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ARTICLE INFO ABSTRACT

Keywords: Herbal medicines are multi-component and can exhibit synergistic effects in the treatment of diseases. Sechium
Extract combination edule, Syzigium polyanthum, and Curcuma xanthorrhiza have been used in traditional medicine to reduce serum
Antihyperlipidemic

lipid levels. However, the molecular mechanism was not described clearly, especially as a mixture. Thus, we
performed a network pharmacology study combined with molecular docking to find a rational explanation
regarding the molecular mechanisms of this antihyperlipidemic formula. According to the network pharma-
cology study, we predicted that this extract mixture would act as an antihyperlipidemic agent by modulating
several pathways including insulin resistance, endocrine resistance, and AMP-activated protein kinase (AMPK)
signaling pathway. Based on the topology parameters, we identified 6 significant targets that play an important
role in reducing lipid serum levels: HMG-CoA reductase (HMGCR), peroxisome proliferator-activated receptor
alpha (PPARA), RAC-alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR),
matrix metalloproteinase-9 (MMP9), and tumor necrosis factor-alpha (TNF). Meanwhile, 8 compounds:
B-sitosterol, bisdesmethoxycurcumin, cucurbitacin D, cucurbitacin E, myricetin, phloretin, quercitrin, and rutin
were the compounds with a high degree, indicating that these compounds have a multitarget effect. Our
consensus docking study revealed that HMGCR was the only protein targeted by all potential compounds, and
rutin was the compound with the best consensus docking score for almost all targets. The in vitro study revealed
that the extract combination could inhibit HMGCR with an ICsg value of 74.26 pug/mL, indicating that HMGCR
inhibition is one of its antihyperlipidemic mechanisms.

Network pharmacology
Consensus docking
HMGCR

1. Introduction

Hyperlipidemia is a chronic metabolic disease, strongly related to
several high-incidence cardiovascular diseases, including diabetes,
coronary heart disease, atherosclerosis, and hypertension (Nelson,
2013). Hyperlipidemia is characterized by an imbalance of lipid serum
levels including increased total cholesterol, low-density lipoprotein
(LDL), triglycerides (TG), and decreased high-density lipoprotein (HDL)
(Su et al.,, 2021). In addition, herbal products could be complementary
or alternative treatments for hyperlipidemia to conventional medicine
such as statins, fibrates, and bile acid sequestrants (Hasani-Ranjbar
et al., 2012).

In traditional medicine, herbal products may contain a single herb or
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multiple herbs. However, numerous studies have shown that in some
cases, the combination of herbs provides efficacies over a single herb in
equivalent doses (Che et al., 2013; Zhou et al., 2016). As a single herb,
roots of Rehmannia glutinosa or Astragalus membranaceus did not show a
wound-healing effect in a foot ulcer animal model. However, their
combination in a ratio of 2:1 resulted in a significant effect (Lau et al.,
2012). Another study showed that the addition of Magnolia officinalis
and Citrus aurantium can induce higher bioavailability of genoposide in
rats, suggesting that herb-herb interaction could influence the
bioavailability of the active ingredient (Sun et al., 2012). Meanwhile, an
in vivo study demonstrated ginger can detoxicate the toxicity of Pinellia
rhizoma by reducing the prostaglandin E2 level induced by Pinellia
rhizoma (Wu et al.,, 1998). These studies indicated that herbs
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combination may improve the pharmacokinetic and pharmacodynamic
profiles, as well as the toxicity profile, of their formula.

Indonesia with its high biodiversity is promising to develop natural
products as a source of drugs (Arifah et al., 2022). In the case of
hyperlipidemia treatment, numerous medicinal plants have been used
traditionally. Among them, Curcuma xanthorrhiza (Yasni et al., 1993),
Sechium edule (Mohammed et al., 2022), and Syzigium polyanthum
(Hartanti et al., 2019) have been reported to reduce serum lipid levels.
In a previous study, extract combination of Sechium edule fruit, Syzigium
polyanthum leaf, and Curcuma xanthorrhiza rhizome showed a good ef-
fect in reducing cholesterol total and triglyceride levels on male rats
induced by high cholesterol diet (Agustini et al., 2006). However, its
mechanism has not been elucidated yet. This is one of the problems in
natural product drug discovery based on phenotypic assays (Atanasov
et al., 2021), especially since the natural products are still in extract
material. The complexity of multi-compound materials presents a
challenge in the molecular target determination of extract formula ob-
tained experimentally.

