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Abstract

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) requires finding new drugs or repurposing drugs
for clinical use. Molecular docking belongs to structure-based drug design providing a fast method for identifying the hit com-
pounds with antiviral activity against SARS-Cov-2. However, the weakness of the docking method is compounded by the limited
crystallographic information and comparison drugs due to the novelty of this virus can present challenges in identifying hits of anti-
SARS-Cov-2. In the current review, we highlighted several aspects, especially those related to the target structure, docking validation,
and virtual hit selection, that need to be considered to obtain reliable docking results. Here, we discussed several cases pertaining to

the issue highlighted and approaches that could be used to solve them.
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Introduction

The drug discovery process and development are common-
ly time-consuming for almost 20 years and have an im-
moderate cost. Drug discovery can be initiated by screen-
ing millions of compounds into smaller sizes and, finally,
the best compound, the hit or lead compound, is found.
New methods are still being developed to shorten the time
and save money (Talele et al. 2010) and for this purpose,
virtual screening has gained a lot of popularity lately.
Virtual screening comprises two approaches: struc-
ture-based drug design (SBDD) and ligand-based drug
design (LBDD). LBDD is based on the principle that com-
pounds with similar structures tend to exhibit similar bi-
ological activity. Thus, the screening will focus on finding

compounds similar to the known active compounds.
Meanwhile, in SBDD, it is assumed that biologically active
compounds will be able to bind to target molecules (pro-
teins, enzymes, DNA, RNA). Molecular docking is one of
the structure-based virtual screening methods commonly
used in drug discovery (Vazquez et al. 2020).

The emergence of novel coronavirus disease at the end
of 2019 has opened a new chapter in the drug discovery
field. Many studies have been carried out to find anti-
SARS-Cov-2 drugs. Interestingly, the current treatment of
SARS-Cov-2 is dominated by reusing existing drugs such
as chloroquine/hydroxychloroquine, lopinavir/ritonavir,
ribavirin, oseltamivir, remdesivir, and favipiravir (Singh
et al. 2020), indicating that the need for Covid-19 drugs
is urgent. Therefore, rapid strategies to shorten the hit
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identification process are needed, and molecular docking
is one of the most frequently used strategies, probably be-
cause the method is relatively simple, fast, and does not
require many tools, especially if the compounds being
screened are already available for clinical use.

According to our search in the PubMed search engine
using “docking screening covid” as a query, there were 398
articles in 2020 and an increase to 709 articles in 2021,
indicating that scientists are interested in applying the
molecular docking method for anti-SARS-Cov-2 drugs
discovery. Unfortunately, several articles have suggest-
ed that caution is required in concluding the molecular
docking results because there are some limitations to mo-
lecular docking (Kolb and Irwin 2009; Scior et al. 2012;
Chen 2015). Hence, we are interested in discussing some
aspects that can affect the quality of docking results, in-
cluding the target structure, docking protocol validation,
and virtual hit selection, when dealing with a novel case
of SARS-Cov-2. Out of 1107 articles from 2020-2021,
we solely analyzed 318 articles that met the inclusion
criteria: free full-text access, thus we can obtain the com-
plete methodology and the topic should be about virtual
screening against a single target. Hopefully, this review
will provide useful information in developing molecular
docking-based virtual screening, especially when dealing
with a novel target.

Target structure selection

In structure-based drug design, molecular docking will
model the interaction between a ligand and the target
molecule and then calculate the complex binding energy
to distinguish between the binder and non-binder ligands.
For good results, this method requires the high-resolution
3D structure of the target generated from X-ray crystal-
lography, nuclear magnetic resonance (NMR) spectros-
copy, or homology modeling (Cerqueira et al. 2009).
X-ray structures are considered more accurate than NMR
structures, so they are highly recommended for use in
molecular docking simulation. Since NMR structures are
determined in solution, there will usually be up to ten
conformers and one of them must be chosen which is the
most representative for docking simulation. Huang and
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Zou (2007) reported that this method resulted in a poor
prediction of binding modes and docking scores. On the
other hand, a homology structure is usually used when
X-ray and NMR structures are not yet available. Homol-
ogy modeling generally consists of three major stages:
finding the template structure; aligning target sequences
to the template; building the model. Errors may occur
at each stage (Rockey and Elcock 2006; Bordogna et al.
2011), thus using it in docking studies becomes riskier.

