Epilepsy Detection using Combination DWT and Convolutional Neural Networks Based on Electroencephalogram

Dwi Sunaryono¹, Joko Siswantoro², Riyanarto Sarno¹, Rahardian Indarto Susilo³, Shoffi Izza Sabilla⁴

¹Department of Informatics Engineering, ITS, Surabaya, Indonesia ²Department of Informatics Engineering, Universitas Surabaya, Surabaya, Indonesia ³Department of Neurosurgery, Universitas Airlangga, Surabaya, Indonesia ⁴Department of Medical Technology, ITS, Surabaya, Indonesia

Abstract-At the present day, smart technology has made life simpler for people in all spheres of life, including medical. It is necessary to have technology that can identify diseases or physical defects in humans since this will influence the course of therapy. One of the cutting-edge technologies used to identify epilepsy is the electroencephalogram (EEG). The signal was obtained by observed brain's electrical activity for a period of time to get these signals. Medical professionals need to be very accurate and confident in their ability to categorize EEG patterns in order to diagnose epilepsy. This study suggested using Zero Crossing Frequency and Mean Crossing Frequency features extracted from transformed singnal using Discrete Wavelet Transform. EEG signals were classified into three categories: ictal, pre-ictal, and normal using Convolutional Neural Network. According to the study's findings, the suggested approach can accurately categorize three categories with a confidence interval (CI) of 0.0013 and an accuracy of 98.09%.

Keywords— EEG, Discrete Wavelet Transform, Convolutional Neural Network, Epilepsy.

I. INTRODUCTION

Epilepsy is a disease that causes various reactions to the human body. Repeated seizures that occur because electrical impulses in the brain exceed normal limits, until they spread to the surrounding area and cause uncontrolled electrical signals is the characteristic of epilepsy. The severity of seizures in each person with epilepsy is different, can occur briefly or long with involuntary movements involving the whole or part of the body body and occasionally accompanied by a state of unconsciousness. Epilepsy is a prevalent neurological disorder on a global scale, impacting a substantial population of approximately 50 million individuals. About 80% of epilepsy sufferers reside in middle and low income nations, and their risk of dying young is up to three times greater compared to other ages [1][2]. To minimize the risk of premature death, it is necessary to have automatic detection so that patients immediately get the right treatment so that the situation does not worsen [3]. Epilepsy can be confirmed by electroencephalogram (EEG) [4]. An EEG examination is a diagnostic procedure in order to detect and measure the electrical activity occurring within the brain

by employing small metallic discs, known as electrodes, which are affixed to the scalp. The procedure puduced an image of basic rhythm waves and epileptiform waves. EEG is a signal acquired by detecting voltage variations in brain neurons over a specific time period to record the spontaneous electrical activity of brain waves [5]. In the medical field, visual analysis of EEG signals is employed to recognize epileptic seizures and normal situations. Because the EEG output provided by EEG monitoring equipment is relatively large and takes a long time, routine visual analysis is not feasible [6]. As a result, automatic detection is required to aid in the study of epilepsy patients.

Detection of EEG signals in epilepsy has been widely developed, in its development every researcher has a research focus. The focus of the researcher can be in the form of improving the method used. Several studies using Machine Learning have been developed to classify EEG signals collected from Children's Hospital in Boston, that called CHB-MIT EEG Scalp dataset [7]. Khaled Abdel-Aziz et al conducted a study of epilepsy classification using the K-class Nearest Neighbor [8]. Duo Chen uses DWT and SVM as a feature extractor and classifier, respectively [9]. In another study conducted by Subasi et al using four classifiers namely ANN, KNN, SVM and random forest to classify 3 classes, namely ictal, pre-ictal, and normal [10]. Siddiqui et al have done a classification by comparing several methods to find out which method has better performance. The author compares SVM, KNN, Decision Tree, and ensemble of trees. and it was found that the results of the ensemble of trees were better than the others [11].