Currently, the main methods for determining the molecular target
have been tedious and time-consuming such as genomic and proteomic
approaches (Ou-Yang et al., 2012). Fortunately, in the big data era,
network pharmacology is a useful approach because it can guide a
researcher in studying the molecular mechanism, and selecting the po-
tential compounds as well as the targets that play an important role in
the treatment of diseases (Noor et al., 2022). Furthermore, molecular
docking simulations have been used to validate the prediction of
network pharmacology based on the interaction capability of potential
compounds against the corresponding target (Li et al., 2022; Liu et al.,
2022; Zhang et al., 2021).

2. Material and methods
2.1. Collection of active compounds and their targets prediction

The constituents information of C. xanthorrhiza rhizome, S. edule
fruit, and S. polyanthum leaf was obtained from the literature (Atanasov
etal., 2021; Iniguez-Luna et al., 2021; Ismail et al., 2019; Riviello-Flores
et al., 2018) and Dr. Duke’s Phytochemical and Ethnobotanical Data-
bases. This database provides active compounds in every part of the
plant thereby we can select active compounds from the appropriate part.
Their potential targets were predicted using SwissTargetPrediction
based on chemical similarity (http://www.swisstargetprediction.ch/).
Targets with a probability > 0.1 were selected.

2.2. Collection of potential targets for hyperlipidemia

Due to the different sources, every database may provide different
results regarding the disease-related target. Therefore, in the current
study, GeneCards (https://www.genecards.org/) and CTD databases
(http://ctdbase.org/) were used for retrieving as many hyperlipidemia-
related targets as possible by using “hyperlipidemia” as the keyword.
The targets obtained from the two databases were combined, and the
duplicate targets were deleted. Afterward, this merged result was
overlaid with the potential targets of the active compounds in step 2.1
using the Venny 2.1 tool (https://bioinfogp.cnb.csic.es/tools/venny/in
dex.html). The intersection targets were selected as the targets of the
active compounds for the treatment of hyperlipidemia.

2.3. GO and KEGG analysis

The intersection targets from step 2.2 was imported to ShyniGO 0.77
(http://bioinformatics.sdstate.edu/go/), a graphical tool integrated
with STRING and Ensembl databases, to analyze and visualize the Gene
Ontology (GO) biological process and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment. In this web tool, the p-value was set to
0.05. Twenty items with the highest enrichment were recommended and
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Table 1
Center coordinates in the Vina protocol.

Target Center coordinates
X y Z

TNF -15.168 -2.292 -26.225
AKT1 -20.286 3.748 11.736
EGFR 21.697 0.303 52.093
MMP9 2.656 7.583 21.734
PPARA 15.324 39.880 27.766
HMGCR 19.364 7.605 15.470

visualized on the bar graph automatically. For the KEGG result, we
selected the pathways manually based on relevance to hyperlipidemia.

2.4. Construction of the compound-target (CT) network

Compounds without targets included in the intersection target list
were removed. We constructed the network of remaining active com-
pounds and their corresponding target by importing the data into
Cytoscape and the mean value of the degree at every compound was
calculated. Compounds with a degree value greater than the mean value
(> 4.9) were considered potential compounds for further analysis in
molecular docking simulation.

2.5. Construction of protein-protein interaction (PPI) network

The STRING database (https://string-db.org/) on Homo sapiens with
default parameters was used to construct the PPI network of the inter-
section targets in step 2.2. For further analysis, the PPI network gained
from STRING was imported into Cytoscape 3.9.3 to calculate six topol-
ogy parameters of the intersection targets including degree centrality
(DC), betweenness centrality (BC), closeness centrality (CC), eigen-
vector centrality (EC), network centrality (NC), and local average con-
nectivity (LAC) using the CytoNCA plugin. The mean values of every
topology parameter were used as the cutoff, and targets with a value of
six parameters greater than or equal to the mean value (DC > 8.830, BC
> 42.976, CC > 0.509, EC > 0.127, NC > 6.728, LAC > 4.265) and also
having degree > 2 based on the compound-target network (step 2.4)
were selected as potential targets.