In the case of SARS-Cov-2, the availability of some
crystal proteins is still limited due to their novelty. Thus,
the structures of these proteins were ordinarily generated
using homology modeling based on the SARS-Cov struc-
ture as the template (Sharma et al. 2020; Hosseini et al.
2021; Liu et al. 2021). According to the molecule being
attacked, there are two categories of drug targets of SARS-
Cov-2, one from the host including angiotensin-convert-
ing enzyme 2 (ACE2), transmembrane serine protease 2
(TMPRSS2), and the other from the virus itself consisting
of structural proteins namely membrane (M), spike (S),
envelope (E), nucleocapsid (N). In addition, there are
1-16 non-structural proteins (nsp) such as main prote-
ase (Mpro), papain-like protease (Plpro), and RNA-de-
pendent RNA polymerase (RdRp) (Wu et al. 2020). Fig. 1
shows that out of the total articles reviewed, Mpro was the
most used target. This might be due to its co-crystal com-
plex structure having been solved and available in the pro-
tein data bank (PDB) thus providing useful information
about the binding site and interaction profile for selecting
the virtual hits.

According to our findings, 11.6% of articles used ho-
mology structure in their docking studies for several tar-
gets such as TMPRSS2 (Barge et al. 2021; Idris et al. 2021;
Mahmudpour et al. 2021), S (Mathew et al. 2021), ACE2
(Srivastava et al. 2021), and helicase (White et al. 2020).
Indeed, the similarity between the protein sequence of
SARS-Cov-2 and SARS-Cov as the template is high (Dong
et al. 2020). The degree of similarity between the query
and template sequences highly determines the quality of
a homology structure where the lower the similarity, the
worse the quality (Robinson et al. 2014). However, a study
by McGovern and Shoichet (2003) demonstrated that three
homology structures with 80% similarity to the template
showed the worst enrichment factors (EF) (see validation
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Figure 1. The number of articles for each target of antiviral SARS-Cov-2.
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of molecular docking section) when used in molecular
docking-based screening, indicating poor screening power.

Meanwhile, to answer the question of whether the gen-
eral rule that only homology models built from templates
with a sequence identity > 50% of the template are suit-
able for docking study, Bordogna et al. (2011) revealed
that in many cases of their study, models with sequence
identity > 50% showed distance root-mean-square devia-
tion (ARMSD) of values in the range of 2-8 A, whereas in
some cases, models with sequence identity < 50% showed
acceptable values of dRMSD (< 2 A). dRMSD is a devia-
tion in the relative position of the ligand to the binding
site residues after the superimposition of the model onto
the target structure. These results are in line with a study
conducted by Fernandes et al. (2004) with EF values as
the parameter, indicating that sequence identity does not
guarantee the quality of a homology model used in dock-
ing studies. Moreover, Bordogna et al. (2011) pointed out
that the success rate of docking simulation depends on the
accuracy of modeling the binding site. Here, the binding
site geometry of the template will be transferred to the tar-
get, thereby possibly contributing to the screening accura-
cy. For this purpose, ligand binding information from the
holo template (protein structure complexed with a ligand)
might play an important role. Rockey and Elcock (2006)
demonstrated that kinase homology models generated
from other kinases as the template complexed with stau-
rosporine showed better results for redocking of stauros-
porine than apo (protein structure without any ligand) or
template complexed with a different ligand.

Concerning SARS-Cov-2, we found several studies have
already been carried out before the targets are available in
the protein data bank. As a result, homology structures were
used in their virtual screening process. Two studies com-
pared their homology models of Mpro (Jiménez-Alberto et
al. 2020) and RdRp (Narayanan and Nair 2020) with the
corresponding actual structures that were solved and de-
posited in the PDB by other studies before publication. The
authors reported that their models overlap with the actual
structure. We noted that the templates have sequence iden-
tity > 90% of the targets. Nevertheless, just like the other
studies that used homology in this review, the performance
of their docking protocols was not tested thus they just re-
lied on the model’s quality in terms of sequence identity.
The use of the lowest sequence identity (35.2%) was found
in modeling TMPRSS2 using serine protease hepsin as the
template (Durdagi 2020; Chikhale et al. 2021).

On the other hand, although some studies in our review
have used the actual target structures, it still poses challeng-
es, especially when dealing with the apo-form (Seeliger and
De Groot 2010). A study by McGovern and Shoichet (2003)
has demonstrated that the screening power using apo-form
to distinguish active and decoys were generally weaker than
holo-form. Moreover, the presence of a native ligand in ho-
lo-form provides binding pose information in addition to
docking scores which can be a reference for selecting virtu-
al hits. So far, Mpro was the most used target in this review,
with some holo-forms available in PDB (Table 1).

