

### Hydrodynamic Studies of Two-Phase Liquid-Liquid Slug Flow in Circular Microchannel with T-Junction

#### Aloisiyus Yuli Widianto, Caroline Elfa, Reynaldo Valentino

Chemical Engineering-University of Surabaya, Jl. Raya Kalirungkut, Surabaya, Indonesia <u>aloy\_sius\_yw@staff.ubaya.ac,id</u>

**Abstract.** Microreactors have a wide application, especially in heterogeneous reactions limited by mass and or heat transfer. In many chemical reactions, microreactors show good performance for obtaining a high yield, selectivity, and conversion up to 100%, which is not easy to realize using conventional reactors. The excellent performance of the microreactor is a result of the high stability of two phase flow, namely slug flow pattern. A comprehensive study of slug flow characteristics inside the microchannel is needed to have a good performance. For that reason, the present work focused on the study of slug flow characteristics and its stability by using a circular microtube with 0.5; 0.8, and 1 mm inside diameter, and the 2-liquid phase consisted of aquades-kerosene and aquades-ethyl acetate with aquades as a dispersed phase and kerosene or ethyl acetate as a continuous phase. These liquids represent two liquid mixtures with different physical and chemical properties, which significantly influence the formation of 2-phase flow patterns in a microtube. Variables used in the experiment were temperature, channel diameter, and volumetric flow rate. Observation results show that the slug flow pattern was found at the ratio of the volumetric flow rate of disperse phase and the continuous phase (Qd/Qc) is 1; 1.4; 1.8; and 2.2. The slug flow formed at a flow rate of 70 ml/h for both the dispersed phase and the continuous phase (Qd/Qc = 1) had the most stable droplet length and the distance of consecutive droplets. Increasing Qd/Qc ratio increases the droplet length formed, and in the range of discharge used, the change in inside tube diameter from 0.5 to 1 mm does not change the flow pattern model, but it affects the slug length.

Keywords: microchannel, two-phase, flow pattern, stability, slug flow

**Abstrak.** Teknologi *microreactor* memiliki aplikasi yang sangat luas, terutama pada reaksi heterogen yang dibatasi oleh perpindahan massa dan atau panas. Dalam banyak reaksi kimia, penggunaan *microreactor* telah mampu menghasilkan *yield* dan selektivitas yang tinggi dan bahkan konversi reaksi sebesar 100%, yang mana hasil ini sangat sulit dicapai dengan menggunakan reaktor konvensional. Kinerja unggul yang ditunjukkan oleh *microreactor* merupakan hasil dari pola aliran dengan kestabilan yang tinggi, yaitu pola aliran slug. Untuk dapat memanfaatkan kinerja unggul yang ditawarkan secara optimal, perlu dilakukan studi komprehensif tentang karakteristik pola aliran slug dalam *microchannel*. Karena itulah studi dalam penelitian ini memfokuskan pada pemahaman karakteristik pola aliran slug, serta kestabilannya. Percobaan dilakukan dengan menggunakan 2 fase liquid yang masing-masing bekerja sebagai fase terdispersi dan fase kontinu, yaitu air-kerosen dan air-etilasetat dengan sifat fisik dan kimia yang berbeda. Variabel suhu, diameter *channel*, laju alir liquid dipelajari pengaruhnya terhadap panjang slug dan jarak antar slug berdekatan yang terbentuk. Hasil observasi menyatakan bahwa pola aliran slug terbentuk pada rasio Qd/Qc sebesar 1; 1,4; 1,8; 2,2. Pola slug yang terbentuk pada debit 70 ml/jam baik untuk fase terdispersi maupun fase kontinu (pada Qd/Qc = 1) memiliki panjang droplet dan jarak antar droplet yang paling stabil. Peningkatan rasio Qd/Qc meningkatkan dimensi panjang droplet yang terbentuk, dan pada range debit yang digunakan perubahan diameter tube tidak merubah jenis pola aliran yang terbentuk, namun berpengaruh terhadap panjang slug.

Kata kunci: microchannel, dua fase, pola aliran, kestabilan, aliran slug

#### INTRODUCTION

Microreactor is a novel chemical reactor technology which has an excellent performance in carrying out a chemical reaction. This technology in many chemical synthesis applications mainly for heterogeneous systems has produced high yields and reaction conversions up to 100%. The heterogeneous reaction needs a large contact surface area to achieve optimal results. On the other hand, the conventional reactor can only provide a contact surface area (expressed as specific surface = A/V) of 400 m2/m3, far below the specific surface that can be provided by a microreactor which is 40.000 m<sup>2</sup>/m<sup>3</sup> in the range channel diameter 10  $\mu$ m – 1mm.

Another excellent performance is shown concerning to the hazardous and toxic chemicals applications. In an industrial chemical processes, the product of chemical reaction that involves small volumes has been able to prevent



and avoid the risks posed by the use of hazardous and toxic materials in the process. The availability of a substantial specific surface in the miniaturization system of reactor has facilitated a mass/heat transfer process; therefore, the risk of work accidents such as explosions due to heat accumulation in a reactor can be prevented. The large specific surface in a microreactor has made the microreactor very suitable for applications in highly exothermic or endothermic processes that are limited by mass and or heat transfer.

The performance of a two-phase (liquid-liquid) microreactor is determined by the flow pattern type and the stability of flow formed within a channel. Among the flow patterns type that may develop in a channel, slug is the most stable flow pattern, has a regular velocity, uniform shape and distribution, with the slug length in several times of the inner diameter of the channel. Besides having high stability, slug flow pattern has a large specific surface area (A/V).

Several factors influence the formation of flow patterns in a microchannel, including the liquid viscosity and density, the wetting properties on the inner wall of channel, the contact angle, surface tension, the flow rate of the dispersed and continuous phase, the inner diameter of the channel, and the channel material. Previous researchers have carried out many studies on the effect of channel diameter on the flow pattern formed [1][2][3] using PTFE, PMMA, and glass channel [2][3][4][5]. The effect of liquid-liquid flow rate [4][6][7] with the different type of liquid used to represent the effect of liquid viscosity [2][3][4][8]. The droplet length and distance between successive droplets on slug flow has been investigated [4][5]. The studies are still limited to using PTFE, PMMA, and glass tube channel materials and several types of liquid phases as dispersed/continuous phases. Profound observation using various types of liquid, tube diameter, tube material, and flow rates will enrich the results of existing research. Understanding the flow pattern characteristics within a microchannel design. Therefore, this study aims to determine the effect of the flow rate of dispersed and continuous phase, the diameter of a microtube on flow pattern, the droplet length, and the distance between successive droplets on the slug flow. This study has focused on observing the flow pattern formed in a microchannel (without reaction) by using a variation of channel diameter (silicone) which has not been done in previous studies [1][2][4][9].

#### EXPERIMENTAL METHODOLOGY

The experiment was carried out with four variables: the flow rate of the dispersed and continuous phase, the components of liquid-liquid phase, temperature, and microchannel diameter. The flow rate and the components of liquid-liquid used in the experiment are shown in tables 1 and 2 below.

| TABLE 1.Aquades-kerosene flow rate |                     |    |    |    |    |  |
|------------------------------------|---------------------|----|----|----|----|--|
| Liquid                             | Flow Rate (ml/hour) |    |    |    |    |  |
| Aquades                            | 25                  | 35 | 45 | 55 | 70 |  |
| Kerosene                           | 25                  | 25 | 25 | 25 | 70 |  |
|                                    |                     |    |    |    |    |  |

| Liquid Flow Rate (ml/hour) |    |    |    |    |    |  |  |  |
|----------------------------|----|----|----|----|----|--|--|--|
| Aquades                    | 25 | 35 | 45 | 55 | 70 |  |  |  |
| Ethyl acetate              | 25 | 25 | 25 | 25 | 70 |  |  |  |

The experiment was performed at various temperatures of 28, 35, 40, 45, and 50  $^{\circ}$ C, with channel diameters of 0.5; 0.8; and 1 mm, and 4.5 m channel long. The channel used in the experiment is tube silicone (circular microchannel).

| TABLE 3. Liquid properties |                     |                                 |                         |                                         |  |  |
|----------------------------|---------------------|---------------------------------|-------------------------|-----------------------------------------|--|--|
| Liquid                     | Temperature<br>(°C) | Density<br>(kg/m <sup>3</sup> ) | Viscosity (kg/m.s)      | Surface Tension<br>(kg/s <sup>2</sup> ) |  |  |
| Aquades                    | 28                  | 996.24                          | 0.836 ×10 <sup>-3</sup> | 0.02375                                 |  |  |
|                            | 35                  | 993.97                          | 0.723 ×10 <sup>-3</sup> | -                                       |  |  |
|                            | 40                  | 992.25                          | 0.656 ×10 <sup>-3</sup> | -                                       |  |  |
|                            | 45                  | 995.16                          | 0.599×10 <sup>-3</sup>  | -                                       |  |  |



International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022

|               | 50 | 988.07 | 0.549 ×10 <sup>-3</sup> | -       |
|---------------|----|--------|-------------------------|---------|
|               | 28 | 803.00 | 2.200 ×10 <sup>-3</sup> | 0.02000 |
|               | 35 | 797.00 | 1.950×10 <sup>-3</sup>  | -       |
| Kerosene      | 40 | 794.00 | $1.750 \times 10^{-3}$  | -       |
|               | 45 | 791.00 | 1.600 ×10 <sup>-3</sup> | -       |
|               | 50 | 787.00 | 1.500 ×10 <sup>-3</sup> | -       |
|               | 28 | 890.58 | 0.450 ×10 <sup>-3</sup> | 0.07280 |
|               | 35 | 881.60 | 0.415×10 <sup>-3</sup>  | -       |
| Ethyl acetate | 40 | 875.50 | 0.390 ×10 <sup>-3</sup> | -       |
|               | 45 | 869.40 | 0.370×10 <sup>-3</sup>  | -       |
|               | 50 | 863.20 | 0.350 ×10 <sup>-3</sup> | -       |

The immiscible liquid-liquid two-phase system was delivered by two low discharge syringe pumps, Yamamoto Giken YG-80 syringe pump that can deliver liquid phase in the range of 0.1 - 99 ml/hour, and Infusia SP7s syringe pump that can flow liquid phase in the range 0.010 - 999 ml/hour. The syringe pumps in this observation perform well in dispensing liquids with uniform and stable discharge. Observation of flow pattern was carried out with a 12 W LED light, and a digital camera (Sony A6000, 50 mm f1.8 lens and macro tube extension) connected to a computer, so that the flow pattern formed can easily be observed. Two computer programs applied are OBS and GIMP. The OBS program was to observe the flow patterns, and the GIMP was used to measure the dimensions of droplet length and droplet distance.







**FIGURE 2.** (a) The flow pattern observation scheme, (b) The measuring method of droplet length and droplet distance



The principle of the experiment is to make a contact with the two-phase liquid-liquid through T-junction (transparent material), therefore the formation of the flow pattern can be observed clearly. The experimental set-up is shown in the following Fig. 2.

#### **RESULTS AND DISCUSSION**

Liquid-liquid two-phase flow patterns in microtube can be classified into slug flow, droplet flow, thread flow, jet flow, and annular flow [9]. From these flow patterns, slug shows the stable flow characteristics and has excellent potential for developing process applications involving mass and or heat transfer, especially highly exothermic and endothermic processes. Therefore, this study focuses on observing the characteristics of slug flow pattern.

The slug flow formation is divided into the blocking, squeezing, and lag steps, as shown in Fig. 3 [7]. In the blocking step, the continuous and dispersed phases meet at the T-junction, and the dispersed phase tries to enter and penetrate to the main channel. The squeezing step can be described as the dispersed phase successfully entering the main channel, and the lag step is the step when droplets have formed.



**FIGURE3.**Slug flow formation steps (a) Blocking, (b) Squeezing, (c) Lag [7]

Determination of flow rate is significant to get the right flow pattern. In this observation, slug flow formed when the dispersed and continuous phase flow rate ratio is 1; 1.4; 1.8, and 2.2 (Table 1 and 2).

#### Liquid-Liquid Two-Phase Flow Pattern-Regime Slug Flow

Slug flow is characterized by a fragmented flow pattern between the dispersed and the continuous phase, as shown in Fig. 4. The formation of slug begins at the meeting point of the dispersed and the continuous phase at T-junction. Fig. 4 shows the slug flow pattern on a microtube with 0.8 mm inside diameter, tube length (*Lt*) of 4.5 m with a meander channel configuration so that the microtube is like to be divided into four rows, with the 1<sup>st</sup> channel being the closest channel with the inlet section.





FIGURE 4.Slug flow pattern in aquades-kerosene, Qaq=25 ml/hour, Qke= 25 ml/hour, Dt= 0,8 mm, T= 28 °C

The wetting property of liquid is a factor that determines the characteristics of the flow pattern formed. Interactions between the dispersed and the continuous phase with the inner surface of the tube wall determine the formation of a thin liquid film in a narrow space between the droplet and the inner tube wall.

In some previous works on the two-phase liquid-liquid system [1][6], the thin liquid film appeared in the observed system, whereas other studies [2][4][6] cannot detect the appearance of the liquid film within a slug flow pattern. The formation of the thin film is shown in the schematic Fig.5 (b).



FIGURE 5.(a) Droplet without film, (b) Droplet with film [9]

Experiments using aquades-ethyl acetate formed droplets with a film, whereas in the aquades-kerosene system, liquid droplets formed without a film (Fig. 5(a)). Ethyl acetate, as the continuous phase in the first liquid, pairs wetting the inner tube wall, while kerosene in the second liquid, pairs wetting the inner tube walls. In the aquades-kerosene system, it can be formed as a thin film but is not observed due to visual limitations. In many cases, particularly those involving mass and heat transfer, film formation is more advantageous than flow patterns without films because the appearance of these films increases the interfacial mass/heat transfer rates. S is the surface area of the droplet where the mass/heat transfer happens, and V is the enclosed droplet volume. In a flow pattern without film, the mass/heat transfer process occurs in the zone between two droplets, in an area between the heads and tails of successive droplets. However, in the flow pattern with film, a mass transfer does not only occur in that zone but also in the thin liquid film.