2.6. Molecular docking simulation

For molecular docking simulation, the 3D structure of the selected
compounds was downloaded from PubChem as sdf and converted to pdb
using Discovery Studio. While the crystal structures of TNF (PDB:7JRA),
AKT1 (PDB:4GV1), EGFR (PDB:1M17), MMP9 (PDB:4WZV), PPARA
(PDB:2P54), HMGCR (PDB:1HWK) were downloaded from RCSB.
Docking simulations were performed using two docking tools, Vina and
DOCK®6.

In Vina, the targets and ligands were prepared using AutoDock Tool
1.5.6. At this stage, the polar hydrogen atoms, Kollman charges for
targets, and Gasteiger charges for ligands were added. For all docking
calculations, a grid box centered on the native ligand with a dimension
of 22 x 22 x 22 A at 1 A spacing was used. The center coordinates x, v,
and z of TNF, AKT1, EGFR, MMP9, PPARA, and HMGCR are presented in
Table 1.

In DOCK6, the targets and ligands were prepared using USCF
Chimera. At this stage, hydrogen atoms will be added. AMI-BBC method
was used for adding the charges. The probe radius in the DMS was set to
1.4 A to generate the molecular surface. The active site was defined in 8
A radius about the native ligand and 5 A extra margin in all six directions
was applied to form the box around the active site. In both docking tools,
the number of conformations per ligand was set to 10. Consensus
docking was implemented by combining the docking results of DOCK6
and Vina as described in a previous study (Gimeno et al., 2020). Here,


http://www.swisstargetprediction.ch/
https://www.genecards.org/
http://ctdbase.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinformatics.sdstate.edu/go/
https://string-db.org/

F. Sangande et al.

Active Compound Disease

Fig. 1. Venn diagram of overlapping between active compound-related targets
and disease-related targets.

virtual hits were defined as compounds showing equivalent conforma-
tion (docking pose) in both docking tools, DOCK6 and Vina. The
consensus score was calculated by averaging the scores of the two
equivalent docking poses.
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2.7. Invitro study

Extracts of C. xanthorrhiza rhizome, S. edule fruit, and S. polyanthum
leaf were obtained by maceration (1:10) for three days using ethanol at
96 %, 50 %, and 70 % for C. xanthorrhiza rhizome, S. edule fruit, and
S. polyanthum leaf, respectively. The extracts were then evaporated
using a rotary evaporator to obtain concentrated extracts. The activities
of C. xanthorrhiza rhizome, S. edule fruit, and S. polyanthum leaf extracts
were tested on HMGCR. The HMGCR assay kit was purchased from
Sigma-Aldrich. The enzyme, substrate, and buffer solutions were pre-
pared according to the manufacturer’s instructions using a 96-well plate
format.

We performed an enzymatic assay for the percentage of inhibition
calculation of each extract and the combination of S. edule, S. poly-
anthum, C. xanthorrhiza (5:1:5) at a single concentration. Test solution
(40,000 ug/mL) of each extract and the combination was prepared by
dissolving 40 mg extracts in 100 pL of 96 % ethanol before diluting it to
1 mL using ultrapure water. 1 pL of this test solution was used in the
enzymatic reaction at a final volume of 200 uL. Thus, the final concen-
tration of the test solution was 200 ug/mL. Meanwhile, IC5y determi-
nation was only carried out on the extract combination. Stock solution
(80,000 ug/mL) was prepared by dissolving 80 mg of the extract com-
bination (5:1:5) in 100 pL of 96 % ethanol before diluting it to 1 mL
using ultrapure water. Afterward, 5 points 1:2 serial dilution was
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Fig. 2. Protein-protein interaction network of 43 potential targets.