Table 1. Crystal structure of several targets used in the arti-
cles reviewed.

No  Targets PDB ID

1 Spike 6LZG, 6M0], 6M17, 6VSB, 6W41, 6X6P, 7BZ5

2  ACE2 1R4L*, 1R42, 6LZG, 6MO0]J, 6VSB, 2AJF, 6VW1

3 TMPRSS2 7MEQ*

4 RdRp 6M71, 7BV2*, 7BW4

5  Nucleocapsid 7MA4R, 6VYO, 6ZCO

6  Mpro 6LU7*, 4MDS*, 6Y2E, 6Y2F*, 6Y2G*, 6Y7M*, 6Y84, 6YB7*,
5R7Y*, 5R80%, 5R82*, 5R84*, 5RF7*, 5RES*, 6LZE*, 6MO03,

6MOK*, 6M2N*, 6W63*, 7BQY*, 7BRP*, 7]YC*

7 Plpro 40VZ*, 40W0%, 6WIC, 6WX4*, 7JN2*, 7JRN*

8 Nsp3 6W02*, 7BF6*

9  Nsp9 6W4B

10 Nspl0 6W4H*, 6YZ1*

11 Nspl5 6VWW, 6W01*

12 Nspl6 6W4H*, 6YZ1*, 6WKQ*

*Holo structure.

Naturally, a protein may have several binding site
shapes depending on the type of ligand bound to it as a
result of the induced-fit effect and side-chain flexibility.
For example, the crystal structure of monoamine oxidase
B (MAO-B) complexed with pioglitazone (PDB: 4A79)
has a binding site volume of 97 A whereas when MAO-B
complexed with 1,4-diphenyl-2-butene (PDB:10]J9), the
binding site volume increases to 289 A (Ramirez and
Caballero 2018). Therefore, in addition to the resolu-
tion of the crystal structure, the use of a holo-structure
with a native ligand similar to the ligand to be docked
will increase the probability of successful docking (Fan
et al. 2009; Tuccinardi et al. 2010). Most of the Mpro ar-
ticles in this review used 6LU7 in their docking studies,
in line with the finding by Llanos et al. (2021). When a
study analyzed the docking results of natural compounds
against 6LU7 (holo) and 6Y2E (apo), authors found that
the selected compounds exhibited different binding pos-
es, as well as their rank based on the docking score on
each target (Hastantram et al. 2020), confirming that the
target structure could affect docking results, especially for
screening purposes.

Validation of molecular docking

Molecular docking consists of two main stages, namely
sampling the binding pose of ligand in the active site of
the macromolecule and predicting the binding energy
expressed as a docking score for each pose using scoring
functions (Meng et al. 2011). So far, the existing docking
tools are generally able to generate the correct binding
pose. Unfortunately, not always the correct binding pose
is scored with the lowest energy. Verkhivker et al. (2000)
in their docking simulation of the transthyretin-thyroxine
complex (PDB: 1ETA) using two scoring functions found
that the lowest energy conformation was at RMSD values
of 8.97 and 6.74 A respectively from the native state, indi-
cating that the two scoring functions failed to predict the
correct binding pose. If these docking protocols are still
used for virtual screening, the use of the ranking order
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of the compounds based on their docking score becomes
unreliable as a guide in virtual hit selection.

The inaccuracy of the scoring function in molecular
docking could be caused by neglecting some parameters
(e.g., solvation effects, flexibility, polarization effects) re-
quired for the binding energy calculation (Pantsar and
Poso 2018). If all these parameters must be covered in the
molecular docking process, the computational cost be-
comes high and time-consuming. Consequently, molec-
ular docking is no longer effective for screening millions
of compounds. Here, the validation process before dock-
ing simulations, known as redocking, plays an important
role to confirm the docking power, whether the docking
algorithm can reproduce the experimental binding pose
(RMSD < 2 A), and whether the scoring function can rank
it at the top position (lowest energy) compared to other
conformations (Meng et al. 2011). To perform this step, a
crystal structure in holo-form is required.