#### Effect of Inner Diameter of Microtube to Liquid-Liquid Flow Pattern

Two-phase flow patterns in aquades-kerosene and aquades-ethyl acetate with both dispersed and continuous phase flow rates of 25 ml/hour in different tube diameters are shown in Fig. 6. Fig. 6 shows that for a constant flow rate (25-25 ml/hour) at various tube diameters, it formed the same flow pattern, slug flow. Thus, at a constant flow rate, the different tube diameter in this experiment does not affect the flow pattern type but rather the droplet length formed. At a certain flow rate, changes in tube diameter can cause changes in the type of flow pattern from slug flow to annular flow. From the measurement of the droplets formed, in the aquades-kerosene system with a constant flow rate of 25-25 ml/hour, the average length of droplets formed on a 0.5 mm diameter tube is 10.074 mm, tube diameter of 0.8 mm is 4.523 mm, and a tube with a diameter of 1 mm is 3,129 mm. At a constant flow rate, the tube diameter is getting larger, the shorter of the droplet length.



#### International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022



**FIGURE 6.** (a), (c), (e) Flow pattern in aquades-kerosen; (b), (d), (f) Flow pattern in aquades-ethyl acetate

#### The Stability of Slug Flow Pattern

The channel used in this observation was arranged into four rows. Fig. 7-9 shows the droplet profile within the microtube.



FIGURE 7. Droplet dimension profile in aquades-kerosene Ud-Uc= 25-25 ml/hour (stable flow)





FIGURE 8. Droplet dimension profile in aquades-kerosene Ud-Uc= 35-25 ml/hour (unstable flow)

The difference in droplet length of about 1 mm from the average dimension indicates that the flow pattern within the microtube is stable. The more significant droplet length difference means the flow pattern's lower stability.



**FIGURE 9.** Droplet dimension profile in aquades-ethyl acetate *U*<sub>d</sub>-*U*<sub>c</sub>=70-70ml/hour (stable flow)

The difference in droplet length, which is quite prominent in the microtube, is difficult to explain. The occurrence of this phenomenon may be caused by the pump's performance, which is not stable during pumping the two liquid phases, and another one is the coalescence phenomenon, mainly for tubes with huge length dimensions.

# The Effect of the Linear Velocity Ratio of Dispersed to Continuous Phase (Ud/Uc) to Droplet Length $(L_b)$

|         | <b>TABLE 4.</b> Effect of $Ud/Uc$ to $L_b$ in aquades-kerosene |           |           |           |  |  |  |
|---------|----------------------------------------------------------------|-----------|-----------|-----------|--|--|--|
| IId/II. | Droplet Length                                                 |           |           |           |  |  |  |
| Ua/Uc   | Channel 1                                                      | Channel 2 | Channel 3 | Channel 4 |  |  |  |
| 1       | 9.9638                                                         | 9.8234    | 10.1681   | 10.3404   |  |  |  |



#### International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022

| 1.4 | 24.9872 | 19.1574 | 16.9298 | 16.4766 |
|-----|---------|---------|---------|---------|
| 1.8 | 15.1936 | 15.6255 | 16.0043 | 16.3915 |
| 2.2 | 18.3106 | 18.1787 | 17.9872 | 18.9128 |

| <b>TABLE 5.</b> Effect of $Ud/Uc$ to $L_b$ in aquades-ethyl acetate |                |           |           |           |  |  |
|---------------------------------------------------------------------|----------------|-----------|-----------|-----------|--|--|
| U.J/U.o                                                             | Droplet Length |           |           |           |  |  |
| Ua/Uc                                                               | Channel 1      | Channel 2 | Channel 3 | Channel 4 |  |  |
| 1                                                                   | 10.2000        | 9.7766    | 9.8170    | 9.8766    |  |  |
| 1.4                                                                 | 11.6957        | 11.6106   | 11.5447   | 12.0000   |  |  |
| 1.8                                                                 | 13.5787        | 12.7511   | 13.3340   | 12.8915   |  |  |
| 2.2                                                                 | 14.5957        | 13.5957   | 14.3617   | 14.3617   |  |  |

The larger Ud/Uc ratio was obtained by increasing the flow rate of aquades to the same flow rate of continuous phase increases in the droplet length dimensions in each microchannel. Table 4 indicates that an increase in two folds of the Ud/Uc ratio can increase the droplet length (*Lb*) by two times. This tendency is shown by the droplets on each microchannel. However, the effect of increasing the Ud/Uc ratio differs from the results shown in Table 5, i.e., an increase in the ratio up to 2 times can only increase 1.5 times the droplet length.

#### **Bubble Length Follows Garstecky Model**



FIGURE 10. The comparison of the experimental droplets length and Garstecky model for aquades-kerosene system, 1 mm inside diameter of the tube

The droplet length at the inlet section of the main channel has the dimension as shown in Fig. 10 and 11, Each for pairs of 2 liquid-liquid phases from aquades-kerosene and aquades-ethyl acetate. Garstecky, in the previous study, had formulated the correlation between the length of droplets (*Lb*) formed in the T-junction on the various ratio of dispersed phase to continuous phase (Qd/Qc) following the equation as below: with Qd = debit of the dispersed phase, Qc = debit of the continuous phase,  $W_{in}$  = channel diameter in the inlet section of the dispersed phase (aquades), and W = diameter of the main channel.





FIGURE 11. The comparison of the experimental droplets length and Garstecky model for aquades-ethyl acetate system, 1 mm inside diameter of the tube

When compared, the length of experimental droplet characteristic is appropriate to the proposed model by Garstecky, while the increase in Qd/Qc will be followed by the increase in the droplet length (*Lb*) with a linear trend. However, the value of *Lb* experiment and *Lb* based on this model was not the same. There are some possible factors: i.e., the Garstecky model has not considered the type of material channel, the liquid wettability to the inner wall of a microchannel, and the physical property such as liquid density and viscosity of the liquid that is used in the experiments.

#### **Dimensionless Numbers**

Capillary number, Reynold number, and Weber number are dimensionless numbers explaining the effect of three dominants force in a microchannel system; consist of inertial force, viscous force, and surface tension force. By comparing these dimensionless numbers, it will be known the influence of dominant force or less dominant in a slug flow formation of liquid-liquid system. The capillary number represents the ratio of the following forces [10]:

$$Ca = \frac{viscous force}{surfacetension force}$$
(1)

The capillary number in this experiment is in the range of  $6.68 \times 10^{-5} - 8.719 \times 10^{-3}$  (Ca < 1). The value of capillary number below 1 indicates that surface tension force works more dominant than viscous force. Reynold number represents the ratio of inertial forces to viscous force as in the following equation [10]:

$$Re = \frac{inertial force}{viscous force}$$
(2)

Reynold number experiment is in the range of 3.2289 - 122.1798 (Re > 1). The value of Reynold number higher than 1 indicates that inertial force works more dominant than viscous force.

Weber number represents the ratio of inertial force to surface tension force as in the following equation [10]:

$$We = \frac{inertial force}{surface tension force}$$
(3)

Weber number in this experiment is  $1.062 \times 10^{-3} - 1.841 \times 10^{-1}$  (We < 1). Weber number below 1 indicates that surface tension force works more dominant than inertial force. Based on the value of Capillary number, Reynold number, and



Weber number, the influence of these forces on the liquid-liquid system of aquades-kerosene and aquades-ethyl acetate has the following order: surface tension force > inertial force > viscous force.

#### CONCLUSION

The slug flow hydrodynamic was investigated in a circular silicone microchannel with an inside diameter of less than 1 mm. The tube diameter in these experiments (0,5; 0,8; 1 mm) didn't affect the flow pattern type; it affected the droplet length and the distance of successive droplets. The increased channel diameter has brought on the lower droplet length. The slug flow pattern formed when the flow velocity ratio of the dispersed to continuous phase (Ud/Uc)=1; 1,4; 1,8; 2,2. The greater value of Ud/Uc has resulted in the length of droplets within the microchannel. The various flow velocity use in these experiments consist of Uc = 25; 70 ml/hour, Ud = 25; 35; 45; 55; 70 ml/hour entirely formed slug flow pattern.

The higher temperature may influence the droplet lengths and the distances of successive droplets. The temperature has a correlation to the viscosity of liquid-liquid two-phase flow. Further, the droplet length showed the same trend as the length obtained by Garstecky model.

The dimensionless numbers consisting of Capillary Number, Reynold Number, and Weber Number are able to explain the influence of three dominant forces, i.e., surface tension force, inertial force and viscous force in a micro system.

#### REFERENCES

- R. K. Verma and S. Ghosh, "E ff ect of phase properties on liquid-liquid two-phase fl ow patterns and pressure drop in serpentine mini geometry," *Chemical Engineering Journal*, vol. 397, no. April, p. 125443, 2020, doi: 10.1016/j.cej.2020.125443.
- Q. Zhang, H. Liu, S. Zhao, C. Yao, and G. Chen, "Hydrodynamics and mass transfer characteristics of liquid – liquid slug flow in microchannels : The effects of temperature, fluid properties and channel size," *Chemical Engineering Journal*, vol. 358, no. August 2018, pp. 794–805, 2019, doi: 10.1016/j.cej.2018.10.056.
- [3] A. V. Kovalev, A. A. Yagodnitsyna, and A. V. Bilsky, "Viscosity Ratio Influence on Liquid-Liquid Flow in a T-shaped Microchannel," *Chemical Engineering and Technology*, vol. 44, no. 2, pp. 365–370, 2021, doi: 10.1002/ceat.202000396.
- [4] L. Lei, Y. Zhao, W. Chen, H. Li, X. Wang, and J. Zhang, "Experimental Studies of Droplet Formation Process and Length for Liquid Liquid Two-Phase Flows in a Microchannel," pp. 1–17, 2021.
- [5] N. Volkel, A. Y. Widianto, J. Aubin, and C. Xuereb, "Gas-Liquid Taylor Flow Characteristics in Straight and Meandering Rectangular Microchannels," 2008. [Online]. Available: https://aiche.confex.com/aiche/s08/techprogram/P105713.HTM
- [6] W. Zhou, E. V Rebrov, and T. A. Nijhuis, "Liquid liquid slug flow : Hydrodynamics and pressure drop," vol. 66, pp. 42–54, 2011, doi: 10.1016/j.ces.2010.09.040.
- B. Sunden, "Slug Formation Analysis of Liquid Liquid Two-Phase Flow in T-Junction Microchannels," vol. 11, no. October, pp. 1–8, 2019, doi: 10.1115/1.4043385.
- [8] A. V Kovalev, A. A. Yagodnitsyna, and A. V Bilsky, "Flow hydrodynamics of immiscible liquids with low viscosity ratio in a rectangular microchannel with T-junction," *Chemical Engineering Journal*, vol. 352, no. June, pp. 120–132, 2018, doi: 10.1016/j.cej.2018.07.013.
- [9] "A comprehensive review on liquid–liquid two-phase fow .pdf."
- [10] V. Talimi, Y. S. Muzychka, and S. Kocabiyik, "International Journal of Multiphase Flow A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels," *International Journal of Multiphase Flow*, vol. 39, pp. 88–104, 2012, doi: 10.1016/j.ijmultiphaseflow.2011.10.005.



**PS-17** 

### Hydrodynamic Studies of Two-Phase Liquid-Liquid Slug Flow In Circular Microchannel with T-junction

#### Aloisiyus Yuli Widianto, Caroline Elfa, Reynaldo Valentino

Chemical Engineering-Engineering Faculty-University of Surabaya, Jl. Raya Kalirungkut, Surabaya, Indonesia \*Corresponding Author's E-mail: <u>aloy sius yw@staff.ubaya.ac.id</u>

#### Abstract

Microreactors have a wide application, especially in heterogeneous reactions limited by mass and or heat transfer. In many chemical reactions, microreactors show good performance for obtaining a high yield, selectivity, and conversion up to 100%, which is not easy to realize using conventional reactors. The excellent performance of the microreactor is a result of the high stability of two phase flow, namely slug flow pattern. A comprehensive study of slug flow characteristics inside the microchannel is needed to have a good performance. For that reason, the present work focused on the study of slug flow characteristics and its stability by using a circular microtube with 0.5; 0.8, and 1 mm inside diameter, and the 2-liquid phase consisted of water-kerosene and water-ethyl acetate with water as a dispersed phase and kerosene or ethyl acetate as a continuous phase. These liquids represent two liquid mixtures with different physical and chemical properties, which significantly influence the formation of 2-phase flow patterns in a microtube. Variables used in the experiment were temperature, channel diameter, and volumetric flow rate. Observation results show that the slug flow pattern was found at the ratio of the volumetric flow rate of disperse phase to the continuous phase  $(Q_D/Q_C)$  is 1; 1.4; 1.8; and 2.2. The slug flow formed at a flow rate of 70 ml/h for both the dispersed phase and the continuous phase ( $Q_D/Q_C$ = 1) had the most stable droplet length and the distance of consecutive droplets. Increasing  $Q_D/Q_C$  ratio increases the droplet length formed, and in the range of discharge used, the change in inside tube diameter from 0.5 to 1 mm does not change the flow pattern model, but it affects the slug length.