F. Sangande et al.

A Response to oxygen-containing compound -
Lipid metabolic proc. 1

Chemical homeostasis

Cellular response to oxygen-containing compound -
Steroid metabolic proc. 1

Reg. of response to stress

Homeostatic proc. 1

Lipid transport A

Cholesterol storage

Lipid localization -

Reg. of lipid metabolic proc. 1

Neg. reg. of lipid localization

Pos. reg. of lipid metabolic proc. §

Reg. of small molecule metabolic proc. 1
Sterol metabolic proc. 1

Reg. of lipid localization 4

Organic hydroxy compound metabolic proc. -
Reg. of response to external stimulus
Inflammatory response

Reg. of cholesterol storage 1

Computational Biology and Chemistry 105 (2023) 107907

-log10(FDR)

0 5 10 15 20 25

B Insulin resistance |
Chemical carcinogenesis

Pathways in cancer -

Endocrine resistance 1

Prostate cancer

AGE-RAGE signaling pathway in diabetic complications
Glucagon signaling pathway -

AMPK signaling pathway

Proteoglycans in cancer -

Diabetic cardiomyopathy 1

Insulin signaling pathway

Apelin signaling pathway -

Estrogen signaling pathway 4

Phospholipase D signaling pathway

Non-alcoholic fatty liver disease

Hepatitis C

Chagas disease

Transcriptional misregulation in cancer -

HIF-1 signaling pathway -

TNF signaling pathway

N. of Genes
]
-log10(FDR)
5
6
7
8
i 9
10
0 3 6 9
N. of Genes

Fig. 3. Biological process (A), and KEGG pathways enrichment (B).

prepared to produce 5000-80,000 ug/mL test solution. Similar to the
single concentration test, 1 uL of these test solutions was used in 200 pL
of the enzymatic reaction to give the final concentration of 25-400 pg/
mL.

The enzymatic reaction with two replicates was performed in a 96-
well plate. Every well consists of 1 pL of test solution, 181 uL of 1x
assay buffer, 4 pL of NADPH, 12 pL of HMG-CoA, and 2 uL of HMGCR.
For the control (HMGCR without inhibitor or test solution) well, the
same composition was used, but the volume 1x assay buffer was 182 pL.
The absorbance was read at A 340 nm every 20 s for 10 min at a tem-
perature of 37 °C. The percentage of inhibition was calculated using the
following formula and the ICsy was calculated using GraphPad Prism
8.0.2.

A4 Control —44  Test

%Inhibition = AL AT

2A
47 Control

solution

x 100

3. Results
3.1. Active compounds collection and their potential targets

After searching literature and databases, we successfully collected 21
active compounds of this extract combination that have potential targets
with probability > 0.1 % based on SwissTargetPrediction. These com-
pounds were known to have 385 targets.

3.2. Screening of potential targets for hyperlipidemia

From the 385 targets listed above, the objective for hyperlipidemia
still needs to be determined. For this purpose, we collected 382
hyperlipidemia-related targets after merging the results from the Gen-
eCards and CTD databases. When the active compound-related targets
database was mapped to the disease-related targets database using

Venny tools, we found 43 potential targets were in the intersection area
(Fig. 1).

3.3. PPI, GO, and KEGG analysis

For further investigation, we built the protein-protein interaction
(PPI) of the 43 possible targets and obtained 190 edges. The edges
represent the interaction between targets, while the nodes represent the
43 targets. A darker green color indicated a greater degree value for a
node (Fig. 2).

According to ShyniGO, the top 20 GO biological processes were all
strongly related to the storage and metabolic process of lipid derivate
(Fig. 3A), with response to oxygen-containing compounds ranking first.
Ten of them, as depicted as elips nodes in Fig. 2 were involved in the
lipid metabolic process (GO:0006629): AKR1B1, EPHX2, NR1HS3,
PPARA, FDFT1, HMGCR, NPCIL1, NR1H2, SOAT1, SREBF2. Mean-
while, based on the top 10 pathways rank, KEGG results suggested that
this formula might work as an antihyperlipidemic through the regula-
tion of insulin resistance, endocrine resistance, and the AMPK signaling
pathway, in addition to cancer-related pathways (Fig. 3B).

3.4. Identification of potential compounds and potential targets

Based on the active compound-target network, we identified 9 po-
tential compounds with degree values above the average: alnustone,
B-sitosterol, bisdesmethoxycurcumin, cucurbitacin D, cucurbitacin E,
myricetin, phloretin, quercitrin, and rutin. However, alnustone was
excluded because it can not be docked successfully using DOCK6 in the
current protocol. Interestingly, these potential compounds represented
three herbs, thus supporting why the combination of the three herbs was
used as the antihyperlipidemic formula. Bisdesmethoxycurcumin and
alnustone are from C. xanthorrhiza rhizome; p-sitosterol and quercitrin
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urcumin

Fig. 4. Compound-target (CT) network. Green nodes represent the active compounds, and magenta nodes represent the targets.