In addition to docking power, there is another valida-
tion type commonly used in molecular docking, namely
screening power assessment, by conducting a retrospec-
tive study where a docking protocol is used to screen a
database consisting of active and inactive (decoy) com-
pounds (Empereur-Mot et al. 2015). The screening results
are then ranked based on their docking score and then
the area under the curve (AUC) of receiver operating
characteristic (ROC) curves or enrichment factor (EF) is
calculated. An acceptable AUC value of ROC for virtual
screening is > 0.7. It is noteworthy, that even though two
docking protocols show the same AUC values, they may
differ in their ability to recognize the active compounds
at the beginning of the ranking list (Braga and Andrade
2013). In this case, EF can be relied on to select the best
protocol where the greater the EF value, the more active
compounds are found at the top of a certain fraction,
generally 1% of the ranked database (Huang et al. 2006).
Here, EF, is defined according to the equation below
(A, piea 19 = Dumber of active compounds found at 1% of
the database screened, N = number of compounds

sampled (1%)
screened at 1% of the database, A = number of active
= number of com-

total
compounds in the entire database, N,

pounds in the entire database) (Braga and Andrade 2013).

Asampled (1%)/Nsampled (1%)
Atotal / Ntotal

As shown in Fig. 2, models A and B result in the same
AUC values. However, model B has a stepper ROC curve
than model A, indicating a larger EF value. Therefore,
model B is superior to model A.

In this review, we found that 71% of the articles per-
formed their docking screening without validation data
(Fig. 3). It was not surprising because the targets used
were in the apo-form or homology models so it was not
possible to carry out the redocking process. Even so, arti-
cles with holo-form targets also did not perform this val-
idation. On the other hand, only 25% of articles involved
redocking, and Mpro was the most commonly used target.
Regarding screening power, only 2% of articles used this

EFqo, =

Model A

Model B

Sensitivity

AUC A=AUCB
EF, A <EF;% B

...
e
x

1-Specificity
Figure 2. ROC curve of model A and model B.

type of validation, and 2% of the others used a combina-
tion of docking and screening power. The lack of known
inhibitors could be a reason for infrequent testing of the
screening power. Without the validation process, the re-
sult of the docking screening might be questionable, es-
pecially when using a homology structure that has mul-
tiple layers of prediction compared to an actual structure.
Rather than relying solely on the docking score to select
virtual hits, additional confirmation is required, such as
molecular dynamics (MD) simulation followed by rescor-
ing the binding free energy using molecular mechanic/
Poisson-Boltzmann or generalized Born and surface area
(MM/PB(GB)SA).

MD simulation can overcome some limitations of mo-
lecular docking as mentioned previously. The complex of
ligand-protein with an incorrect binding pose obtained
from docking simulation can be identified by MD sim-
ulation where this complex will produce an unstable MD
trajectory during the simulation characterized by increas-
ing the ligand-RMSD profile. Moreover, an improvement
of enrichment hit in retrospective virtual screening ex-
periments was obtained when the docking poses were
rescored using MM/PB(GB)SA after MD simulation (De
Vivo et al. 2016). Chen (2015) found some articles with
inconsistent docking results compared to MD in their
report where the top score docking pose showed huge
differences after a 20 ns MD simulation. Here, MD sim-
ulation provides further computational validation before
summarizing the docking results.

On the other hand, MD plays a role in generating multi-
ple conformations of the protein targets of interest in addi-
tion to multiple experimental structures which can be used
for ensemble docking aimed to solve the flexibility of the
binding site in molecular docking (Huang and Zou 2010;
Salmaso and Moro 2018). It has been shown that the per-
formance of ensemble docking in predicting the binding
affinity is superior to docking using a single structure (Yan
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71%

2%

25%

Figure 3. Distribution of validation types used.

and Zou 2015). Meanwhile, in the case of docking using a
homology structure, ensemble docking can be performed
by generating multiple conformations of the target from
multiple templates. Fan et al. (2009) generated 222 homol-
ogy models based on 222 templates for 38 proteins and
performed consensus ensemble docking. Then evaluated
the EF for being compared to the EF obtained from dock-
ing using the holo and apo X-ray structures of the same
protein. They found that EFs of consensus ensemble dock-
ing were better and comparable to the holo X-ray structure
in 15 and 9 cases of the 38 targets, respectively. Meanwhile,
its performance was still better compared to docking using
an apo X-ray structure, indicating this might be an alter-
native strategy to improve the performance of docking us-
ing the homology model. In the current review, we found
that 65.7% of the articles involved MD simulations in their
screening process. Most of them used MD, particularly for
predicting the complex ligand-protein stability and calcu-
lating the free binding energy.