Keywords: microchannel, two-phase, flow pattern, stability, slug flow

# **Book of Abstracts**



# International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022

**Hybrid Conference** 

Building Indonesia Through the Development of Appropriate Technology for Archipelagic Country

August 9 - 10, 2022

# Organized by: Institut Teknologi Bandung

Depatment of Chemical Engineering Faculty of Industrial Technology HIMATEK-ITB

Universitas Patimura







# **Book of Abstracts**



# International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022

### Hybrid Conference

"Building Indonesia Through the Development of Appropriate Technology for Archipelagic Country"

9 – 10 August 2022

Organized by:

HIMATEK-ITE PARVIK KIMIA-ITE







# About STKSR 2022

### International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022

International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) is an annual seminar held by the Department of Chemical Engineering ITB in honour of Prof. Soehadi Reksowardojo's contribution to the early developments of chemical engineering higher education in Indonesia. This year STKSR 2022 will be held in Ambon, Indonesia and by virtual conference, starting from August 9<sup>th</sup> to August 10<sup>th</sup>, 2022. Bringing forward the theme "Building Indonesia Through the Development of Appropriate Technology For Archipelagic Country", we would like to invite scholars and practitioners from all around the world to contribute to these seminars.

Technological advances from the effects of globalization have provided changes for the better in human civilization, including in Indonesia. Unfortunately, this progress has not been felt evenly, especially among the Indonesian people who live on small islands. As we know, the distribution of electricity and clean water in Indonesia has not yet reached 100 percent. Development in the country is also still concentrated in areas with big cities so many people in remote areas are still left behind. The natural resources of each island are different and natural commodities are not sufficient so resources from other islands are needed. It is undeniable that the form of an archipelagic state makes access to the exchange of natural resources more limited. Indonesia as a maritime country also still has problems with a mindset that is focused on development on the mainland. Natural resources that are appropriate to be taken are sufficient to advance and even meet energy and material needs because technology has not yet been applied to process resources. Therefore, efforts are needed to develop appropriate technology to adapt to the geographical conditions of the country so that the sea acts as a land separator.

This seminar is purposed to campaign technological breakthroughs for archipelagic countries and become a form of ITB Chemical Engineering's contribution to national development. To find comprehensive ideas and formulations for the development of technology for the process of providing energy and resources in the archipelago, synergy is needed between stakeholders, including the community, academics, entrepreneurs, and the government. This synergy can be realized in a conference such as the 2022 STKSR as a forum to facilitate Indonesia's future interests in the development of technology in archipelagic countries.



# Contents

| About STKSR 2022                            | 2   |
|---------------------------------------------|-----|
| Contents                                    | 3   |
| Scientific Committee                        | 4   |
| Organizing Committee                        | 5   |
| Speech of Rector Institut Teknologi Bandung | 6   |
| Conference Topics                           | 7   |
| Keynote Speakers                            | 8   |
| Seminar Schedule                            | 10  |
| List of Accepted Abstract                   | 14  |
| Keynote Speaker's Abstract                  |     |
| Bioenergy and Alternative Energy            |     |
| Food Engineering and Technology             | 61  |
| Bioprocess Engineering                      |     |
| Chemurgy and Bio-based Materials            |     |
| Advanced Science and Materials              | 116 |
| Separation Technology                       | 141 |
| Process Simulation                          |     |
| Industrial Application                      | 179 |
| Reaction and Control Engineering            |     |
| Chemical Engineering Education              | 199 |



# Scientific Committee

- **Prof. Dr. Ir. Subagjo** Institut Teknologi Bandung, Indonesia
- **Prof. Dr. Iftekar Abubakar Karimi** National University of Singapore, Singapore
- **Prof. Ir. Dwiwahju Sasongko, Ph.D.** Institut Teknologi Bandung, Indonesia
- **Prof. Dr. Ir. Herri Susanto** Institut Teknologi Bandung, Indonesia
- **Prof. Dr. -Ing. Ir. Danu Ariono, DEA.** Institut Teknologi Bandung, Indonesia
- **Prof. Dr. Ir. Lienda Aliwarga** Institut Teknologi Bandung, Indonesia
- **Prof. Ir. Tjandra Setiada, Ph.D.** Institut Teknologi Bandung, Indonesia
- **Prof. Ir. Yazid Bindar, Ph.D.** Institut Teknologi Bandung, Indonesia
- **Prof. Ir. I Gede Wenten, Ph.D.** Institut Teknologi Bandung, Indonesia
- **Prof. Ir. Johnner Sitompul** Institut Teknologi Bandung, Indonesia
- **Prof. Dr. Yogi Wibisono Budhi** Institut Teknologi Bandung, Indonesia



# **Organizing Committee**

#### **STKSR Chairman:**

Jenny Rizkiana, Ph.D, Institut Teknologi Bandung, Indonesia

#### **Co-Chairman:**

Anggit Raksajati, Ph.D. (ITB)

#### **Team Members:**

Vita Wonoputri, Ph.D. Dr. Anita Kusuma Wardani Dian Shofinita, Ph.D. Dr. Meiti Pratiwi Ardiyan Harimawan, Ph.D. Wibawa Hendra Saputera, Ph.D. Dr. Hafis Pratama Rendra Graha Dr. Khoiruddin Helen Julian, Ph.D. Kiki Adi Kurnia, Ph.D. Dr. Astri Nur Isyami Dr. Haryo Pandu Winoto Antonius Indarto, Ph.D. Carolus Borromeus Rasrendra, Ph.D. Hary Devianto, Ph.D. Dr. Dianika Lestari Fadhli Pri Januar Gusnawan

Millah Nurfadhillah Aditya Megaria Napitupulu Twinca Naibaho Tua Doras Alfira Sita Maharsi Priscilla Catherine Angelita Ni Made Dewi Sri Anggaraeni Muhammad Alfath Chaniago Sendi Setiawan Habibil Ghifary El Imam Dorotea Evania Silitonga



# Speech of Rector Institut Teknologi Bandung

On behalf of Institut Teknologi Bandung, we welcome the honorably keynote speakers, invited speakers, speakers and all participant to the International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022. We also thanks Universitas Pattimura Ambon for the collaboration on this event, which brings theme of "Building Indonesia through the Development of Appropriate Technology for Archipelagic Country".

As mentioned in the seminar title, Prof. Ir. Soehadi Reksowardojo is a prominent figure in ITB, who brought the concept of "Tri-Soko-Guru" for higher education. The "Tri-Soko-Guru" means three main pillars, consist of education, research, and industry affiliation. The concept then nowadays evolves into "Tri Dharma Perguruan Tinggi" of education, research, and community service. In accordance with ITB's mission to guide the change that able to improve welfare of Indonesian and the world, The Tri Dharma Perguruan Tinggi bridge innovation on the research to real implementation on the industry and society. As we know, the innovation is the key aspect to avoid the middle-income trap. The researches as a core of innovation therefore should explore uniqueness of Indonesia and each country to develop a competitiveness.

Archipelagic country, such as Indonesia, has advantages as well as different set of technology challenges compare to the continent countries. With abundant of natural resources at sea, we need a specific technology to process them into a useful goods. In example, microalgae as a source of food and oil for biodiesel, is a competence agent for  $CO_2$  reduction in atmosphere. The oil extraction process from the microalgae should overcome high water content, differentiate the technology from the other oil sources extraction such as palm oil. This seminar is a way to disseminate the research's results and to collaborate among the researcher, thus able to increase readiness level of the technology.

We believe this seminar will be fulfilled with fruitful discussions and innovative technologies that suitable for the archipelagic countries. Finally, we express our highest gratitude and appreciation to our sponsors, collaborators, committees, and participants who greatly contribute to the success of the STKSR 2022. Hopefully, this event brings the best results for all.

Prof. Reini Wirahadikusumah, Ph.D.

**Rector of ITB** 



# **Conference Topics**

| TOPIC 1:         | Bioenergy and Alternative Energy (BAE) |
|------------------|----------------------------------------|
| TOPIC 2:         | Food Engineering and Technology (FET)  |
| TOPIC 3:         | Bioprocess Engineering (BPE)           |
| TOPIC 4:         | Chemurgy and Bio-based Materials (CBM) |
| TOPIC 5:         | Advanced Science and Materials (ASM)   |
| TOPIC 6:         | Separation Technology (ST)             |
| TOPIC 7:         | Process Simulation (PS)                |
| TOPIC 8:         | Industrial Application (IA)            |
| TOPIC 9:         | Reaction and Control Engineering (RCE) |
| <b>TOPIC 10:</b> | Chemical Engineering Education (CEE)   |



International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022

# **Keynote Speakers**



### Dr. Ir. I.G.B. Ngurah Makertihartha

Catalyst Expert & Scientist Department of Chemical Engineering Institut Teknologi Bandung

### Prof. Dr. Iftekar Abubakar Karimi

Department of Chemical and Biomolecular Engineering National University of Singapore





Ir. Jaya Wahono

Chief Executive Officer Clean Power Indonesia

### Dr. Eng. Muhammad Aziz

Associate Professor of Energy and Prosses Integration Engineering The University of Tokyo





International Seminar on Chemical Engineering Soehadi Reksowardojo (STKSR) 2022



### Dr. Dadan Kusdiana

Director General NRE&EC Ministry of Energy and Mineral Resources

### **Prof. Guoqing Guan**

Institute of Regional Innovation Hirosaki University





### **Seminar Schedule**

#### **RUNDOWN DAY 1**

### Tuesday, 9<sup>th</sup> August 2022

#### PLENARY SESSION DAY 1 (08.00-13.45)

| TIME                         |                                                                         |  |  |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
| (GMT+9/WIT)                  | PROGRAM                                                                 |  |  |  |  |  |  |
|                              | PLENNARY SESSION                                                        |  |  |  |  |  |  |
|                              | (Location: Auditorium Hall)                                             |  |  |  |  |  |  |
| 08.00-08.30                  | Registration                                                            |  |  |  |  |  |  |
|                              | Singing Indonesia Raya                                                  |  |  |  |  |  |  |
| 00 20 00 20                  | Opening Ceremony of STKSR 2022                                          |  |  |  |  |  |  |
| 08.30-09.30                  | Report presentation from STKSR 2022 Chairman:                           |  |  |  |  |  |  |
|                              | Jenny Rizkiana, S.T., M.T., Ph.D.                                       |  |  |  |  |  |  |
| 09 30-09 45                  | Opening and Welcoming Speech by Rectorate of Bandung Institute of       |  |  |  |  |  |  |
| 09.30-09.43                  | Technology: Prof. Ir. I Gede Wenten, M.Sc., Ph.D.                       |  |  |  |  |  |  |
| 09.45-10.00                  | Opening and Welcoming Speech by representation of Universitas Pattimura |  |  |  |  |  |  |
| 10.00-10.15                  | Coffee Break                                                            |  |  |  |  |  |  |
|                              | Keynote 1: Dr. Ir. I.G.B. N. Makertihartha                              |  |  |  |  |  |  |
| 10.15-10.45                  | Associate Professor at Institut Teknologi Bandung                       |  |  |  |  |  |  |
|                              | "Chemical Reaction and Catalyst Technology"                             |  |  |  |  |  |  |
|                              | Keynote 2: Dr. Eng. Muhammad Aziz                                       |  |  |  |  |  |  |
| 10.45-11.15                  | Associate Professor at The University of Tokyo                          |  |  |  |  |  |  |
|                              | "Energy and Process Integration Engineering"                            |  |  |  |  |  |  |
| 11 15 11 45                  | Keynote 3: Dr. Ir. Dadan Kusdiana, M.Sc.                                |  |  |  |  |  |  |
| 11.15-11.45                  | Ministry of Energy and Mineral Resource Indonesia                       |  |  |  |  |  |  |
|                              | Bioluer Process Technology                                              |  |  |  |  |  |  |
| 11.45-12.30                  | Q&A session                                                             |  |  |  |  |  |  |
| 12.30-13.45                  | Lunch                                                                   |  |  |  |  |  |  |
|                              | PARALLEL SESSION                                                        |  |  |  |  |  |  |
| (Location: Masella Building) |                                                                         |  |  |  |  |  |  |
| 13.45-15.15                  | Parallel Session 1                                                      |  |  |  |  |  |  |
| 15.15-15.30                  | Coffee Break                                                            |  |  |  |  |  |  |
| 15.30-17.30                  | Parallel Session 2                                                      |  |  |  |  |  |  |
| 19.00                        | Gala Dinner                                                             |  |  |  |  |  |  |