Table 2

Topology parameters of the targets based on the PPI network and CT network.
Target PPI network CT network

DC EC LAC BC CC NC DC

TNF 33 0.365 7.576 514.923 0.792 29.302 3
AKT1 28 0.339 7.928 401.406 0.750 23.685 4
EGFR 21 0.283 7.619 97.983 0.636 16.394 5
MMP9 18 0.262 8.222 49.519 0.609 15.113 5
PPARA 17 0.213 5.647 192.599 0.609 10.233 5
HMGCR 12 0.136 5.167 80.552 0.567 8.921 2
Cutoff 8.830 0.127 4.265 42.976 0.509 6.728 2

are from S. polyanthum leaf; cucurbitacin D, cucurbitacin E, myricetin,
phloretin, and rutin are from S. edule fruit.

On the other hand, according to the six topology parameters analysis
on the PPI network (Fig. 2) and targets degree on the CT network
(Fig. 4), we identified 6 targets with values greater than or equal to the
cutoff (Table 2).

3.5. Molecular docking

Before the simulation, the docking protocols against 6 targets using

DOCK®6 and Vina were validated. Table 3 showed that all docking pro-
tocols can reproduce the crystallography pose of the native ligand with a
favorable rmsd value (< 2 10\). Furthermore, docking simulation using
the consensus method of 8 compounds against the 6 targets revealed that
HMGCR is the only target that can produce a duplet binding pose for all
compounds. The docking scores of DOCK6, Vina, and the consensus
method were presented in Tables 4-6, respectively. Compounds without
a score in certain targets, indicating that they had no duplet
conformation.

Based on Table 6, rutin showed the best consensus score against
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Table 3
Superimposition of the redocking pose native ligands and their crystallography pose.

Target DOCK6 Vina

o

D\

AKT1

EGFR

MMP9

PPARA

HMGCR

Table 4

DOCKS® score of potential compounds against potential targets.
Compound DOCK®6 score

TNF AKT1 EGFR MMP9 PPARA HMGCR

p-sitosterol - -59.7 - - - -55.3
Bisdesmethoxycurcumin -64.8 -60.6 -56.9 - -60.6 -52.2
Cucurbitacin D - -66.1 -58.7 - - -61.5
Cucurbitacin E - -67.5 - - - -64.8
Myricetin -52.6 -58.9 -59.0 -57.9 -51.8 -51.5
Phloretin -50.6 - -49.3 - -48.6 -50.7
Quercitrin - - -58.1 -64.9 -50.8 -64.9
Rutin - -88.9 -48.9 -78.4 -82.6 -81.9
Control of TNF -81.4
Control of AKT1 -88.6
Control of EGFR -67.0
Control of MMP9 -109.5
Control of PPARA -90.8
Control of HMGCR -88.0

AKT1, MMP9, PPARA, and HMGCR. Meanwhile, bisdesmethox- compounds with their corresponding targets was illustrated in Fig. 5 and
ycurcumin and myricetin were the most potent compounds against TNF their percentage of similarity compared to the native ligands was pre-
and EGFR, respectively. The interaction profile of the best-scored sented in Table 7.
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Table 5
Vina score of potential compounds against potential targets.
Compound Vina score
TNF AKT1 EGFR MMP9 PPARA HMGCR
pB-sitosterol - -8.4 - - - -5.9
Bisdesmethoxycurcumin -9.4 -7.6 -7.8 - -8.2 -6.5
Cucurbitacin D - -8.3 8.7 - - -7.4
Cucurbitacin E - -9.0 - - - -7.3
Myricetin -8.4 -7.9 -8.9 -10.2 -6.7 -8.0
Phloretin -8.6 - -7.3 - -6.8 -7.1
Quercitrin - - -9.5 -8.5 -6.1 -8.4
Rutin - -8.7 -9.3 -8.4 -8.5 -8.9
Control of TNF -13.0
Control of AKT1 -8.5
Control of EGFR -7.3
Control of MMP9 -10.9
Control of PPARA -12.0
Control of HMGCR -8.9
Table 6
Consensus score of potential compounds against potential targets.
Compound Consensus score
TNF AKT1 EGFR MMP9 PPARA HMGCR
pB-sitosterol - -34.1 - - - -30.6
Bisdesmethoxycurcumin -37.1 -34.1 -32.4 - -34.4 -29.4
Cucurbitacin D - -37.2 -33.7 - - -34.5
Cucurbitacin E - -38.3 - - - -36.1
Myricetin -30.5 -33.4 -33.9 -34.5 -29.3 -29.8
Phloretin -29.6 - -28.3 - -27.7 -28.9
Quercitrin - - -33.8 -36.7 -28.5 -36.7
Rutin - -48.8 -29.1 -43.4 -45.6 -45.4
Control of TNF -47.2
Control of AKT1 -48.6
Control of EGFR -37.2
Control of MMP9 -60.2
Control of PPARA -51.4
Control of HMGCR -47.1