Deep Learning is a machine learning development method using Artificial Neural Networks that imitate the work human brain, Deep Learning is programmed with more complex capabilities to learn, digest, and classify data. Several studies using Deep Learning have been carried out, among others, Catalina Gómez et al conducted research on epilepsy classification using CNN [12]. In research conducted by Rahib Abiyev et al using CNN with 3 double convolutional layers and fully connected layer for in feature extraction and classification, respectively [13]. Another study conducted by Acharya et al. by employing CNN algorithm using 13 deep convolutional layers to classify EEG signals into seizure and normal classes [14]. ZuochenWei et al designed a 12-layer CNN algorithm by combining the Wasserstein Generative Adversarial Nets (WGANs) method as data augmentation to increase sample diversity [15]. Mengni Zhou et al performed a classification of epilepsy using the CNN algorithm to compare binary and ternary epilepsy scenarios [16]. The CNN algorithm used tensor decomposition of the representation the EEG signal as input [17]. The other research employed the Singular Spectrum Analysis (SSA) method, PSD, and CNN for preprocessing, feature extraction, and classifier, resp. to recognize 3 and 5 classes EEG signals [18]. Similar approach was alsoperformed by Yunyuan Gao et al to classify four classes namely, pre-ictal, normal 1, normal 2, and ictal. Hannah Bend et al conducted an experiment to detect EEG signals in Epilepsy using Wavelet Transform, the experiment was applied to one patient and obtained an accuracy of 89.7%. Then the same model applied to other patients resulted in an accuracy of 79.2%. For a multi-patient trial combining data from four patients the accuracy was 83.4% [19].

In this article, we suggest a three-class classification method for EEG signals in epilepsy, with ictal pre-ictal, and normal signals as the classifications. In order to extract features, each class is preprocessed using the DWT. The CNN architecture is used to categorize the feature extraction findings. A review of the classification's specificity, sensitivity, and accuracy is conducted. The structure of the entire document is outlined as follows: In Chapter 2, an account is provided regarding the materials and procedures employed. The findings are deliberated upon in Chapter 3. The conclusion for Chapter 4 is provided.

II. MATERIAL AND METHODS

A. Materials

The system includes the CHB-MIT dataset, software, and hardware. The hardware consists PC with processor Intel (R) Core (TM) i9 3.60GHz, GPU NVIDIA GeForce GTX 1080 Ti, and RAM 32GB. The PC runs Ubuntu Linux 16.04 as its operating system.

B. Methods

1 EEG Signals Dataset

EEG recordings of patiens with untreatable seizures were obtained from CHB-MIT (Children's Hospital Boston the Massachusetts Institute of Technology). Patients are observed during several days following anticonvulsant discontinuation medication to characterize seizures. Records were categorized into 23 cases, which were collected from 22 individuals. The median time to collect was 36 hours. Occasionally, there are longer than 10-second gaps between recordings, but this is not always the case. In some cases, the digital EEG signal is precisely one hour long; however, there were also cases with two hours and four hours durations. The 256 samples per second and 16-bit resolution were used for sampling all signals.

This EEG recording follows the International 10-20 standard for electrode placement and naming. Most EEG files have 23 recordings of electrodes placed around the patient's head. Each signal data record has a signal at the time of normal or no seizure and a signal at the time of seizure or ictal. In this research, the signal was divided into three classes, ictal, pre-ictal, and normal, which was pre-ictal or the process 5 minutes before the seizure. The division of the 3 classes is illustrated as in Figure 1.

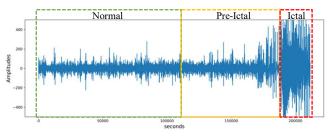


Figure 1. Signal division into three classes

2. Discrete Wavelet Transform

Signal calculation in DWT analysis involves passing the signal through several filters. The signal is filtered low and high-pass filter with an impulse response simultaneously. All frequencies above the cut-off frequency are attenuated or eliminated by a low-pass filter, which passes on the frequency unaltered or with minor modification. whereas the opposite is true for the high-pass filter. It will be possible to derive the output detail and approximation coefficients for the high and low-pass filters, resp.