#### **RUNDOWN DAY 2**

### Wednesday, 10<sup>th</sup> August 2022

| TIME<br>(GMT+9/ WIT) | PROGRAM                                                                                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARALLEL<br>SESSION  | (Location: Masella Building)                                                                                                                                                                                                              |
| 08.30-10.15          | Parallel Session 3                                                                                                                                                                                                                        |
| 10.15-10.30          | Coffee Break                                                                                                                                                                                                                              |
| 10.30-12.30          | Parallel Session 4                                                                                                                                                                                                                        |
| 12.30-13.30          | Lunch                                                                                                                                                                                                                                     |
| PLENNARY<br>SESSION  | (Location: Auditorium Hall)                                                                                                                                                                                                               |
| 13.30-14.00          | Keynote 4: Prof. Dr. Iftekhar A. Karimi<br>Professor at National University of Singapore<br>"Modeling and optimization, Energy systems and energy efficiency, Planning<br>and scheduling, Oil and gas supply chains, and Systems biology" |
| 14.00-14.30          | Keynote 5: Ir. Jaya Wahono<br>CEO Clean Power Indonesia<br>"Community-based biomass distributed power"                                                                                                                                    |
| 14.30-15.00          | Keynote 6: Prof. Guoqing Guan<br>Professor at Hirosaki University<br>"Coal and biomass pyrolysis and gasification, Biorefinery, Heterogeneous<br>catalysts for energy conversion, and Energy materials"                                   |
| 15.00-15.40          | Q&A session                                                                                                                                                                                                                               |
| 15.40-16.10          | Closing remarks                                                                                                                                                                                                                           |
| 16.10-16.30          | Coffee Break                                                                                                                                                                                                                              |



| TIME        |                    |        | PROGR     | AM            |        |        |
|-------------|--------------------|--------|-----------|---------------|--------|--------|
| (GMT+9)     | PARALLEL SESSION 1 |        |           |               |        |        |
|             | ROOM 1             | ROOM 2 | ROOM 3    | ROOM 4        | ROOM 5 | ROOM 6 |
| 13.45-14.00 | ASM-13             | CBM-04 | BAE-04    | PS-02         | RCE-06 | CBM-22 |
| 14.00-14.15 | ASM-01             | CBM-01 | BAE-01    | PS-01         | RCE-07 | CBM-21 |
| 14.15-14.30 | ASM-02             | CBM-02 | BAE-22    | PS-03         | RCE-08 | CBM-19 |
| 14.30-14.45 | ASM-03             | CBM-03 | BAE-02    | PS-04         | RCE-10 | ST-15  |
| 14.45-15.00 | ASM-04             | CBM-05 | BAE-08    | PS-05         | RCE-11 | ST-16  |
| 15.00-15.15 | ASM-06             | CBM-06 | BAE-03    | PS-11         | RCE-12 | ST-17  |
| 15.15-15.30 |                    |        | COFFEE B  | BREAK         |        |        |
| TIME        |                    | PA     | ARALLEL S | ESSION 2      |        |        |
| (GMT+9)     | ROOM 1             | ROOM 2 | ROOM 3    | ROOM 4        | ROOM 5 | ROOM 6 |
| 15.30-15.45 | ASM-12             | CBM-13 | BAE-05    | <b>RCE-02</b> | PS-07  | FET-14 |
| 15.45-16.00 | ASM-07             | CBM-07 | BAE-06    | RCE-01        | PS-08  | FET-16 |
| 16.00-16.15 | ASM-08             | CBM-08 | BAE-07    | RCE-03        | PS-09  | FET-17 |
| 16.15-16.30 | ASM-09             | CBM-09 | BAE-09    | RCE-04        | PS-06  | FET-18 |
| 16.30-16.45 | ASM-14             | CBM-11 | BAE-10    | RCE-05        | PS-10  | FET-19 |
| 16.45-17.00 | ASM-10             | CBM-12 | BAE-11    | RCE-09        | PS-12  | FET-20 |
| 17.00-17.15 |                    | CBM-23 |           |               | PS-20  | FET-22 |
| 17.15-17.30 |                    |        |           |               | PS-21  | FET-23 |
| 19:00       |                    |        | GALA DI   | NNER          |        |        |

#### PARALLEL SESSION DAY ONE (13.45-17.30, Masella Building)

**Note:** Paper code that is written in bold are for paper that will be presented offline. The session in room 5 and 6 will be held fully online



| TIME            |                          |        | PRO      | OGRAM         |        |        |
|-----------------|--------------------------|--------|----------|---------------|--------|--------|
| (GMT+9)         |                          | •      | PARALLEL | II: 1st SESSI | ON     | _      |
|                 | ROOM 1                   | ROOM 2 | ROOM 3   | ROOM 4        | ROOM 5 | ROOM 6 |
| 08.30-08.45     | ASM-05                   | CBM-20 | ST-11    | FET-07        | PS-17  | BPE-07 |
| 08.45-09.00     | ASM-23                   | CBM-10 | ST-01    | FET-08        | PS-13  | BPE-08 |
| 09.00-09.15     | ASM-15                   | CBM-14 | ST-02    | FET-02        | PS-14  | CEE-01 |
| 09.15-09.30     | ASM-16                   | CBM-15 | ST-03    | FET-03        | PS-15  | BAE-19 |
| 09.30-09.45     | ASM-17                   | CBM-16 | ST-04    | FET-04        | PS-16  | BAE-20 |
| 09.45-10.00     | ASM-18                   | CBM-17 | ST-13    | FET-05        | PS-18  | BAE-21 |
| 10.00-10.15     | ASM-11                   | CBM-18 | ST-05    | FET-01        | PS-19  | BAE-23 |
| 10.15-10.30     |                          |        | Coff     | ee Break      |        |        |
|                 | PROGRAM                  |        |          |               |        |        |
| TIME<br>(GMT+9) | PARALLEL II: 2nd SESSION |        |          |               |        |        |
|                 | ROOM 1                   | ROOM 2 | ROOM 3   | ROOM 4        | ROOM 5 | ROOM 6 |
| 10.30-10.45     | ASM-24                   | IA-02  | ST-08    | BPE-09        | FET-06 | BAE-12 |
| 10.45-11.00     | ASM-19                   | IA-01  | ST-06    | BPE-01        | FET-09 | BAE-13 |
| 11.00-11.15     | ASM-20                   | IA-03  | ST-07    | BPE-02        | FET-10 | BAE-14 |
| 11.15-11.30     | ASM-21                   | IA-04  | ST-09    | BPE-03        | FET-11 | BAE-15 |
| 11.30-11.45     | ASM-22                   | IA-05  | ST-10    | BPE-04        | FET-12 | BAE-16 |
| 11.45-12.00     | ASM-25                   | IA-06  | ST-12    | BPE-05        | FET-13 | BAE-17 |
| 12.00-12.15     | FET-21                   | IA-07  | ST-14    | BPE-06        | FET-15 | BAE-18 |
| 12.15-12.30     |                          | IA-08  |          |               |        |        |
| 12 30 13 30     | Lunch                    |        |          |               |        |        |

#### PARALLEL SESSION DAY TWO (08.30-13.30, Masella Building)

**Note**: Paper code that is written in bold are for paper that will be presented offline. The session in room 5 and 6 will be held fully online



# List of Accepted Abstract

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                     | AUTHOR                                                                                                                                                     | INSTITUTION             |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| BAE-01        | STKSR-005     | Electricity Generation from<br>Tofu Wastewater and Palm Oil<br>Mill Effluent (POME) using<br>Microbial Fuel Cell                                                | <b>Ardiyan Harimawan</b> ,<br>Kenny Z. Suryaga, Putri<br>Erna Saing, Hary<br>Devianto, Dian Shofinita                                                      | ITB                     |
| BAE-02        | STKSR-009     | The Effect of Additional<br>Redox-Active to The Gel<br>Polymer Electrolyte on The<br>Performance of Supercapacitor<br>Cells                                     | Tiara Ariani Putri, <b>H</b><br><b>Devianto</b> , T Prakoso, P<br>Widiatmoko, H Rustamaji                                                                  | ITB                     |
| BAE-03        | STKSR-014     | Dye Sensitized Solar Cell<br>Performance Analysis through<br>Equivalent Circuit Model                                                                           | Jovan Natalius Marcos,<br>Zuma Rizka Akbar<br>Ibrahim, <b>Widiatmoko, P</b> .,<br>Devianto, H.                                                             | ITB                     |
| BAE-04        | STKSR-017     | Review Article: Application of<br>Integrated Electrodes Materials<br>for Enhancing the<br>Electrochemical Reduction of<br>CO2                                   | Hary Devianto, <b>Mitra</b><br><b>Eviania</b> , Tirto Prakosoa                                                                                             | ITB                     |
| BAE-05        | STKSR-031     | The Effect of Illumination,<br>Electrode Distance, and<br>Illumination Periods on the<br>Performance of Phototrophic<br>Sediment Microbial Fuel Cell<br>(PSFMC) | <b>Ardiyan Harimawan</b> ,<br>Hary Devianto , Nicholas<br>Khodiyat, Kreszen<br>Livianus Gatalie                                                            | ITB                     |
| BAE-06        | STKSR-048     | Analysis of the Behavior of<br>Ionic Conductivity in Alkaline<br>Gel-Solutions that Improve of<br>The Performance Aspect of<br>Zinc-Air Batteries               | Mohammad Ghimnastiar<br>Ulsak, T Prakoso, P<br>Widiatmoko, P<br>Febrianto, <b>H Devianto</b>                                                               | ITB                     |
| BAE-07        | STKSR-052     | Carbon Credit and Economic<br>Feasibility Analysis of<br>Biomass-Solar PV-Battery<br>Power Plant for Application in<br>Indonesia Remote Area                    | <b>Dindamilenia</b><br><b>Choirunnisa</b><br><b>Hardiyasanti</b> , Sinta<br>Widianingrum, Aditiya<br>Harjon Bahar, Djati<br>Wibowo Djamari, Jaya<br>Wahono | Sampoerna<br>University |

Topic 1: Bioenergy and Alternative Energy (BAE)



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                       | AUTHOR                                                                                                      | INSTITUTION            |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|
| BAE-08        | STKSR-056     | Interaction of Biomass and<br>Biochar of Seaweed and Apple<br>Tree Branch in Two-Stage Co-<br>gasification System                 | <b>Yohanes Andre</b><br><b>Situmorang</b> , Guoqing<br>Guan                                                 | ITB                    |
| BAE-09        | STKSR-060     | Biomass and Natural Gas Co-<br>firing in Oxyfuel Integrated<br>Gasification Combined Cycle                                        | Habibil Ghifary, I D M<br>Budi, and W H Saputera                                                            | ITB                    |
| BAE-10        | STKSR-062     | Production of Biogas from<br>Palm Oil Mill Effluent and the<br>Potential Utilization of Its<br>Discharge as Fertilizer            | Dian Rahmawati, <b>Azmia</b><br><b>Rizka Nafisah</b> ,<br>Amellionora Nadya, Isna<br>Rizkia Amalia Sholihah | ІТК                    |
| BAE-11        | STKSR-067     | Optimizing Hydrogen<br>Production from the<br>Photovoltaic Powered Alkaline<br>Water Electrolyzer                                 | Habibil Ghifary, P<br>Widiatmoko, H Devianto,<br>F F Nudriansyah , J F<br>Simorangkir                       | ITB                    |
| BAE-12        | STKSR-077     | Steam Co-gasification of<br>Torrefied Seaweed and Land-<br>based Biomass for Hydrogen<br>Production                               | Aghietyas Choirun Az<br>Zahra, Hirozumi Okura,<br>Aisikaer Anniwaer, Abuliti<br>Abudula, Guoqing Guan       | Hirosaki<br>University |
| BAE-13        | STKSR-081     | Thermodynamic Modeling of<br>Alkali Metals Behavior and<br>Ash Fusion in Empty Fruit<br>Bunch and Palm Kernel Shell<br>Combustion | Winny Wulandari,<br>Tjokorde Walmiki<br>Samadhi, Raihan,<br>Muhammad Syaiful Islam                          | ITB                    |
| BAE-14        | STKSR-087     | Co-Torrefaction Modeling and<br>Simulation in Hybrid Coal<br>Production Process                                                   | Winny Wulandari, M<br>Naufal Najib Sanjaya,<br>Dion Purnama Putra,<br>Jenny Rizkiana, Dwiwahju<br>Sasongko  | ITB                    |
| BAE-15        | STKSR-092     | Opportunities and Challenges<br>in Utilizing Palm Kernel Shell<br>as a Renewable Energy Source<br>in Ceramic Tile Manufacturing   | Charlie<br>Dhiannova, Handaya,<br>Herri Susanto                                                             | IPB                    |
| BAE-16        | STKSR-103     | Hematite-Gamma Alumina<br>Based Solid Catalyst<br>Development For Biodiesel<br>Production From Palm Oil                           | Bryan, Edbert Gozali,<br>Tirto Prakoso, Jenny<br>Rizkiana                                                   | ITB                    |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                  | AUTHOR                                                                                                                                                                                                              | INSTITUTION                             |
|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| BAE-17        | STKSR-105     | MASARO INCENERATOR<br>FOR NON<br>BIODEGRADABLE AND<br>NON RECYCLE WASTE<br>HANDLING AT BABAKAN<br>VILLAGE CIWARINGIN<br>CIREBON                              | Akhmad Zainal Abidin, M<br>I Maulana, A Aqsha                                                                                                                                                                       | ITB                                     |
| BAE-18        | STKSR-114     | Experimental Study on<br>Conversion of Water Hyacinth<br>into Solid Fuel                                                                                     | Maria Gabriela Kristanti,<br>Herri Susanto                                                                                                                                                                          | ITB                                     |
| BAE-19        | STKSR-115     | Yield Improvement in Mobile<br>Mini Biodiesel Plant with<br>Solar Water Heating System<br>Using Impregnated Zeolite<br>(Zeolite/KOH) Catalyst                | Syaifurrahman, Usman A<br>Gani, Rinjani Ratih<br>Rakasiwi, Wivina Diah<br>Ivontianti, Mariabel Maura                                                                                                                | Tanjungpura<br>University               |
| BAE-20        | STKSR-174     | Determination of Dye<br>Sensitized Solar Cell (DSSC)<br>Efficiency Using<br>Photosynthetic Pigments of<br>Tropical Marine Microalgae<br>Navicula sp. TAD     | Ivon Telussa, Eirene G.<br>Fransina, Eka Rahmat<br>Mahayani Anthonio Putera<br>Lilipaly, Alfa Musa<br>Imanuel Efruan                                                                                                | Pattimura<br>University                 |
| BAE-21        | STKSR-179     | Process design of hydrogen<br>energy production from<br>glycerol through steam<br>reforming method and<br>optimization using response<br>surface methodology | Muhammad Ikhsan<br>Taipabu, Nikmans Hattu,<br>Ervina Rumpakwakra                                                                                                                                                    | Pattimura<br>University                 |
| BAE-22        | STKSR-182     | Thermal Characteristics of<br>Electric Vehicle's Battery Pack                                                                                                | Prof. Dr. Sugeng Winardi,<br>M.Eng., Arthanta Cracian,<br>Umar Said, Suci Madhania                                                                                                                                  | ITS                                     |
| BAE-23        | STKSR-188     | DC Pump Performance Testing<br>Using Solar Power                                                                                                             | Jemmy J. S. Dethan,<br>Fredrik J. Haba Bunga,<br>Marten L. Lano, Arista M.<br>Tamonob, Jonathan E.<br>Koehuan, Marthen<br>Makaborang, Nikodemus<br>P.P.E. Nainiti, Arlindo<br>Kette, David A. Abi, Hary<br>Devianto | Artha Wacana<br>Christian<br>University |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                           | AUTHOR                                                                                                      | INSTITUTION                            |
|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------|
| FET-01        | STKSR-<br>013 | Preliminary study: Acid effect<br>in the improvement of<br>extraction yield and antioxidant<br>activity in tomato                                     | <b>Angela Justina</b><br><b>Kumalaputri,</b> A. Rianti,<br>G. A. Limiarto, T.<br>Handoko                    | Parahyangan<br>Catholic<br>University  |
| FET-02        | STKSR-<br>034 | Cold Sterilization of Coconut<br>Water by Membrane<br>Technology and UV-C                                                                             | Lienda Aliwargaa, <b>Helen</b><br><b>Juliana</b> , Fiena<br>Joenputria, Livia<br>Chandraa                   | ITB                                    |
| FET-03        | STKSR-<br>046 | Life Cycle Assessment of<br>Decaffeinated Coffee Beans<br>Production                                                                                  | <b>Andreana Rochili</b> ,<br>Fiorine a                                                                      | ITB                                    |
| FET-04        | STKSR-<br>049 | Preliminary Evaluation of Halal<br>Gelatin Production From<br>Indonesian Local Fish By<br>Hydrothermal                                                | Saepul Adnan, <b>M.T.A.P.</b><br><b>Kresnowati</b> , Marlina,<br>Yazid Bindar                               | ITB                                    |
| FET-05        | STKSR-<br>050 | Comparative analysis of the<br>free phenolics, bound<br>phenolics, total phenolics and<br>proximate content of defatted<br>and non-defatted rice bran | Zahara Mardiaha, Soen<br>Steven, Dian<br>Shofinita, <b>Johnner P.</b><br>Sitompul                           | ITB                                    |
| FET-06        | STKSR-<br>119 | Effect of Temperature and<br>Duration of Mixing Red Ginger<br>(Zingiber officinale Var.<br>Rubrum) Extract on Soy Milk                                | <b>Maisaroh</b> , Priyo Atmaji,<br>Widya Puspantari, Olivia<br>Bunga Pongtuluran,<br>Astuti                 | Badan Riset dan<br>Inovasi<br>Nasional |
| FET-07        | STKSR-<br>126 | Integrated Wet Process for<br>Coconut Protein and VCO<br>Production                                                                                   | <b>Dianika Lestari,</b> Anisa<br>Auvira, Rahmaniah<br>Akhirunnisa                                           | ITB                                    |
| FET-08        | STKSR-<br>127 | Production of Low-Digestible<br>Sweet Potato Flour by Organic<br>Acid and Heat Moisture<br>Treatment (HMT)                                            | <b>Dianika Lestari,</b> Haga<br>Krisvint Yandani Gulo,<br>Riza Salsabilla<br>Qodrundnada, Dian<br>Shofinita | ITB                                    |
| FET-09        | STKSR-<br>163 | Ultrasonic-assisted Extraction<br>Optimization of the Flavonoid<br>Compounds from Vernonia<br>amygdalina Del. Leaves Using<br>Response Surface Method | Buanasari Buanasari,<br>Danu Ariono, Johnner P.<br>Sitompul                                                 | ITB                                    |