3.6. Inhibitory activity on HUGCR

The inhibitory activity of single extracts and their combination
against HMGCR at 200 ug/mL was presented in Fig. 6. The extract
combination showed the best inhibitory activity (85.91 %) followed by
S. polyanthum (77.96 %), C. xanthorrhiza (73.44 %), and S. edule (54.78
%) extracts. The ICsq of the extract combination was shown in Fig. 7.

4. Discussion

In network pharmacology studies, topology parameters have been
used as criteria for selecting potential compounds and targets. Com-
pounds or targets with higher values of topology parameters indicate
they play a significant role in the network. For this purpose, the mean
values of every topology parameter have been used as the cutoff (Sun
et al., 2021; Zhang et al., 2020). Based on PPI topology parameters and
the degree of an active compound-target network, AKT1, EGFR, TNF,
MMP9, PPARA, and HMGCR, were identified as the key targets for the
antihyperlipidemic effect of this extract combination. Furthermore,
KEGG analysis suggested that this extract combination might work by
regulating multiple pathways. The most related pathways include in-
sulin resistance, endocrine resistance, and AMPK signaling pathway.

Among the mentioned pathways, insulin resistance was the top
pathway ranked by false discovery rate (FDR) < 0.05. This pathway has
been known to play an important role in the pathogenesis of hyperlip-
idemia through complex mechanisms (Bjornstad and Eckel, 2018;
Howard, 1999). Meanwhile, endocrine resistance in several types of
cancer such as prostate and breast cancer is associated with lipid
metabolism (Hyder et al., 2021; Stoykova and Schlaepfer, 2019). One of

the pathogenesis mechanisms of endocrine resistance involves the
activation of the mevalonate pathway with HMGCR as the main enzyme
to synthesize cholesterol (Hyder et al., 2021). Noteworthy, the meval-
onate pathway is activated by the PI3K/AKT/mTORC1/SREBP pathway
(Chimento et al., 2019; Porstmann et al., 2005). Hence, it’s not sur-
prising to find an accumulation of cholesterol in cancer cells (Kumar and
Mandal, 2021), and several reports propose a promising role for statins
in cancer treatment (Chimento et al., 2019). It might be the reason
several cancer pathways were included in the top enriched pathways
based on KEGG analysis. For AMPK signaling pathway, it plays a role in
lipid homeostasis by regulating several downstream molecules, one of
which is SREBP as discussed above. Phosphorylation of AMPK will
inactivate SERBP (Li et al., 2011) along with its target, HMGCR.

In EGFR, a study using high-fat-diet-fed Mig-6d/d mice demon-
strated that EGFR inhibition is effective for the treatment of hypercho-
lesterolemia (Lee et al., 2014). EGFR has been known as one of the
activators of PI3K/AKT/mTOR pathway. This study confirmed that after
EGFR inhibitor (gefitinib) treatment, the phosphorylation level of AKT
was reduced. MMP9 as well as TNF-a might be the target in hyperlip-
idemia treatment due to their role in atherosclerotic development
(Prasad and Mishra, 2022; Tietge, 2014). Despite the mechanism not
being clear yet, however, a study suggested that MMP9 acts as a
pro-apoptotic and pro-inflammatory agent in endothelial cells via
protease-activated receptor-1b (Tietge, 2014). Meanwhile, it has been
shown that there is an improvement in lipid profiles and insulin resis-
tance in patients with chronic inflammatory diseases by blocking TNF-a
activity (Popa et al., 2007). PPARA has been recognized as a regulator of
the metabolism of lipids, and its activators such as gemfibrozil and
fenofibrate have been used in hypertriglyceridemia treatment
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(Monsalve et al., 2013; Villavicencio-Tejo et al., 2021).