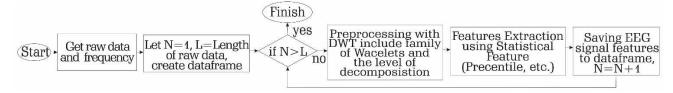


Figure 2. Workflow of processing EEG signal using DWT and Statistical Features

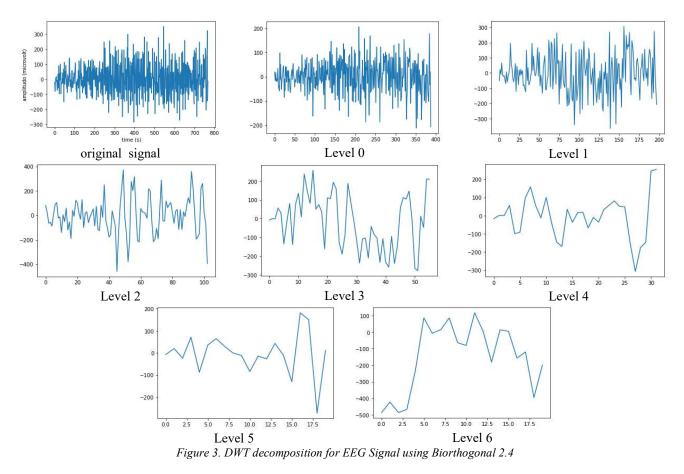


Figure 2 shows that the feature extraction process gets input from preprocessing in the form of data lines and frequencies. Feature extraction will be repeated as much as the length of the data row. The process that must be done is to create a data frame to accommodate the results of feature extraction. The signal is processed by DWT to get a signal that can be a decomposed signal for detecting epilepsy in the feature extraction process, Figure 4(a) is an example of the original signal before preprocessing. For example, Figure 4(b) of the original signal is processed using a DWT with the Bior2.4. Moreover, signal decomposition is carried out deeper from level 1 to level 6 shows in Figure 4(c) to (h). However, it is not always the deeper the level of the wavelet can produce better results. The approximation coefficient is again filteres using a high and low-pass filters and so on [20]. The equation (1) shows approximation coefficient formula

$$x_o[k] = (x_i * g)[k] = \sum_j x_i[j] g[k-j]$$
(1)

In this formula, there is a signal calculation without transformation before it is filtered using a high and low-pass filter. Because the signal using DWT feature extraction must pass through the filter, the results obtained will be more detailed according to the selected level [21].

3. Feature Extraction

3.1 Statistical Features

Feature selection in the EEG classification is used to find the best features in the EEG signal. Each signal will be

calculated using five statistical features, which are percentiles5, percentiles25, percentiles50, percentiles75, and percentiles95, and crossing measures. The EEG signal vector is formed by several events that produce the DWT coefficient. There are n(L + 1) feature statistics derived from all DWT coefficient vectors with a decomposition level of *L*. To obtain the percentile *p*, the members of the coefficient vectors are arranged from least to greatest. The *x* index of *p* in the coefficient vector is calculated using equation (2).

$$x = \frac{p}{100}(S+1)$$
 (2)

where S is the coefficient vector's length. The p-th percentile is the x-th member of the sorted coefficient vector if n is an integer. Linear interpolation using the fractional part of the elements is used if x is not an integer. x, x and x+1 is used to get the p-th percentile. The numpy package is used in this study's percentile implementation to extract this features.

3.2 Cross-Frequency Features

Feature extraction from each DWT vector coefficient has 2 cross-frequency features, namely Zero Cross-Frequency (ZCF) and the Mean Cross-Frequency (MCF). Zero cross-frequency (ZCF) is a representation of the complexity or randomness in the signal. The definition of Zero cross-frequency or single vector is the number of sign transitions (sgn) of the n sample plus the sign of the (n + 1) sample devided by two times the number of samples, where the sign of the *n* sample will be one of the samples is positive, or vice versa [22]. Therefore the cross-frequency features (ZCF) can be calculated using the equation (3)

$$ZCF = \frac{\sum_{k=1}^{N-1} |\operatorname{sgn} (x(k+1)) - \operatorname{sgn} (x(k))|}{2N} \quad (3)$$

where x(k) is the coefficient vector element, N is the coefficient vector's length, and sgn(x). Moreover, MCF is a measurement that reflects how many times the sign of two consecutive elements of the *m* cross vector. Formula for mean cross-frequency is as in equation (4)

$$MCF = \frac{\sum_{k=1}^{N=-1} |\operatorname{sgn} (x(k+1)-a)) - \operatorname{sgn} (x(n-a))|}{2N}$$
(4)

where *a* is coefficient vector mean.