Hits criteria

After performing a molecular docking-based screening
against a database of ligands, the next important step is
post-processing of the docking results to select the virtual
hits, which are ideally top-ranked compounds. Generally,
0.1-2.5% of the top-ranked compounds are considered
for experimental confirmation (Slater and Kontoyianni
2019). The next challenge is which compounds among
the top-ranked will be chosen, especially, when the ex-
perimental testing capacity is not sufficient to cover all of
them. To illustrate, for a database consisting of 1 billion
compounds, at least 100,000 virtual hits will be obtained.
If only 100 assays are available for experimental testing,
then the compounds should be further screened. As pre-
viously discussed, the scoring function is not completely
accurate in predicting binding energy. Thus, relying on
the docking score as the only criterion will increase false
positive hits. Here, we discussed several additional filters
such as binding pattern, consensus docking, and ligand

® Docking power
Docking power and screening power
® Screening power

® No validation

efficiency that can be applied not only to reduce the size
of the virtual hits but also to minimize the false positives.

Binding pattern

In docking simulations, it is important to take into ac-
count the binding pattern of a ligand to the target protein.
Several proteins have been known to have key residues on
their active site that can interact with a ligand to produce
or improve biological activity. For example, Met769 in the
hinge region of EGFR (PDB:1M17) has been reported
to be an important residue for ligand inhibitory activity,
particularly via the hydrogen bond. The presence of this
bond in inhibitors can increase their activity (Sangande
et al. 2022). Meanwhile, four histidine residues (His361,
His366, His541, His545) and Ile663 around Fe are the im-
portant residues in lipoxygenase (PDB: 1LOX). Binding or
blocking 1-2 of those by a ligand can prevent the catalytic
process (Rissyelly et al. 2022). According to these criteria,
ligands, which involve the key residue in their interac-
tion, should be prioritized. It has been demonstrated in a
retrospective kinase virtual screening that in most cases,
the false positive hits had no interaction with certain key
residues of the kinase (Perola 2006). These key residues
can generally be recognized from crystallographic data of
the inhibitor/activator-protein complex so that again ho-
lo-structure is superior to apo or homology structure for
this purpose.

In the case of SARS-Cov-2, several targets have no
crystallographic data, especially in holo-form. To accom-
modate this issue, several articles try to dock existing
drugs showing clinical benefit in SARS-Cov-2 treatment
to the target of interest and take their binding pattern as
a reference. This strategy is legal to use as long as the ref-
erence drugs have been confirmed to work against the
intended target. Surprisingly, we found several studies
docked hydroxychloroquine and remdesivir to Mpro,
and used their binding pattern for selecting hits. To the
best of our knowledge, remdesivir is an RdRp inhibitor
(Yin et al. 2020; Kokic et al. 2021), while the mechanism
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of action of hydroxychloroquine is not yet clear (Satarker
et al. 2020). This might cause an error in hit selection.
On the other hand, several articles also set docking score
cutoffs, especially when there are no reference drugs for
comparison (Liu et al. 2021; Majeed et al. 2021). A study
reduced the size of the database screened using Glide to
1% of the total 2201 compounds by utilizing a docking
score cutoff at -8.5 kcal/mol for further analysis. This cut-
oftf was chosen because it roughly corresponds to 1 uM
(Wang 2020).

Consensus docking

In molecular docking, there are three types of scor-
ing functions (SF): force field, empirical, and knowl-
edge-based scoring function (Huang and Zou 2010; Maia
et al. 2020). Each SF may result in a different order of
ranking compounds when applied in virtual screening
as shown in a previous study whereby four 2-substituted
4-aminoquinazoline derivatives docked to human epider-
mal growth factor receptor 2 (HER2), exhibited differ-
ent ranking orders between DOCKG® (force field SF) and
iGemdock (empirical SF) (Sangande et al. 2022). Several
studies have also used this method called traditional con-
sensus docking by combining several docking tools with
different SF to obtain dependable results (Aliebrahimi et
al. 2018; Kim et al. 2021).

In virtual screening, the consensus docking method
can be applied by averaging the score of compounds in
each docking tool to generate a new ranking order or by
selecting the compounds that are top-scored by all dock-
ing tools used (Palacio-Rodriguez et al. 2019). Garcia-Sosa
et al. (2008) conducted a virtual screening study in which
they used two docking tools, Autodock and Glide. In this
study, they calculated the consensus score for each com-
pound, which is the mean of the two scores obtained from
Autodock and Glide. In another study, Li et al. (2016) per-
formed consensus docking by selecting four compounds
that entered the top ten rankings in both result groups
DOCK and Vina (Table 2).

In the current review, we found that 9.1% of articles
used consensus docking in their studies. Interestingly,
one article applied a stricter consensus method by tak-
ing into account the binding poses of the ligands on the
three docking tools: Glide, FRED, and Vina. In the two

Table 2. The top ten compounds on each docking tool, with
four compounds (highlighted) found on both ranking lists.