A molecular docking study was conducted to verify that the proposed
compounds can bind to the targets listed above. Recently, several
docking tools have become available for docking simulation in the early
steps of drug discovery. However, every tool may produce a different hit,
or even if the hit is the same, its binding pose may be different in each
tool. As shown in Tables 3 and 4, the ranking order of the compounds
from DOCK6 and Vina was different. Therefore, we applied the
consensus method by combining the results from the two docking tools.
The consensus docking method was reported to reduce false positives
(Gimeno et al., 2020). Compounds that showed duplet conformation in
DOCK®6 and Vina were considered true binders. Table 7 suggested that
the best-scored compounds had similar interaction profiles to native

ligands in the range of 38.5-75 %, indicating that they were in the
binding pocket of the corresponding targets. They also were found to
form hydrogen bonds with the key residues, similar to their native
ligand.

Furthermore, HMGCR is an appealing target to be further investi-
gated in regards to the mechanism of action of this extract combination
due to its being the sole target in the docking study to produce duplet
conformation for all compounds. The consensus score revealed that rutin
was the compound with the best score in almost all targets. Rutin has
been reported to reduce hypercholesterolemia through several mecha-
nisms (Ziaee et al., 2009). Against HMGCR, rutin at a concentration of
10 pg/mL was reported to inhibit this enzyme activity by 60.17 %
(Hartanti et al., 2019). According to our docking simulation, this
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Table 7
Interaction profile of the best-scored compounds and native ligands on their corresponding target.
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Amino acid residues

Target Best-scored compound Native ligand Similarity
LeuA133, LeuC133, TyrA135, LeuA133, LeuC133, TyrA135,
TNF GlyB197*, TyrC227*, TyrC135,TyrB195*, TyrC195, 62.5%
LeuA233* TyrC227*, LeuA233*
Leul56*, Gly159, Leul81, Leuls6, Glyl157, Gly162, Val164,
Glul91*, Glul98*, Glu234, Alal77, Lys179, Leul81, o
AKTI Glu278%, Met281%, Asp292*, Met227, Ala230%, Glu234*, 38.5%
Gly294* Glu278%*, Asn279, Met281*
t;’:gg? 1}'41177322’*‘%1?7%6*’ Leu694, A1a7l9,*Lys72l, Leu764, 0
EGFR GIn767*, Met769%, Leu820, lqlllrrlggg, Met769*, Leu820, 75 %
Asp831*
Tyrl79, Leul88, Alal89, Leul88*, Alal89%, Alal91*,
MMP9 His190, Val223, His226*, His226, His230, His236, Pro246, 62.5 %
His230%*, His236*, Met247 Glu277
Tle241, Ala250, Glu251*, Val‘255, Phez”’*cyms -
Val255, Cys275, Cys276, Cys276, Thr279%, Tyr314%,
PPARA Met330, Val332, 11e339, Leu344, 46.2 %
Thr283*, Met330, Val332, .
Ala333*, Tyr334, 11339 Met355, His440, Val444,
: : Tyrd64*
GIuBS39*, GlyBS60*, GIuB559%, CysBS61, LeuBS62,
AlaB564, SerB565*, ArgA590%,
AreAS90, AsnA638, GIUAGES™, g A g6 1% ValA683, SerA684*
HMGCR ValA683, AspA690*, ; ’ ’ 50 %

LysA691%*, LysB735%,
AlaB751%*, LeuB853, AlaB856

AspA690*, LysA691*,
LysB735%*, HisB752, AsnB755%,
LeuB853, AlaB856

*Residues formed H-bond with the ligands. The green text indicates the same residues that interact with the best-scored compounds and the native ligands. The
percentage of similarity represents the number of the same residues (green text) in the best-scored compound of the total residues that interact with the native ligand.