4 Convolutional Neural Network (CNN)

CNN is an algorithm based on a neural network that works into two main parts, namely Convolution and Neural Network. Convolution aims as a feature extraction and has several parameters that are determined depending on the needs. The number of convolutions will have an impact on the accuracy value due to the extracted detail. however, the greater the number of feature extractions the impact on the duration of the computation time. Feature extraction results are sorted on one line so that they can be processed using the Neural network approach [23]–[25]. The convolution operation s(t) can be shown in the following equation (5)

$$s(t) = \sum_{a} I(a). K(t-a)$$
(5)

where I(a) is the input and K(a) is the kernel. The length value of the convolution process output data needs to be reduced by the pooling method. Parameters of the number of nerves can be determined as needed or commonly referred to as Hidden Layer and Neurons. Each value will be compared using the weight and bias values until it approaches the smallest error value.

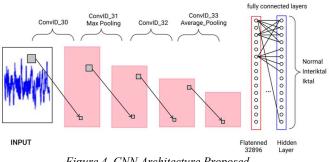


Figure 4. CNN Architecture Proposed

III. RESULT AND DISCUSSION

To determine the performance of proposes method, some experiment were carried out in a predetermined test environment. Each research subject's data was devided into three classes based on the time of the seizure or ictal, namely normal, pre-ictal, and ictal. This research balanced the data using the Synthetic Minority Oversampling Technique (SMOTE) method, because there is a variation in the amount of data after trimming.

1. First Scenario

The first scenario is validating the signal processing method that has been proposed in this study, where the success rate is measured by observing the accuracy value. combinations of wavelet families Several and decomposition levels have been constructed, then tested in this first scenario. Table 1 shows the top ten rankings of the wavelet family that produce the highest accuracy. Eighteen channels were used in the EEG during this research. (Num Scalp Selected (N)), and Feature Extracted (FE) are seven FE, namely, percentile5, percentile25, percentile50, percentile75, percentile95, ZCF, and MCF. The features used in the first scenario can be calculated by $N \times$ FE(L + 1), where L is level of decomposition wavelets. The results of the first scenario, the combination of wavelets and the composition level which has the highest accuracy of 98.09%, is bior2.4 and level 6. The accuracy was generated determined by using the features are 882.

Wavelets	Level of Decomposition (L)	Features $N \times FE(L+1)$	Accuracy (Acc)
Bior2.4	6	882	98.09%
Db6	6	882	98.03%
Db12	5	756	98.02%
Db14	4	630	98.00%
Sym8	5	756	97.97%
Coif3	5	756	97.96%
Bior3.1	6	882	97.94%
Bior2.2	6	882	97.90%
Sym4	5	756	97.83%
Bior3.9	4	630	97.81%

Table 1. Comparison of results from the first scenario

Table 2. Some examples of parameter of CNN that produce the best accuracy

0-4	Acc	Sen	Sensitivity (%)		Specificity (%)		
Optimizer	(%)	1	2	3	1	2	3
Adam	98.09	98.33	98.87	99.93	97.63	96.85	99.78
RMSprop	92.57	92.29	96.80	99.76	93.24	84.98	99.49
SGD	86.33	84.00	96.53	98.95	93.94	70.32	94.73
Adagrad	73.92	81.00	89.56	90.32	77.50	58.97	85.28
Adadelta	66.44	82.05	73.89	93.73	62.75	70.79	65.79

2. Second Scenario

In the second scenario, the classification method was tested, especially the parameters of the proposed classification method, namely CNN. The parameter is the optimizer of CNN. Given several types of optimizers, each optimizer will be calculated the average of specificity sensitivity, and accuracy for each class. Number 1 indicates class 1, which is normal, number 2 indicates class 2, which is pre-ictal, and number 3 indicates class 3, which is ictal. The optimizer parameter trial on the CNN architecture is used to find out which optimizer produces the best performance from the signal classification model using CNN. The optimizers that will be tested are Adam, SGD, and Adagrad. The experiment was carried out with 0.0001 as learning rate. The train results with several optimizers are obtained. Table 2 shows, Adam has a much better classification result compared to Adagrad and SGD with an accuracy of 98.09%. In addition to accuracy, in terms of computational time, Adam has the best computation time, which takes 1 hour 55 minutes for the training process.