### Topic 2: Food Engineering and Technology (FET)



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                                                                | AUTHOR                                                                            | INSTITUTION                             |
|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|
| FET-10        | STKSR-<br>164 | Pectin Extraction from Apple<br>Pomace (Malus domestica) as<br>Gelatin Replacer using Living<br>Cells with Ultrasound<br>Pretreatment                                                                      | Nurul Rahmawati, Tri<br>Widjaja <b>, Setiyo</b><br>Gunawan                        | ITS                                     |
| FET-11        | STKSR-<br>175 | EFFECT OF RED<br>GALANGAL RHIZOME<br>(Alpinia purpurata K. Schum)<br>EXTRACT ON HISTAMINE<br>CONCENTRATION IN SCAD<br>FISH (Decapterus sp.)                                                                | Fensia Analda Souhoka,<br>Nikmans Hattu, Esrom<br>Batlajery                       | University of<br>Pattimura              |
| FET-12        | STKSR-<br>176 | ANALYSIS OF PROTEIN<br>CONTENT AND<br>IDENTIFICATION OF<br>AMINO ACIDS IN FRESH<br>AND SMOKE TUNA<br>(Thunnus sp.)                                                                                         | Nikmans Hattu, Ivonne<br>Telussa, Natalia Salatutin                               | University of<br>Pattimura              |
| FET-13        | STKSR-<br>177 | COMPARATIVE CHEMICAL<br>PROFILES OF ESSENTIAL<br>OIL OF NUTMEG FLESH<br>(Myristica fragrans Houtt)<br>THROUGH MULTIPLE<br>DRYING METHODS                                                                   | Sophia Grace Sipahelut,<br>Ivonne Telussa                                         | University of<br>Pattimura              |
| FET-14        | STKSR-<br>180 | PHYSICHOCHEMICAL<br>PROPERTIES OF FRESH<br>SCAD (Decapterus sp)<br>DURING SELLING AT<br>TRADITIONAL MARKET<br>MARDIKA IN AMBON                                                                             | Imelda Krisanta Enda<br>Savitri, Yanci Orindalim,<br>R.B.D. Sormin, E.<br>Lokollo | University of<br>Pattimura              |
| FET-15        | STKSR-<br>185 | A Mini-Pilot Unit of Ice-<br>Producer by Utilizing<br>Refrigeration System for<br>Coastal Fishermen                                                                                                        | Rikhardus Ufie, Johnner<br>Sitompul                                               | University of<br>Pattimura              |
| FET-16        | STKSR-<br>186 | Growth and carrageenan<br>content of Red Algae,<br>Kappahycus alvarezii (Doty)<br>Doty different varieties farming<br>using different methods and<br>different habitats in Bolok<br>Waters, Kupang Regency | Wilson L. Tisera, Rockie<br>R.L. Supit, Alfred G.O.<br>Kase, Lienda A. Handojo    | Artha Wacana<br>Christian<br>University |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                         | AUTHOR                                                                                                                                                                                                                                         | INSTITUTION                             |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| FET-17        | STKSR-<br>191 | "Analysis of Quality Salt<br>Traditional Using Modified<br>Cooking Tools in The Tiberias<br>Group, West Oesapa Village<br>Kelapa Lima Kupang City." | Umbu P. L. Dawa, Mada<br>Mariana Lakapu, Dewi<br>Setyowati. Gadi, Yunialdi<br>H. Teffu1, Martinus<br>Yohanis Paulus Pati,<br>Yuventus Bria, Dewanto<br>Umbu Saga Anakaka,<br>Donny Mercys<br>Bessie,Alfred<br>G.O.Kase, Sanggono<br>Adisasmito | Artha Wacana<br>Christian<br>University |
| FET-18        | STKSR-<br>192 | Characterization of Antioxidant<br>Activities of Forest Honey<br>Enriched Red Ginger Extract<br>(Zingiber officinale var.<br>Rubrum)                | Mery Rambu B. Djoru,<br>Gabriela E.Hetharia,<br>I.D.A.R.R Adi, G.N.<br>Neonufa, Arista<br>M.Tamonob, Ronny<br>Purwadi                                                                                                                          | Artha Wacana<br>Christian<br>University |
| FET-19        | STKSR-<br>193 | Composition of Pigments in<br>Brown Algae Collected from<br>Bolok Marine Waters                                                                     | Alfred G. O. Kase,<br>Yohanes Merryanto,<br>Wilson Tisera, Donny M.<br>Bessie, Rockie R.L.<br>Supit, Dionisius A.<br>Samsop, Beatrix M.<br>Rehatta, Cristiani Soi<br>Meo, Umbu Paru<br>LowuDawa, Ayub U.I.<br>Meko, Lienda A. Handojo          | Artha Wacana<br>Christian<br>University |
| FET-20        | STKSR-<br>194 | "Analysis of Bacteria Caused<br>Ice-Ice Disease in Seaweed<br>Through Polyculture in Dengka<br>Island, Rote Ndao Regency"                           | Donny M. Bessie, Wilson<br>L. Tisera, Umbu P. L.<br>Dawa, Alfred G. O. Kase,<br>Vania R. Th. Tisera, Nina<br>J. Lapinangga, Sanggono<br>Adisasmito                                                                                             | Artha Wacana<br>Christian<br>University |
| FET-21        | STKSR-<br>204 | Effects of Tongka Langit<br>Banana Puree Concentrations<br>On The Quality of Yoghurt                                                                | Lorina Sahetapy, Helen<br>Tuhumury, Erynola M.                                                                                                                                                                                                 | University of<br>Pattimura              |
| FET-22        | STKSR-<br>207 | Effect of Vacuum Pressure on<br>Drying of Durian Fruit (Durio<br>zibethinus)                                                                        | Farah Hafizhah, Lienda<br>Aliwarga                                                                                                                                                                                                             | ITB                                     |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                            | AUTHOR                             | INSTITUTION |
|---------------|---------------|----------------------------------------------------------------------------------------|------------------------------------|-------------|
| FET-23        | STKSR-<br>208 | The Effect of Edible Coating<br>and Cold Storage on Shelf-Life<br>of Mangosteen Fruits | Farah Nuranjani, Lienda<br>Handojo | ITB         |

#### **Topic 3:** Bioprocess Engineering (BPE)

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                                            | AUTHOR                                                                                                                                                         | INSTITUTION |
|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| BPE-01        | STKSR-<br>004 | Influence of Axenic Culture of<br>Bacillus clausii and Mixed Culture<br>on Biofilm Formation, Carbon<br>Steel Corrosion, and Methyl Ester<br>Degradation in B30 Storage Tank<br>System | Christian Aslan, Nadia<br>Ijkri Aulia, Hary<br>Devianto,<br>and <b>Ardiyan</b><br><b>Harimawan</b>                                                             | ITB         |
| BPE-02        | STKSR-<br>008 | The Influence of Culture Types of<br>Isolation Result on Biofilm<br>Formation and Biocorrosion of ST-<br>37 Carbon Steel in B30 Fuel Tank                                              | Nadia Ijkri Aulia,<br>Christian<br>Aslan, <b>Ardiyan</b><br><b>Harimawan</b> , and<br>Hary Devianto                                                            | ITB         |
| BPE-03        | STKSR-<br>022 | Antibacterial Activity of Copper<br>Nanoparticles (CuNPs) by<br>Chemical Reduction Method                                                                                              | Rosi Wulandari, <b>Yuni</b><br><b>Kusumastuti</b> , Agus<br>Prasetya, Yekti Asih ,<br>and Himawan Tri<br>B.M.P, and Arifudin<br>Idrus                          | UGM         |
| BPE-04        | STKSR-<br>023 | Preliminary Study of Biological<br>Route of Vanilin Production from<br>Palm Oil Empty Fruit Bunch (EFB)<br>Delignification Liquor                                                      | Syahdan A.<br>Muhammad, <b>MTAP</b><br>Kresnowati                                                                                                              | ITB         |
| BPE-05        | STKSR-<br>036 | Evaluation of Sequencing Batch<br>Reactor Performance in treating<br>Palm Oil Mill Effluent (POME)<br>using Aerobic Granular Sludge                                                    | Regita Dewi Cahyani,<br>Andri Sanjaya,<br>Lisendra Marbelia,<br>Mohammad<br>Fahrurrozi, Johan<br>Syafri Mahathir<br>Ahmad, <b>Wiratni</b><br><b>Budhijanto</b> | UGM         |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                      | AUTHOR                                                                                                                                                                                                                    | INSTITUTION                             |
|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| BPE-06        | STKSR-<br>038 | A Review on Bioconversion of<br>Lignin                                                                                                                           | Adelina Manurung,<br>Syahdan A.<br>Muhammad, <b>MTAP</b><br>Kresnowati                                                                                                                                                    | ITB                                     |
| BPE-07        | STKSR-<br>070 | Potential Utilization of Lignin from<br>Biomass Waste                                                                                                            | Adelina Manurung,<br>Syahdan A.<br>Muhammad, Ronny<br>Purwadi, <b>MTAP</b><br>Kresnowati                                                                                                                                  | ITB                                     |
| BPE-08        | STKSR-<br>078 | Isolation and Screening of<br>Actinomycetes Active Against<br>Plant Pathogenic Fungi                                                                             | <b>Rofiq Sunaryanto</b> ,<br>Yusriani Sapta Dewi,<br>Nurhayati, Johnner<br>Sitompul                                                                                                                                       | Satya Negara<br>Indonesia<br>University |
| BPE-09        | STKSR-<br>196 | Phycocyanin Production from<br>Spirulina platensis Grown in a<br>Hybrid Photobioreactor System in<br>Response to Varied Irradiance and<br>Carbon dioxide Feeding | Geraldi Rahanra,<br>Awalina Satya, Ika<br>Atman Satya, Tjandra<br>Chrismadha,<br>Nofdianto Nofdianto,<br>Gunawan Gunawan,<br>Azalea Dyah<br>Maysarah Satya, Ratih<br>Pangestuti, Ardiyan<br>Harimawan, Tjandra<br>Setiadi | ITB                                     |

Topic 4: Chemurgy and Bio-based Materials (CBM)