Rank DOCK score Vina score

1 ZINC67912533 -49.206 ZINC67912780 -12.1
2 ZINC67912770 -42.197 ZINC67912765 -11.9
3 ZINC67912536 -41.430 ZINC67912770 -11.6
4 ZINC67912780 -38.277 ZINC67912773 -11.4
5 ZINC67912532 -37.362 ZINC49823152 -11.2
6 ZINC72320416 -36.851 ZINC28882432 -11.2
7 ZINC67912525 -36.756 ZINC67902892 -11.1
8 ZINC72320169 -35.085 ZINC08234294 -11

9 ZINC28882432 -33.335 ZINC77269187 -10.8
10 ZINC03643476 -33.309 ZINC72320169 -10.7

previous studies mentioned above, it is not clear whether
the two docking tools result in a similar binding pose or
not. Briefly, Gimeno et al. (2020) defined the hits in their
study as the compounds with the equivalent binding pose
(RMSD < 1.5 A) in all three docking tools and presented
the highest mean docking score (Fig. 4). By applying this
method, the resulting docking score may represent the
correct pose thus it is more accurately used as the basis for
compiling a ranking list.

~ Pose 3

Dspose 2 of Glide T Dspose 30f FRED T Dspose 1 of Vina

Csligand - 3

Figure 4. Illustration of the consensus method performed by
Gimeno et al. (2020) (CS: Consensus score; DS: Docking score).

Ligand efficiency

Docking also has a drawback related to the appearance of a
biased score caused by the molecular weight (MW) of the
ligand since, in most cases, the docking score is directly pro-
portional to the MW (Cosconati et al. 2010), thereby poten-
tially increasing false positives due to the accumulation of
large molecules in the top rank. In a study using a series of
2,4-diamino-8-quinazoline carboxamide derivatives with a
known IC, docked to the human cluster of differentiation
38 (CD38), Boittier et al. (2020) compared the docking score
and IC,, of each compound. Generally, the results revealed
that the scoring function of several docking tools tends to
overpredict compounds with a large R, group and vice ver-
sa (Fig. 5). One approach that might be used to control the

B
F3C F F3C F
HN HN
~N ~N
_ § 7 y
N« N N N
H
N™ 0 | o ¥

| HN
Figure 5. Overpredictive of a derivative compound with a large

A
Ha

R, group (A); Underpredictive of a derivative compound with a
small R, group (B).
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Figure 6. The chemical scaffold of oseltamivir, NSC154829, and amikacin with their consensus scoring (CS), molecular weight

(MW), number of heavy atoms (NHA), and ligand efficiency (LE).

balance of the MW and docking score is ligand efficiency
(LE). Originally, LE which belongs to the efficiency indices
is calculated by dividing the experimental binding affini-
ty by the number of heavy atoms. However, in molecular
docking, the binding affinity can be replaced by the docking
score (Hetényi et al. 2007; Garcia-Sosa et al. 2010).

In virtual screening, ligands with high LE values indicate
that they use each atom efficiently to bind to the target and
should be prioritized as hits. As pointed out by Garcia-Sosa
et al. (2008), they suggested five compounds (represented
by NSC154829) that would be interesting for inhibiting the
wild-type H5N1 neuraminidase (PDB: 2HUO) according to
their LE values, even though there were other compounds
with better consensus scores (represented by amikacin) but
low LE values (Fig. 6). As a comparison, oseltamivir is the
known inhibitor as well as the native ligand of 2HUO with
alow MW but has a high LE value of 0.363 kcal/mol/heavy
atom. This may be the reason for the efficiency of oseltami-
vir against this target. The LE values may vary depending
on the type of target. However, many researchers use the LE
value of 0.3 kcal/mol/heavy atom or better as a good crite-
rion for selecting hits because these values are equivalent to
drug candidates with a Kd of 10 nM and an MW of 500 Da
(~38 heavy atoms). On the other hand, to achieve this level,
a starting hit for optimization should have an MW of 350 Da
and 0.5 uM activity or better because the optimization pro-
cess often involves the addition of new groups in the scaffold
of ligand thus increasing the MW. Noteworthy, an MW of
500 is the maximum recommended limit for a drug to be
taken orally according to Lipinski’s Rule of Five (Zhu et al.
2013). Unfortunately, LE or other efficiency indices are rare-
ly used in most virtual screening cases as encountered in the
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