3. Third Scenario

In the last scenario, the optimal amalgamation of DWT, statistical features, and CNN optimizer in relation to prior research.. Five recent studies from 2017 to 2022 use the same dataset and advanced classification methods that successfully detect three classes of epilepsy. Table 3 shows, the proposed combination of this study was able to give very satisfactory results compared to the four existing studies for both detecting two-class (normal, ictal) and three-class (normal, pre-ictal, ictal) epilepsy.

The method with the highest accuracy results are displayed in the form of a confusion matrix to show the percentage of correct or incorrect data. Figure 5 shows that the pre-ictal class has the most incorrect data, which is 1.05%.

Confident Interval (CI) is another parameter that can be used to measure how accurately sample mean represents population mean. CI produces a range between two values where the value of a Sample Mean is exactly in the middle in the equation (6)

$$CI = \bar{x} \pm z \frac{s}{\sqrt{n}} \tag{6}$$

where \bar{x} is the SampleMean or the average of the accuracy generated using DWT and CNN against the Population Mean and *n* is sample size. Confident level value (z) is the comparison between the difference in the value of x which will determine for the probability of occurrence and the Mean with its standard deviation (S) with the equation (7)

$$z = \frac{(X-sampleMean)}{S}.$$
 (7)

$$constanta \times \left(\frac{\sqrt{(error \times (1 - error))}}{n}\right) \tag{8}$$

If the constanta of 90% is 1.64. Then, calculate using equation (8) become, $98.09\% \pm 0.0011$. If the constanta of 95% is 1.96, then the result of CI is 98.09% ±0.0013, and if the constanta of 98% is 2.33, the result is 98.09% ±0.0016.

Table 3. The comparison of the proposed method with certain
current methods

Authors	Year	Features	Classifier	Accur acy (%)	Sensiti vity (%)
Khan et al [26]	2017	Continuous wavelet transform	CNN	-	87.80
Truong et al [27]	2018	Short-time Fourier transform	CNN	-	81.20
Ozcan et al [28]	2019	Hjorth parameters	3DCNN	-	85.71
Ryu and Joe [29]	2021	DWT	DenseNet -LSTM	93.28	92.92
Dwi et al [30]	2022	DWT	1DCNN	89.04	-
Dwi et al [31]	2023	DWT	1DCNN - WOA	91.84	-
Proposed Method*	2023	DWT and Statistical features	1DCNN	96.85	97.40
Proposed Method **	2023	DWT and Statistical features	1DCNN	98.09	99.04

Note: *2 Classes (pre-ictal and normal) with bior1.1 level 4; **3 Classes (pre-ictal, normal, and ictal) with bior2.4 level 6.

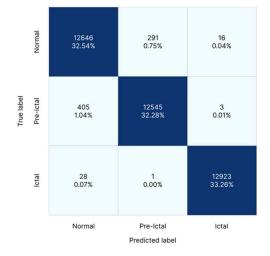


Figure 5. Confusion Matrix of the proposed method

IV. CONCLUSION

Three scenarios for detecting epilepsy using EEG signals and the proposed method have been successfully carried out in this study. Several conclusions can be drawn:

- 1. DWT for feature extraction EEG Epilepsy signal was managed to produce a better signal to be served as a feature using combination of Bior2.4, and the level of decomposition is 6. Furthermore, statistical features and crossing frequency features, which are percentile5, percentile25, percentile50, percentile75, percentile95, ZCF, and MCF, could improve the results.
- 2 Classification using CNN with the best parameters and hyperparameters can classify three classes (ictal, preictal, and normal) with a satisfactory result of 98.09%. The best parameter used is Adam for the optimizer and the best hyperparameters are ReLu for convolutions and Softmax for the output layer in Neural Network.