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                            | AUTHOR                                                                                            | INSTITUTION |
|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------|
| CBM-01        | STKSR-<br>001 | Modification of hydrochar from<br>biomass waste with thiourea to<br>produce N, S rich-activated<br>carbon for supercapacitor<br>applications                           | H Rustamaji, <b>T</b><br><b>Prakoso,</b> H Devianto, P<br>Widiatmoko, W H<br>Saputera             | ITB         |
| CBM-02        | STKSR-<br>002 | Hydrothermal carbonization of<br>de-ashed seaweed in the<br>presence of a deep eutectic<br>solvent for producing crude<br>biochemical and activated carbon<br>material | A I Putria, H<br>Rustamaji, <b>T Prakoso</b> , J<br>Rizkiana, H Devianto, P<br>Widiatmoko, G Guan | ITB         |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                  | AUTHOR                                                                                                                                     | INSTITUTION                             |
|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| CBM-03        | STKSR-<br>012 | Rice Straw of Indonesia:<br>Perspective through Monte Carlo<br>Simulations                                                                   | Mekro Permana Pinem,<br>Yusvardi Yusuf, Dhimas<br>Satria, Shofiatul Ula,<br>Dwiananto Sukamto,<br>Agung Sudrajat,<br>Kurniawan Putra Yudha | Sultan Ageng<br>Tirtayasa<br>University |
| CBM-04        | STKSR-<br>015 | Chitosan-Polyvinyl Alcohol<br>(PVA) Based Composite<br>Biofilm: The Effect of Solvents<br>and Nanofillers                                    | <b>Bintang Junita Siom</b> ,<br>Jayanudin, Mekro<br>Permana Pinem, Endarto<br>Yudo Wardhono                                                | Sultan Ageng<br>Tirtayasa<br>University |
| CBM-05        | STKSR-<br>018 | Glucose Oxidation into Formic<br>Acid with Copper-based Catalyst                                                                             | Virdi Chaerusani,<br>Aghietyas Choirun Az<br>Zahra, Tatang Hernas<br>Soerawidjaja, Guoqing<br>Guan, <b>Jenny Rizkiana</b>                  | Hirosaki<br>University                  |
| CBM-06        | STKSR-<br>019 | Analysis and Characterization of<br>Microcrystalline Cellulose<br>Synthesized from Microwave-<br>Assisted Hydrolysis of<br>Sugarcane Bagasse | A S R B Latifa, <b>W B</b><br><b>Sediawan</b> , M Fahrurrozi                                                                               | UGM                                     |
| CBM-07        | STKSR-<br>021 | Synthesis of Activated Carbon<br>from Bamboo Biomass with<br>Variations in Electrolyte Types                                                 | F R Titani, <b>T Prakoso</b> , H<br>Devianto, P Widiatmoko,<br>and H Rustamaji,                                                            | ITB                                     |
| CBM-08        | STKSR-<br>030 | Synthesis and Characterization<br>of Nitrogen-Doped Carbon<br>Materials from Rice Straw as<br>Anode for Lithium-Ion Batteries                | Novema Glendika Putri,<br>Haris Ade<br>Kurniawan, <b>Tika</b><br><b>Paramitha</b>                                                          | Sebelas Maret<br>University             |
| CBM-09        | STKSR-<br>035 | Purification of Crude Glycerol<br>from Biodiesel by-product by<br>Combined Acidification Method                                              | Bambang Irawan                                                                                                                             | PT Badak NGL                            |
| CBM-10        | STKSR-<br>039 | Recent advances of biomass-<br>derived bifunctional oxygen<br>electrocatalyst for air electrode                                              | <b>Pramahadi Febriyanto</b> ,<br>Tirto Prakoso, Hary<br>Devianto, and Pramujo<br>Widiatmoko                                                | ITB                                     |
| CBM-11        | STKSR-<br>047 | Overview of torrefaction<br>technology for upgrading palm<br>oil solid waste to energy biochar                                               | Asri Gani, <b>Erdiwansyah,</b><br>Edi Munawar,<br>Muhammad Faisal,<br>Mahidin, Muhammad<br>Zakia and Husni Husina                          | Syiah Kuala<br>University               |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                              | AUTHOR                                                                                                                                                                           | INSTITUTION                 |
|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CBM-12        | STKSR-<br>093 | Organic Solvents Effect on Spent<br>Coffee Ground Oil<br>Characteristics and its Biodiesel<br>Production and Quality                                                     | <b>Tirto Prakoso,</b> Meiti<br>Pratiwi, Calvin<br>Niwarlangga, Stephen<br>Andrean, Gladys Tiffany<br>Jaya                                                                        | ITB                         |
| CBM-13        | STKSR-<br>096 | Synthesis and Thermal<br>Stabilizing Effect on Polyvinyl<br>Chloride of Calcium/Zinc<br>Carboxylate from Palm Fatty<br>Acid Distillate: Effect of Metal<br>to Acid Ratio | I Dewa Gede Arsa<br>Putrawan, Nadya<br>Amalia Pratiwi Nento,<br>Adli Azharuddin,<br>Antonius Indarto, Dendy<br>Aditywarman                                                       | ITB                         |
| CBM-14        | STKSR-<br>100 | Biodegradable Foam Production<br>Process Based on Extracted<br>Cellulose of Empty Palm Oil<br>Fruit Bunch and Chitosan for<br>Food Packaging                             | Ihza Aulia Alfarisi,<br>Havid Arga<br>Kusumamurti, Fuad<br>Dimar Fauzi, Yunita<br>Aprilia, Muhammad<br>Luqman Qodarusman,<br>Sunu Herwi Pranolo                                  | Sebelas Maret<br>University |
| CBM-15        | STKSR-<br>107 | Utilization of Tamarind Seeds<br>Extract as a Natural and<br>Sustainable Fabric Dye                                                                                      | Muhammad Arifa,<br>Muhammad Ilham<br>Azzindia, Meiti Pratiwi,<br>Sanggono Adisasmito,<br>Nuning Yanti Damayanti,<br>Agus Tendi Ahmad<br>Bustomi, <b>Jenny</b><br><b>Rizkiana</b> | ITB                         |
| CBM-16        | STKSR-<br>110 | Implementation of MASARO<br>Technology for Compostable<br>Waste Processing at Institut<br>Teknologi Bandung – Jatinangor<br>Campus                                       | Akhmad Zainal Abidin,<br>Hafis Pratama Rendra<br>Graha, Elsye Veradika<br>Yemensia, Hadi Mulya<br>Anzhari, Muhamad Ihsan<br>Maulana                                              | ITB                         |
| CBM-17        | STKSR-<br>116 | Biomimetic Delignification of<br>Empty Fruit Bunches from Palm<br>Trees                                                                                                  | Nur Rohmah <b>, Tirto<br/>Prakoso,</b> Tatang Hernas<br>Soerawidjaja                                                                                                             | ITB                         |
| CBM-18        | STKSR-<br>181 | ANTIBACTERIAL<br>MECHANISM OF ETHYL<br>ACETATE EXTRACT OF<br>Jatropha curcas LEAVES<br>AGAINST SOME HISTAMINE<br>FORMING BACTERIA                                        | <b>Beni Setha,</b> Imelda<br>Krisanta Enda Savitri                                                                                                                               | Pattimura<br>University     |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                       | AUTHOR                                                                                                                                                                                                                             | INSTITUTION                              |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| CBM-19        | STKSR-<br>187 | Adding Adhesive On Making Of<br>Waste Bricket Of Eucalyptus Oil<br>Refining                                                       | Arlindo U.S. Kette,<br>Jimmy J.S. Dethan,<br>Fredrik J. Haba Bunga,<br>Marthen Makaborang,<br>Marten L. Lano,<br>Nikodemus P.P.E.<br>Nainiti, Jonathan E.<br>Koehuan, Arista M.<br>Tamonob, Nohyanto<br>Banfatin, Ronny<br>Purwadi | Artha Wacana<br>Christian<br>University  |
| CBM-20        | STKSR-<br>195 | Investigation of Process Variable<br>Effects in Palm<br>Kernelamydopropyl Betaine<br>Production                                   | Astri Nur Istyami, Meiti<br>Pratiwi, Ronny Purwadi,<br>Dianika Lestari, Amanda<br>Nazwa Nur Fatihah                                                                                                                                | ITB                                      |
| CBM-21        | STKSR-<br>199 | Characteristics of Kesambi Leaf<br>Torrefaction Biomass                                                                           | Jemmy J. S. Dethan                                                                                                                                                                                                                 | Artha Wacana<br>Christian<br>University  |
| CBM-22        | STKSR-<br>132 | Synthesis of hydrochar from<br>empty fruit bunches (EFB) and<br>oil palm trunks (OPT) via wet<br>torrefaction: A parametric study | Frederick Jit Fook Phang,<br>Megan Soh, <b>Jiuan Jing</b><br><b>Chew</b> , Aqsha Aqsha,<br>Deni Shidqi Khaerudini,<br>Gerald Ensang Timuda,<br>Bing Shen How, Soh<br>Kheang Loh, Suzana<br>Yusup, Jaka Sunarso                     | Swinburne<br>University of<br>Technology |
| CBM-23        | STKSR-<br>113 | Lignocellulosic Biomass<br>Fractionation Through Bipashic-<br>Solvent System                                                      | Carolus Borromeous<br>Rasrendra, Ronny<br>Purwadi, Christian, Harry<br>James Cho <b>, Haryo</b><br><b>Pandu Winoto</b>                                                                                                             | ITB                                      |

**Topic 5:** Advanced Science and Materials (ASM)

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                          | AUTHOR                                        | INSTITUTION |
|---------------|---------------|------------------------------------------------------|-----------------------------------------------|-------------|
| ASM-01        | STKSR-<br>003 | Ionic Liquid-based Electrolyte in<br>Supercapacitors | <b>Megawati Zunita</b> , Viona<br>Aulia Rahmi | ITB         |
| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                          | AUTHOR                                        | INSTITUTION |

**Book of Abstracts** 



| ASM-02        | STKSR-<br>020 | Optimization of Banten Ilmenite<br>Leaching using Hydrochloric<br>Acid                                            | Venisa Mega Puteri<br>Anggraenia, <b>Chandra</b><br><b>Wahyu Purnomo</b> ,<br>Himawan Bayu Tri Murti<br>Petrus                                        | UGM                         |
|---------------|---------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| ASM-03        | STKSR-<br>024 | Green Recovery of Nickel<br>Element from Spent Catalyst for<br>Lithium Nickel Manganese<br>Cobalt Oxide (NMC)     | <b>Endah Retno Dyartanti</b> ,<br>Tika Paramitha, Arif<br>Jumari, Agus Purwanto,<br>Adrian Nur, Anatta<br>Wahyu Budiman,<br>Shofirul Sholikhatun Nisa | Sebelas Maret<br>University |
| ASM-04        | STKSR-<br>028 | The Characterization and<br>Electrochemical Properties of<br>Copper-Complex                                       | Kariana Kusuma Dewi,<br>Ni Luh Wulan Septiani,<br>Muhammad Iqbal,<br>Nugraha, <b>Brian Yuliarto</b>                                                   | ITB                         |
| ASM-05        | STKSR-<br>033 | Performance Study On An<br>Intermediate Temperature Solid<br>Oxide Fuel Cell Using Novel<br>Composite Electrolyte | Aiman Mochammad<br>Iqbal, Pramujo<br>Widiatmoko, <b>Hary</b><br><b>Devianto</b>                                                                       | ITB                         |
| ASM-06        | STKSR-<br>045 | Influence of Ceria-Doping on<br>Anode Impedance                                                                   | Daniel Benedict Iskandar,<br>Darwin, Pramujo<br>Widiatmoko, <b>Hary</b><br>Devianto                                                                   | ITB                         |
| ASM-07        | STKSR-<br>055 | Hierarchical Micro-Meso-<br>Macroporous ZSM-5<br>Synthesized at Low Temperature                                   | St Mardiana, Noerma J.<br>Azhari, <b>Grandprix T.M.</b><br><b>Kadja</b>                                                                               | ITB                         |
| ASM-08        | STKSR-<br>057 | Fabrication and Performance of<br>Nickel-Cobalt Hydrogen<br>Phosphate-Based Supercapacitor                        | Wulan Kusuma Wardani,<br>Ni Luh Wulan Septiani,<br>Muhammad Iqbal,<br>Nugraha, <b>Brian Yuliarto</b>                                                  | ITB                         |
| ASM-09        | STKSR-<br>059 | Synthesis of Hierarchical<br>Nanorod ZSM-48 Zeolite<br>Accelerated by Hydroxyl<br>Radical Ion                     | Noerma Juli<br>Azhari, Grandprix T. M.<br>Kadja, St Mardiana,<br>Munawar Khalil,<br>Subagjo, M. H.<br>Mahyuddin                                       | ITB                         |
| ASM-10        | STKSR-<br>061 | Preliminary Studies of ZIF-8 as<br>Sensing Material for<br>Electrochemical Detection of<br>Dopamine               | Nurul Hanifahad, Ni Luh<br>Wulan Septiani,<br>Nugraha, Brian Yuliarto                                                                                 | ITB                         |
| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                       | AUTHOR                                                                                                                                                | INSTITUTION                 |



