

Study Effect of Storage Temperature and Packaging Methods on Physical Characteristics of Gelatin-Based Moringa Leaf Extract Chewable Gummy

Syalza Mumpuni Kusuma Dewi¹, Nikmatul Ikhrom Eka Jayani², Karina Citra Rani^{3*}

¹ Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia

² Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia.

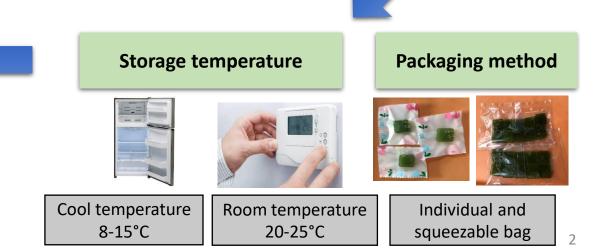
³ Department of Pharmaceutics, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java Indonesia

*karinacitrarani@staff.ubaya.ac.id

Introduction

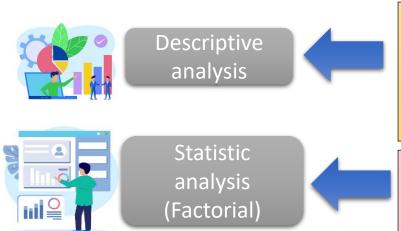
UBAYA

M. oleifera leaves extract contain the high activity of antioxidant *M. oleifera* leaves extract are potential to be developed into chewable gummy tablets Formulation of chewable gummy based *Moringa oleifera* leaf extract using 10% gelatin


Optimization of the storage temperature and packaging method

Stability evaluation of the chewable gummy tablet based *Moringa oleifera* leaf extract

Evaluation the effect of storage condition and packaging method on physical characteristics


Group 1

Methodology

Preparation of M. oleifera leaves extract chewable gummy using 10% of gelatin

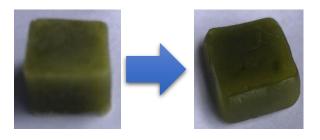
Divided into four groups based on the design of storage temperature and packaging method

- Physical observation
- Weight variation
- Dimension
- Texture analysis (chewiness, gumminess, hardness)
- Swelling ratio
- Dispersion time
- Syneresis percentage

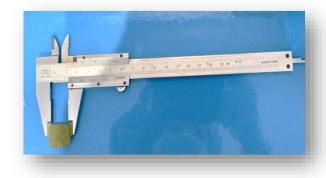
Evaluation of the physical characteristics of the chewable gummy from each group

Group 2

Group 3



Group 4

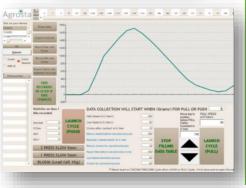


Physical observation

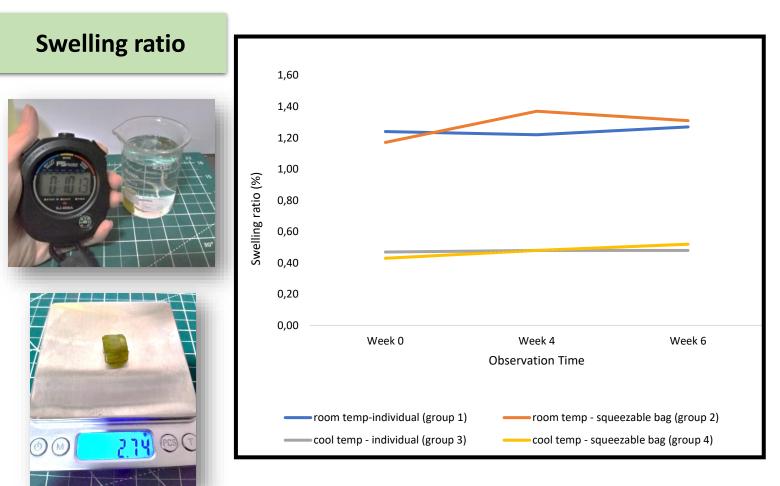
The alteration of tablet shape and dimension are observed in the group 1 (Room temperature and individual package) Chewable gummy dimension

Group 1 exhibited the change in length and thickness > 5%, however the other groups fulfill the specification (≤ 5%)

Weight variation

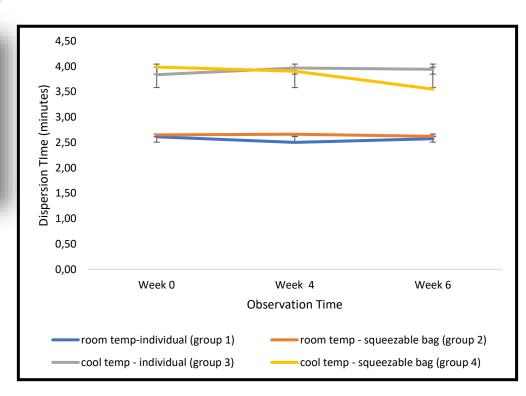

Weight variation of all the groups during storage meet the specification (NMT 7.5 %, calculate from the average weight of chewable gummy)

