 2018). It has been shown that the per-
formance of ensemble docking in predicting the binding 
affinity is superior to docking using a single structure (Yan 

Figure 2. ROC curve of model A and model B.
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and Zou 2015). Meanwhile, in the case of docking using a 
homology structure, ensemble docking can be performed 
by generating multiple conformations of the target from 
multiple templates. Fan et al. (2009) generated 222 homol-
ogy models based on 222 templates for 38 proteins and 
performed consensus ensemble docking. Then evaluated 
the EF for being compared to the EF obtained from dock-
ing using the holo and apo X-ray structures of the same 
protein. They found that EFs of consensus ensemble dock-
ing were better and comparable to the holo X-ray structure 
in 15 and 9 cases of the 38 targets, respectively. Meanwhile, 
its performance was still better compared to docking using 
an apo X-ray structure, indicating this might be an alter-
native strategy to improve the performance of docking us-
ing the homology model. In the current review, we found 
that 65.7% of the articles involved MD simulations in their 
screening process. Most of them used MD, particularly for 
predicting the complex ligand-protein stability and calcu-
lating the free binding energy.

Hits criteria

After performing a molecular docking-based screening 
against a database of ligands, the next important step is 
post-processing of the docking results to select the virtual 
hits, which are ideally top-ranked compounds. Generally, 
0.1–2.5% of the top-ranked compounds are considered 
for experimental confirmation (Slater and Kontoyianni 
2019). The next challenge is which compounds among 
the top-ranked will be chosen, especially, when the ex-
perimental testing capacity is not sufficient to cover all of 
them. To illustrate, for a database consisting of 1 billion 
compounds, at least 100,000 virtual hits will be obtained. 
If only 100 assays are available for experimental testing, 
then the compounds should be further screened. As pre-
viously discussed, the scoring function is not completely 
accurate in predicting binding energy. Thus, relying on 
the docking score as the only criterion will increase false 
positive hits. Here, we discussed several additional filters 
such as binding pattern, consensus docking, and ligand 

efficiency that can be applied not only to reduce the size 
of the virtual hits but also to minimize the false positives.

Binding pattern

In docking simulations, it is important to take into ac-
count the binding pattern of a ligand to the target protein. 
Several proteins have been known to have key residues on 
their active site that can interact with a ligand to produce 
or improve biological activity. For example, Met769 in the 
hinge region of EGFR (PDB:1M17) has been reported 
to be an important residue for ligand inhibitory activity, 
particularly via the hydrogen bond. The presence of this 
bond in inhibitors can increase their activity (Sangande 
et al. 2022). Meanwhile, four histidine residues (His361, 
His366, His541, His545) and Ile663 around Fe are the im-
portant residues in lipoxygenase (PDB: 1LOX). Binding or 
blocking 1–2 of those by a ligand can prevent the catalytic 
process (Rissyelly et al. 2022). According to these criteria, 
ligands, which involve the key residue in their interac-
tion, should be prioritized. It has been demonstrated in a 
retrospective kinase virtual screening that in most cases, 
the false positive hits had no interaction with certain key 
residues of the kinase (Perola 2006). These key residues 
can generally be recognized from crystallographic data of 
the inhibitor/activator-protein complex so that again ho-
lo-structure is superior to apo or homology structure for 
this purpose.

In the case of SARS-Cov-2, several targets have no 
crystallographic data, especially in holo-form. To accom-
modate this issue, several articles try to dock existing 
drugs showing clinical benefit in SARS-Cov-2 treatment 
to the target of interest and take their binding pattern as 
a reference. This strategy is legal to use as long as the ref-
erence drugs have been confirmed to work against the 
intended target. Surprisingly, we found several studies 
docked hydroxychloroquine and remdesivir to Mpro, 
and used their binding pattern for selecting hits. To the 
best of our knowledge, remdesivir is an RdRp inhibitor 
(Yin et al. 2020; Kokic et al. 2021), while the mechanism 

Figure 3. Distribution of validation types used.
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of action of hydroxychloroquine is not yet clear (Satarker 
et al. 2020). This might cause an error in hit selection. 
On the other hand, several articles also set docking score 
cutoffs, especially when there are no reference drugs for 
comparison (Liu et al. 2021; Majeed et al. 2021). A study 
reduced the size of the database screened using Glide to 
1% of the total 2201 compounds by utilizing a docking 
score cutoff at -8.5 kcal/mol for further analysis. This cut-
off was chosen because it roughly corresponds to 1 µM 
(Wang 2020).

Consensus docking

In molecular docking, there are three types of scor-
ing functions (SF): force field, empirical, and knowl-
edge-based scoring function (Huang and Zou 2010; Maia 
et al. 2020). Each SF may result in a different order of 
ranking compounds when applied in virtual screening 
as shown in a previous study whereby four 2-substituted 
4-aminoquinazoline derivatives docked to human epider-
mal growth factor receptor 2 (HER2), exhibited differ-
ent ranking orders between DOCK6 (force field SF) and 
iGemdock (empirical SF) (Sangande et al. 2022). Several 
studies have also used this method called traditional con-
sensus docking by combining several docking tools with 
different SF to obtain dependable results (Aliebrahimi et 
al. 2018; Kim et al. 2021).

In virtual screening, the consensus docking method 
can be applied by averaging the score of compounds in 
each docking tool to generate a new ranking order or by 
selecting the compounds that are top-scored by all dock-
ing tools used (Palacio-Rodríguez et al. 2019). Garcia-Sosa 
et al. (2008) conducted a virtual screening study in which 
they used two docking tools, Autodock and Glide. In this 
study, they calculated the consensus score for each com-
pound, which is the mean of the two scores obtained from 
Autodock and Glide. In another study, Li et al. (2016) per-
formed consensus docking by selecting four compounds 
that entered the top ten rankings in both result groups 
DOCK and Vina (Table 2).