| ASM-11 | STKSR-<br>066 | Preliminary Design Precipitated<br>Calcium Carbonate from Blast<br>Furnace Gas and Steel Slag Plant                             | Kusdianto, Arthanta<br>Cracian, Umar Said, Suci<br>Madhania, Siti<br>Machmudah, Sugeng<br>Winardi                     | ITS |
|--------|---------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|
| ASM-12 | STKSR-<br>083 | Alkali-Fusion Hydrothermal<br>Synthesis of Zeolite X from Coal<br>Fly Ash                                                       | Winny Wulandari, Jihan<br>C. Nabila, Habibah<br>Triannisa, Rahmaditha<br>Murida, Jenny Rizkiana,<br>Dwiwahju Sasongko | ITB |
| ASM-13 | STKSR-<br>084 | Dynamic of Microemulsion<br>Nanoparticle Precipititation :<br>Sensitivity Analysis Of Particle<br>Nucleation and Growth Order   | Dendy Adityawarman                                                                                                    | ITB |
| ASM-14 | STKSR-<br>089 | Solar-Driven Water Purification<br>for Sustainable Clean Water<br>Supply                                                        | Heru Setyawan, Ni Made<br>Intan Putri Suari, W.<br>Widiyastuti, Tantular<br>Nurtono                                   | ITS |
| ASM-15 | STKSR-<br>101 | Electrospinning Process for<br>Polyacrylonitrile (PAN)<br>Nanofibers: The Parameters<br>Optimization                            | Siti Oryza Sativa,<br>Muhammad Ali Zulfikar                                                                           | ITB |
| ASM-16 | STKSR-<br>102 | Computational Design of<br>Molecularly Imprinted Polymer<br>Material Used in Analysis of<br>Polycyclic Aromatic<br>Hydrocarbons | Aria Pinandita,<br>Muhammad Ali Zulfikar,<br>Muhammad Bachri<br>Amran                                                 | ITB |
| ASM-17 | STKSR-<br>104 | Identifying Microplastic Particle<br>in The Drinking Water and Its<br>Saurce Using FTIR Method                                  | Akhmad Zainal Abidin,<br>EV Yemensia, H M<br>Anshari                                                                  | ITB |
| ASM-18 | STKSR-<br>108 | Study of Life Cycle Assessment<br>of PVC Products in Indonesia                                                                  | Ernie S A Soekotjo,<br>Andro Alfiandi, Elsye<br>Veradika<br>Yemensia, Akhmad<br>Zainal Abidin                         | ITB |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                               | AUTHOR                                                                                                           | INSTITUTION             |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|
| ASM-19        | STKSR-<br>117 | Fabrication of Scaffold<br>Hydroxyapatite Using Natural<br>Template, and Its Applications<br>as Bone Implant: A Review                                    | Reno Susanto, Tjokorde<br>Walmiki Samadhi,<br>Winny Wulandari                                                    | ITB                     |
| ASM-20        | STKSR-<br>123 | On the Influence of Silica<br>Nanoparticles to the Wettability<br>Alteration of Sandstone                                                                 | Sarah<br>Dampang, Muhammad<br>Mufti Azis, Ahmad<br>Tawfiequrrahman<br>Yuliansyah, Suryo<br>Purwono               | UGM                     |
| ASM-21        | STKSR-<br>161 | Commercialization Evaluation of<br>TiO2 Photocatalyst Durability<br>and Performance for Oil Spill<br>Remediation                                          | Ahmad Ilham Zhafran,<br>Rizma Halimatusadia                                                                      | ITB                     |
| ASM-22        | STKSR-<br>169 | Antibacterial Properties of<br>Graphene-based Nanomaterials<br>and Graphene-based<br>Nanocomposites: A Mini<br>Review                                     | Vita Wonoputri, Hans<br>Vito Xavier Khosasih,<br>Robby Lysander Aurelio                                          | ITB                     |
| ASM-23        | STKSR-<br>170 | Home Laboratory Synthesis of ZnO Nanoparticles                                                                                                            | Tjokorde Walmiki<br>Samadhi, Vita<br>Wonoputri, Jevan, Odara<br>Eka Aptari                                       | ITB                     |
| ASM-24        | STKSR-<br>183 | Factors Affecting Stable<br>Colloidal Zinc Oxide from Zinc<br>Acetate                                                                                     | Prof. Dr. Sugeng<br>Winardi, M.Eng.,<br>Nurdiana Ratna Puri,<br>Indah Riwayati, Lailatul<br>Qomariyah, Kusdianto | ITS                     |
| ASM-25        | STKSR-<br>198 | Determination of Corrosion &<br>Mitigation On Stainless Steel 22<br>cr & 314 Using Weight<br>Thickness Method In Production<br>In a Corrosion Environment | Yusuf Revy<br>Fadillah, Agus Prama                                                                               | Pertamina<br>University |



### Topic 6: Separation Technology (ST)

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                   | AUTHOR                                                                                                                | INSTITUTION                |
|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|
| ST-01         | STKSR-<br>006 | Study on microfiltration of<br>crude biodiesel using<br>ceramic membrane                                                                                      | Samuel P. Kusumocahyo,<br>Natasya Z. Az'zura, Silvya<br>Yusri, Hery Sutanto,<br>Meliyanti, Eneng Maryani,<br>Hernawan | Swiss German<br>University |
| ST-02         | STKSR-<br>007 | Polyethylene terephthalate<br>ultrafiltration membrane for<br>separation and purification<br>process of coffee pulp<br>extract solution                       | Samuel P. Kusumocahyo                                                                                                 | Swiss German<br>University |
| ST-03         | STKSR-<br>010 | Graphene- Based Material for CO2/CH4 Separation                                                                                                               | <b>Megawati Zunita</b> , Mulyana                                                                                      | ITB                        |
| ST-04         | STKSR-<br>025 | Techno-economic analysis<br>of coal leaching processes<br>to produce ultra clean coal                                                                         | Abdul Rahman Marwis<br>Karim, Indah Nurani, Tiva<br>Putri Tri Lestari, Joko<br>Wintoko, Muhammad Mufti<br>Azis        | UGM                        |
| ST-05         | STKSR-<br>044 | Preparation and<br>Characterization of the<br>Improved-Hydrophylic<br>Polyvinylidene Fluoride<br>(PVDF) Membrane<br>Modified by Polymer<br>Blending Technique | Muhfadzallah, <b>Umi</b><br><b>Fathanah</b> , Sri Aprilia,<br>Syawaliah Muchtar,<br>Mukramah Yusuf                    | Syiah Kuala<br>University  |
| ST-06         | STKSR-<br>068 | Optimizing ultrasonic-<br>assisted extraction<br>parameters to extract the<br>antioxidant activity<br>components in Vernonia<br>amygdalina Del. Leaves        | Buanasari, Danu<br>Ariono, <b>Johnner P. Sitompul</b>                                                                 | ITB                        |
| ST-07         | STKSR-<br>069 | Removal of Acrylic Acid<br>Containing Industrial<br>Wastewater by Coagulation,<br>Flocculation and Adsorption<br>in a Mini Pilot Scale                        | Tifari Athia Zahra, <b>Johnner</b><br><b>Sitompul</b> , Jonathan Sangwha<br>Lee, Yusriani Sapta Dewi                  | ITB                        |
| ST-08         | STKSR-<br>075 | Kinetics and Isotherm<br>Adsorption Models of Acid<br>Mine Drainage Heavy<br>Metal Using Modified Clay                                                        | <b>Dr. Ir. Elvi Restiawaty</b> ,<br>Wibawa Hendra Saputera,<br>Qiston Naufal Javiria, Elicia<br>Kusuma                | ITB                        |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                   | AUTHOR                                                                                                         | INSTITUTION |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|
| ST-09         | STKSR-<br>080 | Determination of the<br>Mobile Phase in Low-<br>pressure Column<br>Chromatography Using<br>Thin-layer Chromatography<br>to Purify Astaxanthin | Putri Restu Dewati,<br>Rochmadi, Abdul<br>Rohman, <b>Arief Budiman</b>                                         | UGM         |
| ST-10         | STKSR-<br>088 | Challenges and<br>Opportunities for Proton<br>Exchange Membranes<br>Development for<br>Electrochemical Devices in<br>Indonesia                | <b>Hafis Pratama Rendra<br/>Graha</b> , Maisya Dina Putri<br>Yanti, Tarisa Wulandari Putri,<br>Zakaria Maulana | ITB         |
| ST-11         | STKSR-<br>091 | Organic Fouling<br>Mechanism in<br>Ultrafiltration Membrane                                                                                   | Anita Kusuma Wardani                                                                                           | ITB         |
| ST-12         | STKSR-<br>097 | Evaluation of Osmotic<br>Pressured Membran<br>Performance in Achieving<br>Water Sustainability                                                | Jeremiah Tjandra, Natasya<br>Angelina, <b>Danu Ariono,</b><br>Graecia Lugito                                   | ITB         |
| ST-13         | STKSR-<br>099 | Techno-Economic Analysis<br>of Caustic Soda Production<br>in Indonesia Based on<br>Membrane Technology                                        | <b>Rendra Panca Anugraha,</b><br>Juwaria, Renanto, Sahara Putri<br>Fachrudy, Yuliana Erika<br>Daoed            | ITS         |
| ST-14         | STKSR-<br>106 | Precipitation of Potassium<br>Chloride Salt from Salt<br>Mixture Containing Sodium<br>Chloride Using Water-<br>Alcohol Solvents               | Wibawa Hendra Saputera,<br>Herri Susanto, Jonathan<br>Maximilian Surya Atmaja,<br>Amarthya Benigna Achmad      | ITB         |
| ST-15         | STKSR-<br>111 | Water-Energy Nexus in<br>Seawater Desalination<br>System: Case of Integrated<br>Osmotic Membranes                                             | Graecia Lugito, Danu Ariono                                                                                    | ITB         |
| ST-16         | STKSR-<br>150 | Kinetics and Isotherm<br>Adsorption Models of Acid<br>Mine Drainage Heavy<br>Metal Using Modified Clay                                        | <b>Elvi Restiawaty</b> , Wibawa<br>Hendra Saputera, Qiston<br>Naufal Javiria, Elicia Kusuma                    | ITB         |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                               | AUTHOR                                                                      | INSTITUTION                              |
|---------------|---------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|
| ST-17         | STKSR-<br>131 | Adsorption Kinetics of<br>Amoxicillin, Ampicillin,<br>and Doripenem on<br>Organobentonite | Jason Yi Juang Yeo, Aqsha<br>Aqsha, <b>Suryadi</b><br>Ismadji, Jaka Sunarso | Swinburne<br>University of<br>Technology |