Texture Analysis


Observation	Room Temperature		Cool Temperature	
time	Individual	Squeezable	Individual	Squeezable
-	package	Bag	package	Bag
	(Group 1)	(Group 2)	(Group 3)	(Group 4)
Week 0				
Chewiness	18.01	36.89	111.07	76.77
(Nmm)				
Gumminess	44.03	73.77	271.5	170.66
(Nmm)				
Hardness (N)	542	597	2.249	1.317
Week 4				
Chewiness	51.31	24.24	91.72	62.90
(Nmm)				
Gumminess	128.29	60.61	229.31	157.25
(Nmm)				
Hardness (N)	1.427	974.67	2.174.67	1.592.33

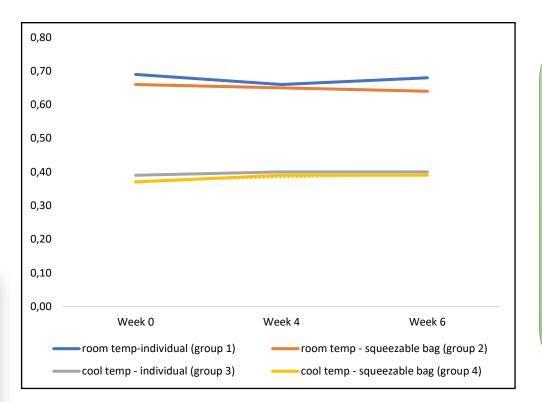
Increase in hardness, decrease in chewiness and gumminess observed for the chewable gummy stored at controlled room temperature for both packaging conditions and squeezable bag-cool temperature

The chewable gummy which are stored in cool temperature-individual package exhibit the decrease of chewiness, gumminess, and hardness


- The swelling ratio of chewable gummy tablet from group 1 and 2 (stored in room temperature for both packaging condition) were more than 1.0%
- The swelling ratio of chewable gummy which are stored in cool temperature were less than 1.0%
- The lowest swelling ratio showed by group 3 due to the stabilized hydrogen bonding between water molecules and gelatin in the cool temperature and individual package

Dispersion Time

- The dispersion time of chewable gummy tablet from all groups were less than 15 minutes (fulfill the specification)
- The dispersion time of chewable gummy which are stored in cool temperature was longer than room temperature → stronger polymer network → hinder the penetration of water molecules



Syneresis

The result of syneresis evaluation showed that all the groups exhibited syneresis less than 1.0% Syneresis percentage from the chewable gummy which is stored in room temperature higher than the cool temperature \rightarrow loose three dimension network of polymerwater-sucrose in room temperature \rightarrow water easily pull out form the chewable gummy

8

Statistical analysis

Observation Time	Dispersion	Swelling ratio	Syneresis
	time		
Week 0			
Storage temperature	0,000*	0,000*	0,000*
Packaging method	0,170	0,068	0,148
Interaction of storage temperature	0,239	0,667	0,308
and packaging method	0,200	0,007	0,000
Minggu 4			
Storage temperature	0,000*	0,000*	0,000*
Packaging method	0,303	0,666	0,348
Interaction of storage temperature	0,064	0,770	0,719
and packaging method	0,004	0,770	0,715
Minggu 6			
Storage temperature	0,000*	0,000*	0,000*
Packaging method	0,777	0,227	0,164
Interaction of storage temperature and packaging method	0,938	0,890	0,676

The storage temperature significantly influences the physical characteristics of chewable gummy based *Moringa oleifera* leaf extract during storage

Conclusion

The storage temperature significantly influences the physical characteristics of chewable gummy based *Moringa oleifera* leaf extract during storage

The packaging method and interaction between storage temperature – packaging method did not affect the physical characteristics of prepared chewable gummy

The cool temperature (8-15°C) was recommended as the storage temperature to exhibit desired physical characteristics of chewable gummy

Acknowledgement

- The authors would like to thank the Faculty of Pharmacy and LPPM (Research institutions and community service) of the University of Surabaya for supporting this research
- The authors also express gratitude to the government of Bogo Village for providing the natural resources (*Moringa oleifera* leaf)

References

- Alugoju, P. and Periyasamy, L. (2014) 'Free Radicals : Properties , Sources , Targets , and Their Implication in Various Diseases', Ind J Clin Biochem, 30(1), pp. 10–26. doi: 10.1007/s12291-014-0446-0.
- United States Pharmacopeial Convection (2018) 'USP Chewable Gels Monographs', in The United States Pharmacopeia.
- ižauskaitė, U. et al. (2019) 'Natural Ingredients-Based Gummy Bear Composition Designed According to Texture Analysis and Sensory Evaluation In Vivo', Molecules, 24(1442), pp. 1–16. doi: 10.3390/molecules24071442.
- Dille, M. J. et al. (2017) 'Soft , chewable gelatin-based pharmaceutical oral formulations : a technical approach', *Pharmaceutical Development and Technology*, 0(0), pp. 1–8. doi: 10.1080/10837450.2017.1332642.
- Gbenga, B. L. and Taiwo, Y. (2016) 'Studies of the Effect of Storage Conditions on Some Pharmaceutical Parameters of Powders and Tablets', *Dhaka Univ. J. Pharm. Sci.*, 14(2), pp. 147–151.
- Mahat, M. M. et al. (2020) 'The Sensory Evaluation and Mechanical Properties of Functional Gummy in the Malaysian Market', (October). doi: 10.20944/preprints202010.0213.v1.
- Matulyte, I. et al. (2021) 'The effect of myristica fragrans on texture properties and shelf-life of innovative chewable gel tablets', Pharmaceutics, 13(2), pp. 1–15. doi: 10.3390/pharmaceutics13020238.

Thank You