In the current review, we found that 9.1% of articles 
used consensus docking in their studies. Interestingly, 
one article applied a stricter consensus method by tak-
ing into account the binding poses of the ligands on the 
three docking tools: Glide, FRED, and Vina. In the two 

previous studies mentioned above, it is not clear whether 
the two docking tools result in a similar binding pose or 
not. Briefly, Gimeno et al. (2020) defined the hits in their 
study as the compounds with the equivalent binding pose 
(RMSD < 1.5 Å) in all three docking tools and presented 
the highest mean docking score (Fig. 4). By applying this 
method, the resulting docking score may represent the 
correct pose thus it is more accurately used as the basis for 
compiling a ranking list.

Ligand efficiency

Docking also has a drawback related to the appearance of a 
biased score caused by the molecular weight (MW) of the 
ligand since, in most cases, the docking score is directly pro-
portional to the MW (Cosconati et al. 2010), thereby poten-
tially increasing false positives due to the accumulation of 
large molecules in the top rank. In a study using a series of 
2,4-diamino-8-quinazoline carboxamide derivatives with a 
known IC50 docked to the human cluster of differentiation 
38 (CD38), Boittier et al. (2020) compared the docking score 
and IC50 of each compound. Generally, the results revealed 
that the scoring function of several docking tools tends to 
overpredict compounds with a large R2 group and vice ver-
sa (Fig. 5). One approach that might be used to control the 

Table 2. The top ten compounds on each docking tool, with 
four compounds (highlighted) found on both ranking lists.

Rank DOCK score Vina score
1 ZINC67912533 -49.206 ZINC67912780 -12.1
2 ZINC67912770 -42.197 ZINC67912765 -11.9
3 ZINC67912536 -41.430 ZINC67912770 -11.6
4 ZINC67912780 -38.277 ZINC67912773 -11.4
5 ZINC67912532 -37.362 ZINC49823152 -11.2
6 ZINC72320416 -36.851 ZINC28882432 -11.2
7 ZINC67912525 -36.756 ZINC67902892 -11.1
8 ZINC72320169 -35.085 ZINC08234294 -11
9 ZINC28882432 -33.335 ZINC77269187 -10.8
10 ZINC03643476 -33.309 ZINC72320169 -10.7

Figure 4. Illustration of the consensus method performed by 
Gimeno et al. (2020) (CS: Consensus score; DS: Docking score).
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balance of the MW and docking score is ligand efficiency 
(LE). Originally, LE which belongs to the efficiency indices 
is calculated by dividing the experimental binding affini-
ty by the number of heavy atoms. However, in molecular 
docking, the binding affinity can be replaced by the docking 
score (Hetényi et al. 2007; García-Sosa et al. 2010).

In virtual screening, ligands with high LE values indicate 
that they use each atom efficiently to bind to the target and 
should be prioritized as hits. As pointed out by Garcia-Sosa 
et al. (2008), they suggested five compounds (represented 
by NSC154829) that would be interesting for inhibiting the 
wild-type H5N1 neuraminidase (PDB: 2HU0) according to 
their LE values, even though there were other compounds 
with better consensus scores (represented by amikacin) but 
low LE values (Fig. 6). As a comparison, oseltamivir is the 
known inhibitor as well as the native ligand of 2HU0 with 
a low MW but has a high LE value of 0.363 kcal/mol/heavy 
atom. This may be the reason for the efficiency of oseltami-
vir against this target. The LE values may vary depending 
on the type of target. However, many researchers use the LE 
value of 0.3 kcal/mol/heavy atom or better as a good crite-
rion for selecting hits because these values are equivalent to 
drug candidates with a Kd of 10 nM and an MW of 500 Da 
(~38 heavy atoms). On the other hand, to achieve this level, 
a starting hit for optimization should have an MW of 350 Da 
and 0.5 µM activity or better because the optimization pro-
cess often involves the addition of new groups in the scaffold 
of ligand thus increasing the MW. Noteworthy, an MW of 
500 is the maximum recommended limit for a drug to be 
taken orally according to Lipinski’s Rule of Five (Zhu et al. 
2013). Unfortunately, LE or other efficiency indices are rare-
ly used in most virtual screening cases as encountered in the 

current review. We noted only 4.1% of articles involved the 
LE parameter in their docking-based virtual screening study.

Conclusion

Molecular docking provides an effective method for iden-
tifying hits in the early stages of drug discovery. So far, 
docking scores are generally used as the criteria in selecting 
hits. Unfortunately, the present simplification in molecular 
docking decreases the accuracy of the docking score thus 
increasing false positives. In the current review, we have 
discussed several aspects that may affect the docking per-
formance caused by the inaccuracy of the docking score.

As long as possible, it should be recommended to use the 
actual crystal structure (X-ray or NMR), especially in holo 
form, because access to redocking validation and informa-
tion on ligand binding is only available in holo-structure. 
For apo and homology as well as holo-structure, the screen-
ing power validation can be performed if known inhibitors 
are available. Fortunately, several studies have reported in vi-
tro activity of their hits against the SARS-Cov-2 target of in-
terest, so it might be used to generate active and decoy sets.

As a novel virus, the information on its target proteins 
is limited. Relying solely on the docking score to pick hits 
has the potential to increase false positives, especially 
without validation or MD confirmation. Therefore, strict 
virtual hit selection should be applied. There are many 
strategies available for this purpose. In the current review, 
we suggested considering ensemble docking, consensus 
pose and scoring, and ligand efficiency to improve the ac-
curacy of docking results, especially against a novel target.
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