100.0 T
90.0 +

80.0 +
70.0 1
60.0 T
50.0 t
40.0 T
30.0 +
200 T
10.0 +
0.0 -

S. edule

% Inhibition

S. polyanthum C. xanthorrhiza Combination
Test Solution

Pravastatin

Fig. 6. Percentage of inhibition of pravastatin (0.02 pg/mL), and extracts
(200 pg/mL) against HMGCR.

compound was found to be inserted into the HMGCR dimer and form
hydrogen bonds with GluB559, GlyB560, GluA665, AspA690, LysA691,
LysB735, and AlaB751.

A study demonstrated that rutin has a protective effect on spinal cord
injury by inhibiting MMP9 activation and reducing AKT1 expression
(Zhang and Ma, 2015). Our docking simulation revealed that rutin
formed hydrogen bonds with AKT1 at Leul56, Glu191, Glu198, Glu278,
Met281, Asp292, and Gly294. On MMP?Y, it formed hydrogen bonds with
His226, His230, and His236.

Docking research on PPARA indicated that rutin has a better binding
affinity compared to orlistat. This has been confirmed experimentally
using adipocyte culture where rutin showed better lipid inhibition than
orlistat (Mandal et al., 2022). A kinase assay experiment also revealed
that rutin can suppress EGFR activity directly (Choi et al., 2013).

150 Log ICsy = 1.871
ICso= 74.26 pg/mL
2 _
5 100 =0.9515
2
=
=
= 50
X
0 A
1 1 1 1
1.0 L5 2.0 2.5 3.0
Log [pg/mL]

Fig. 7. Dose-response curve of extract combination.

Myricetin, the best-scored compound on EGFR in our docking study
(Table 6), could decrease phosphorylated EGFR levels based on a
western blot assay (Li et al., 2020). We found that it formed hydrogen
bonds with Met742, Thr766, GIn767, Met769, and Asp831. Bisdesme-
thoxycurcumin was reported to have inflammatory activity by
down-regulating TNF o-induced NF-kappa B and was stronger than
curcumin (Jain, 2020). This compound formed hydrogen bonds with
GlyB197, TyrC227, and LeuA233 on TNF.

Furthermore, at the extract level, a study demonstrated that an
ethanol extract from S. polyanthum leaf inhibited 65.71 % of HMGCR
activity at 150 pg/mL (Hartanti et al., 2019). In our study, this extract
inhibited 78.0 % of HMGCR activity at 200 ug/mL. Overall, based on the
single concentration test, each extract and its combination were verified
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to inhibit the activity of HMGCR. Several studies have reported their
extract potency in inhibiting HMGCR activity with an ICsg in the range
of 9.1-452.6 pug/mL (Ademosun et al., 2015; Grande et al., 2021; Igbal
et al.,, 2014). In the present study, the extract combination showed
inhibitory activity with an ICsg value of 74.26 pug/mL, indicating that
HMGCR inhibition is one of its antihyperlipidemic mechanisms.

Other experimental studies also showed that ethanol extracts of S.
edule fruit and C. xanthorriza rhizome work as anti-insulin resistance
agents (Kim et al., 2014; Villavicencio-Tejo et al., 2021), which is the
most significant pathway based on KEGG analysis. The above-mentioned
reports support our network pharmacology and molecular docking
predictions in explaining the mechanism of action of this extract
combination.

5. Conclusion

In the current study, we combined network pharmacology and mo-
lecular docking studies to explore the potential compounds of the
combined extracts of C. xanthorrhiza Rhizome, S. edule Fruit, and S.
polyanthum Leaf and their potential targets. The network pharmacology
results suggested there were 8 potential compounds: p-sitosterol, bis-
desmethoxycurcumin, cucurbitacin D, cucurbitacin E, myricetin,
phloretin, quercitrin, and rutin, which work multitargeted, especially
against HMGCR, PPARA, AKT1, EGFR, MMP9, and TNF as the potential
targets. Furthermore, docking simulations with the consensus method
revealed that HMGCR is an attractive target because it can be targeted
by all potential compounds. The in vitro study confirmed that the extract
combination could work on HMGCR with IC5y = 74.26 ug/mL. How-
ever, the remaining potential targets still need to be validated experi-
mentally. We predicted that the extract combination works as an
antihyperlipidemic by regulating multiple pathways, including insulin
resistance, endocrine resistance, and the AMPK signaling pathway.
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