#### Topic 7: Process Simulation (PS)

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                               | AUTHOR                                                                                              | INSTITUTION |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------|
| PS-01         | STKSR-<br>037 | Performance Evaluation of<br>Solid Oxide Fuel Cell<br>(SOFC) Integration<br>Combination with Water<br>Heater Gas For Waste Heat<br>Recovery               | Muhammad Nurfauzi Rizal,<br>Pramujo Widiatmoko, <b>Hary</b><br><b>Devianto</b>                      | ITB         |
| PS-02         | STKSR-<br>040 | Simulation on impact of<br>humidity and carbon dioxide<br>content in ambient air to<br>zinc-air battery discharge<br>profile                              | <b>Pramahadi Febriyanto</b> ,<br>Tirto Prakoso, Hary Devianto,<br>Pramujo Widiatmoko                | ITB         |
| PS-03         | STKSR-<br>051 | Comparing Options of<br>BECCS in Indonesia Using<br>Energy System Modelling                                                                               | <b>Anggit Raksajati</b> , Attaya<br>Artemis M, Zefania Praventia<br>Sutrisno                        | ITB         |
| PS-04         | STKSR-<br>053 | Captured three-dimensional<br>digital turbulent behaviors<br>inside cyclones using<br>computational fluid<br>dynamics (CFD) design<br>method              | Soen Steven, Imam<br>Mardhatillah Fajri, Elvi<br>Restiawaty, <b>Yazid Bindar</b>                    | ITB         |
| PS-05         | STKSR-<br>054 | Improved operational unit<br>process performance<br>through three-dimensional<br>design modifications using<br>the computational fluid<br>dynamics method | Soen Steven, <b>Yazid Bindar</b> ,<br>Imam Mardhatillah Fajri,<br>Pasymi Pasymi, Elvi<br>Restiawaty | ITB         |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                 | AUTHOR                                                                                                                                                           | INSTITUTION                             |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| PS-06         | STKSR-<br>065 | Modeling and Simulation of<br>Catalytic Conversion of<br>Empty Fruit Bunch (EFB)<br>into Polylactic Acid                    | Tifari Athia Zahra, Vika<br>Fujiyama, Rihardhika<br>Pramudya, Yoshi Eka<br>Miryano, Muchammad<br>Adriyan, Hyung Woo<br>Lee, <b>Johnner Sitompul</b>              | ITB                                     |
| PS-07         | STKSR-<br>076 | Modelling and Simulation<br>of Coal Biosolubilization<br>Kinetics                                                           | <b>Dr. Ir. Elvi Restiawaty</b> ,<br>Ardiyan Harimawan, Ignatio<br>Senoaji Jagad Mitro Prajasto,<br>Kevin Susiilo, Dwiwahju<br>Sasongko                           | ITB                                     |
| PS-08         | STKSR-<br>082 | Simplified Simulation of<br>Glucose Hydrolysis to<br>Levulinic Acid for<br>Estimating Kinetic<br>Parameters                 | Meutia Ermina Toif ( <b>Arief</b><br><b>Budiman</b> ), Saviri Kamila<br>Fatma, Muslikhin Hidayat,<br>Rochmadi                                                    | UGM                                     |
| PS-09         | STKSR-<br>085 | Simulation of Photocatalytic<br>Degradation of Methylene<br>Blue using Titanium<br>Dioxide (TiO2) P25 as a<br>Photocatalyst | Wibawa Hendra Saputera,<br>Awanis Mazayasina, Nitya<br>YatashaDewi, Pramujo<br>Widiatmoko, Dwiwahju<br>Sasongko                                                  | ITB                                     |
| PS-10         | STKSR-<br>086 | Simulation of Photocatalytic<br>Degradation of Phenol using<br>TiO2 P25-based<br>Photocatalyst                              | Wibawa Hendra Saputera,<br>Reynaldo Jonathan, Jeffry<br>Jaya Pranata, Pramujo<br>Widiatmoko, Dwiwahju<br>Sasongko                                                | ITB                                     |
| PS-11         | STKSR-<br>095 | Heat Transfer Coefficient on<br>Stirring Palm Fatty Acid<br>Distillate in a Jacketed Tank<br>at a Dynamic Stage             | I Dewa Gede Arsa<br>Putrawan, Yona Octavia,<br>Antonius Indarto, Dendy<br>Aditywarman                                                                            | ITB                                     |
| PS-12         | STKSR-<br>109 | Process Analysis of the<br>Multi-Chemical Green<br>Production from Seawater<br>and Air with Renewable<br>Energy             | Anton Irawan, Teguh<br>Kurniawan, Hafid Alwan,<br>Widya Ernawati, Heri<br>Heriyanto, I Dewa Gede Arsa<br>Putrawan, Elvi Restiawaty,<br>Soen Steven, Yazid Bindar | Sultan Ageng<br>Tirtayasa<br>University |
| PS-13         | STKSR-<br>129 | Simulation Study on the<br>Effect of Temperature on<br>the Commercial<br>Polypropylene Production<br>Process                | <b>Tri Partono Adhi</b> , Dodi<br>Afandi                                                                                                                         | ITB                                     |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                                 | AUTHOR                                                                                                  | INSTITUTION                                                |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| PS-14         | STKSR-<br>130 | Analysis on the Performance<br>of A Commercial Acid Gas<br>Removal Unit                                                                                                     | <b>Tri Partono Adhi</b> , Sekar<br>Ekawati Parasiwi                                                     | ITB                                                        |
| PS-15         | STKSR-<br>201 | Analysis of Water Injection<br>Network using Aspen Hysys<br>Hydraulic                                                                                                       | Migel Aldila, <b>Tri Partono</b><br><b>Adhi</b>                                                         | ITB                                                        |
| PS-16         | STKSR-<br>133 | Evaluation of Dew Point<br>Control Unit for an Offshore<br>Production Facilities                                                                                            | <b>Tri Partono Adhi</b> , R.<br>Widyapradhana Dhanarjaya                                                | ITB                                                        |
| PS-17         | STKSR-<br>027 | Hydrodynamic Studies of<br>Two-Phase Liquid-Liquid<br>Slug Flow In Circular<br>Microchannel with T-<br>junction                                                             | <b>Dr. Aloisiyus Yuli Widianto,</b><br><b>S.T., <u>M.Sc</u> ; Caroline Elfa;<br/>Reynaldo Valentino</b> | University of<br>Surabaya                                  |
| PS-18         | STKSR-<br>184 | Analysis Of Changes in Gas<br>Turbine Compressor<br>Operation at Gas Processing<br>Station from Parallel to<br>Series Using Aspen Hysys                                     | Patria Suryatmaja, <b>Indar</b><br><b>Kustiningsih</b> , Hafid Alwan,<br>Yazid Bindar                   | Sultan Ageng<br>Tirtayasa<br>University                    |
| PS-19         | STKSR-<br>197 | Techno-economic study of<br>optimized multi-stage flash<br>vaporization based<br>condensate stabilization unit                                                              | <b>Tri Partono Adhi</b> , Hilman<br>Ali Hazmi                                                           | ITB                                                        |
| PS-20         | STKSR-<br>202 | Analysis of Control<br>Management to the Public<br>Transport Drivers Using<br>Global Positioning System<br>(GPS)                                                            | Muhammad Arief<br>Munadi, <b>Meldasari Said,</b><br>Zainal Arifin                                       | Sekolah Tinggi<br>Ilmu Ekonomi<br>Indonesia<br>Banjarmasin |
| PS-21         | STKSR-<br>203 | Analysis of Reservoir<br>Complexity Index (RCI)<br>Towards Value of Recovery<br>Factor (RF) in Oil Field on<br>Sandstone Reservoir with<br>Chemical Surfactant<br>Injection | I Made Dalam Saputra<br>Jagadita, Dedy Irawan                                                           | ITB                                                        |



#### Topic 8: Industrial Application (IA)

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                         | AUTHOR                                                                                          | INSTITUTION                             |
|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|
| IA-01         | STKSR-<br>016 | Flow Assurance Study On<br>Natural Gas Production<br>Facility                                                                       | Babar Priyadi Mugi<br>Hanggana                                                                  | ITB                                     |
| IA-02         | STKSR-<br>058 | Heavy Hydrocarbon<br>Recovery from CO2-<br>Containing Natural Gas for<br>Gas Transmission Pipeline                                  | F. Yusupandi, P.<br>Widiatmoko, I. F. Sukmana,<br>H R. Fitri, M. Eviani <b>, H.</b><br>Devianto | ITB                                     |
| IA-03         | STKSR-<br>090 | Thermodynamic<br>Performance Correction of<br>Single Shaft Gas Turbine<br>Generator In Oil And Gas<br>Production Field              | Rhobi Rozieanshah                                                                               | ITB                                     |
| IA-04         | STKSR-<br>128 | Simulation of Catalytic Coal<br>Gasification for IGCC<br>Process                                                                    | Hans Adrian, Muhammad<br>Ariqsyah Indra, Dwiwahyu<br>Sasongko, <b>Jenny Rizkiana</b>            | ITB                                     |
| IA-05         | STKSR-<br>166 | DETERMINATION OF<br>THE EFFECT OF<br>ELEVATION ON<br>INTERNAL CORROSION<br>AND MITIGATION IN CS<br>PIPELINE USING OLGA<br>SIMULATOR | Muhammad Ismi Afif, <b>Agus</b><br><b>Pramana</b>                                               | Pertamina<br>University                 |
| IA-06         | STKSR-<br>205 | The Effect of Essential Oil<br>Derived Octane Booster<br>Addition to Gasoline<br>Product Quality                                    | <b>Priambodo Purwo<br/>Handoyo</b> , Isnandhi Dwi<br>Saputra                                    | PT Kilang<br>Pertamina<br>Internasional |
| IA-07         | STKSR-<br>206 | A Quantum Leap:<br>Renewable Diesel<br>Production Drop-in<br>PT. Kilang Pertamina<br>Internasional                                  | Sahkundiyar                                                                                     | PT Kilang<br>Pertamina<br>Internasional |
| IA-08         | STKSR-<br>209 | Enhancing Multiplier Effect<br>of HVO Circular Economy:<br>Indonesia Case Study                                                     | Isnandhi Dwi Saputra,<br>Wahyu Gunawan                                                          | PT Kilang<br>Pertamina<br>Internasional |



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                                              | AUTHOR                                                                                                                                      | INSTITUTION               |
|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| RCE-01        | STKSR-<br>029 | Electrochemical Reduction<br>of Carbon Dioxide into<br>Formic Acid using Carbon-<br>Based Electrode: Effect of<br>Type of Reactor                                                        | N D Jayanti, P Widiatmoko, T<br>Prakoso, M Eviani, <b>H</b><br><b>Devianto</b>                                                              | ITB                       |
| RCE-02        | STKSR-<br>063 | Carbon Capture and Storage<br>to Simultaneous Biogas<br>Purification and Precipitated<br>Calcium Carbonate<br>Production Using Ca(OH)2<br>Aqueous Solution in A<br>Bubble Column Reactor | Suci Madhania, Muhammad<br>Hubbal, Faris VIrgiansah, M.<br>Fauzan Firdaus,<br>Kusdianto, Siti<br>Machmudah, <b>Sugeng</b><br><b>Winardi</b> | ITS                       |
| RCE-03        | STKSR-<br>134 | Dynamic Simulation of<br>Operating Envelope of<br>Haber-Bosch Ammonia<br>Synthesis Process                                                                                               | <b>Avariz Muhammad</b> ,Tri P.<br>Adhi                                                                                                      | ITB                       |
| RCE-04        | STKSR-<br>073 | Catalytic Hydrogenolysis of<br>Glycerol to Produce<br>Monoalcohols                                                                                                                       | Eka M Idzati, <b>Firman</b><br><b>Kurniawansyah</b> , Hikmatun<br>Ni'mah, Mahfud, Tantular<br>Nurtono, Achmad Roesyadi                      | ITS                       |
| RCE-05        | STKSR-<br>074 | In-situ Catalytic Upgrading<br>of Bio-Oil from Fast<br>Pyrolysis of Lignin over<br>High Aluminum Zeolites                                                                                | Irwan Kurnia, Virdi<br>Chaerusani, Abuliti<br>Abudula, <b>Guoqing Guan</b>                                                                  | Padjadjaran<br>University |
| RCE-06        | STKSR-<br>098 | Investigation of nickel-<br>impregnated niobium oxide<br>catalyst to improve the<br>quality of low-grade LDPE<br>pyrolysis oils composition<br>via catalytic reforming                   | Fahrizal Nasution, <b>Husni</b><br><b>Husin</b> , Mahidin, Faisal<br>Abnisa, Syahrul Fahmi                                                  | Syiah Kuala<br>University |
| RCE-07        | STKSR-<br>118 | Initial approach of NbOPO4<br>ability to<br>hydrodeoxygenation<br>reaction of palm oil based<br>on ATR-IR spectra<br>alteration                                                          | Firda Tirta Yani, <b>Husni</b><br><b>Husin</b> , Darmadi, Syaifullah<br>Muhammad                                                            | Syiah Kuala<br>University |

#### Topic 9: Reaction and Control Engineering (RCE)



| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                               | AUTHOR                                                               | INSTITUTION             |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|
| RCE-08        | STKSR-<br>121 | Kinetic Studies on the<br>Direct Synthesis of<br>Dimethyl Ether (DME)<br>Using a Mixture of<br>Methanol Synthesis and<br>Methanol Dehydration<br>Catalyst | <b>Puji Andini</b> , Herri Susanto,<br>and Aisyah Ardy               | ITB                     |
| RCE-09        | STKSR-<br>122 | Numerical solution of nth<br>order DAEM for kinetic<br>study of lignocellulosic<br>biomass pyrolysis                                                      | Jonas Kristanto, <b>Muhammad</b><br><b>Mufti Azis,</b> Suryo Purwono | UGM                     |
| RCE-10        | STKSR-<br>125 | Study of Methanol and<br>DME Process Production<br>from Coal Gas Synthesis<br>Results                                                                     | <b>Fajar Reksaning Adhi</b> ,<br>Aisyah Ardy, Herri Susanto          | ITB                     |
| RCE-11        | STKSR-<br>200 | Performance Comparison of<br>Process Configurations for<br>Commonly Found Ammonia<br>Reactor Synthesis Loops                                              | Aditya Rinus Pratama<br>Putra <b>, Tri Partono Adhi</b>              | ITB                     |
| RCE-12        | STKSR-<br>178 | "Kinetic Study of Methylene<br>Blue on ZnO/Zeolite<br>Synthesized from Red Mud<br>under UV-LED Lamp<br>Irradiation"                                       | Hellna Tehubijuluw, Yuly<br>Kusumawati, Didik<br>Prasetyoko          | Pattimura<br>University |

#### Topic 10: Chemical Engineering Education (CEE)

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                  | AUTHOR                                                                                                                                                         | INSTITUTION |
|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| CEE-01        | STKSR-<br>042 | Conceptualization of<br>Prototype Curricula with<br>Project Based Learning for<br>Chemical Engineering<br>Major in Vocational High<br>School | Christian Aslan, Ardiyan<br>Harimawan, Dian Shofinita,<br>Vita Wonoputri, Muhammad<br>Helmi Risansyauqi, Agus<br>Tendi Ahmad<br>Bustomi, <b>Jenny Rizkiana</b> | ITB         |



#### List of Poster

| TOPIC<br>CODE | PAPER<br>CODE | PAPER TITLE                                                                                                                                                                              | AUTHOR                                                                                                                                         | INSTITUTION |
|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ASM-16        | STKSR-<br>102 | Computational Design of<br>Molecularly Imprinted<br>Polymer Material Used in<br>Analysis of Polycyclic<br>Aromatic Hydrocarbons                                                          | <b>Aria Pinandita</b> ,<br>Muhammad Ali Zulfikar,<br>Muhammad Bachri<br>Amran                                                                  | ITB         |
| FET-03        | STKSR-<br>046 | Life Cycle Assessment of<br>Decaffeinated Coffee Beans<br>Production                                                                                                                     | <b>Andreana Rochili</b> ,<br>Fiorine a                                                                                                         | ITB         |
| BAE-08        | STKSR-<br>056 | Interaction of Biomass and<br>Biochar of Seaweed and Apple<br>Tree Branch in Two-Stage Co-<br>gasification System                                                                        | <b>Yohanes Andre<br/>Situmorang</b> , Guoqing<br>Guan                                                                                          | ITB         |
| RCE-02        | STKSR-<br>063 | Carbon Capture and Storage to<br>Simultaneous Biogas<br>Purification and Precipitated<br>Calcium Carbonate Production<br>Using Ca(OH)2 Aqueous<br>Solution in A Bubble Column<br>Reactor | Suci Madhania,<br>Muhammad Hubbal, Faris<br>VIrgiansah, M. Fauzan<br>Firdaus,<br>Kusdianto, Siti<br>Machmudah, <b>Sugeng</b><br><b>Winardi</b> | ITS         |
| ASM-11        | STKSR-<br>066 | Preliminary Design<br>Precipitated Calcium<br>Carbonate from Blast Furnace<br>Gas and Steel Slag Plant                                                                                   | Kusdianto, Arthanta<br>Cracian, Umar Said, Suci<br>Madhania, Siti<br>Machmudah, <b>Sugeng</b><br><b>Winardi</b>                                | ITS         |