3. The accuracy from this study has a CI of 98.09%±0.0013 if the constant used is 95%.

ACKNOWLEDGE

The funding for this research was provided by the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia as part of the Doctoral Dissertation Research program (PDD) No. 009/E5/PG02.00.PL/2023 and 1235/PKS/ITS/2023, the scholarship program No. T/929/IT2/HK.00.01/2021, and the project plan of the Publication Incentive Program and Intellectual Property Rights (PPHKI), supervised by the Institute of Technology Sepuluh Nopember.

REFERENCES

- [1] "Epilepsy." https://www.who.int/news-room/factsheets/detail/epilepsy (accessed Feb. 09, 2022).
- S. Coelli, E. Maggioni, A. Rubino, C. Campana, L. Nobili, and A. [2] M. Bianchi, "Multiscale Functional Clustering Reveals Frequency Dependent Brain Organization in Type II Focal Cortical Dysplasia with Sleep Hypermotor Epilepsy," *IEEE Trans. Biomed. Eng.*, vol. 10, 2831-2839, 2019, doi: 66, no. pp. 10.1109/TBME.2019.2896893.
- "EEG tests and epilepsy," epilepsy.org.uk. . [3]
- Z. Chen, G. Lu, Z. Xie, and W. Shang, "A unified framework and [4] method for EEG-Based early epileptic seizure detection and epilepsy diagnosis," IEEE Access, vol. 8, pp. 20080-20092, 2020, doi: 10.1109/ACCESS.2020.2969055.
- "Electroencephalogram (EEG)," hopkinsmedicine. .
- [6] S. N. A. Hasanah, "Ekstraksi Ciri Sinyal Eeg Untuk Gangguan Penyakit Epilepsi Menggunakan Teknik Sampling," J. Inform. Polinema, vol. 5, no. 1, p. 1, 2018, doi: 10.33795/jip.v5i1.127.
- [7] A. H. Shoeb, "Application of machine learning to epileptic seizure onset detection and treatment," Harvard University, 2009.
- [8] M. S. Kirschbaum, "Needs of parents of critically ill children," Dimens. Crit. Care Nurs., vol. 9, no. 6, pp. 344-353, 1990, doi: 10.1097/00003465-199011000-00009.
- [9] T. Wu et al., "Automatic Lateralization of Temporal Lobe Epilepsy Based on MEG Network Features Using Support Machines," Complexity, vol. 2018, 2018, Vector Complexity, doi: 10.1155/2018/4325096.
- [10] Y. Wang, Z. Li, L. Feng, C. Zheng, and W. Zhang, "Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification," Comput. Math. Methods Med., vol. 2017, 2017, doi: 10.1155/2017/6849360.
- [11] M. K. Siddiqui, M. Islam, and A. Kabir, "Analyzing Performance of Classification Techniques in Detecting Epileptic Seizure," 2017, doi: 10.1007/978-3-319-69179-4 27.
- [12] C. Gómez, P. Arbeláez, M. Navarrete, C. Alvarado-Rojas, M. Le Van Quyen, and M. Valderrama, "Automatic seizure detection based on imaged-EEG signals through fully convolutional networks," Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020, doi: 10.1038/s41598-020-78784-3.
- [13] R. Abiyev, M. Arslan, J. B. Idoko, B. Sekeroglu, and A. Ilhan, "Identification of epileptic eeg signals using convolutional neural networks," Appl. Sci., vol. 10, no. 12, 2020, doi: 10.3390/APP10124089.
- [14] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli, "Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals," Comput. Biol. Med., vol. 100. pp. 270-278. Sep. 2018. doi: 10.1016/J.COMPBIOMED.2017.09.017.
- [15] Z. Wei, J. Zou, J. Zhang, and J. Xu, "Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain," Biomed. Signal Process. Control, vol. 53, p. 101551, 2019, doi: https://doi.org/10.1016/j.bspc.2019.04.028.
- [16] M. Zhou et al., "Epileptic seizure detection based on EEG signals and CNN," Front. Neuroinform., vol. 12, no. December, pp. 1-14, 2018, doi: 10.3389/fninf.2018.00095.
- M. Taherisadr, M. Joneidi, and N. Rahnavard, "EEG Signal [17] Dimensionality Reduction and Classification using Tensor

Decomposition and Deep Convolutional Neural Networks," no. August, 2019.

- N. Bayu and H. Tjandrasa, "Klasifikasi Eeg Epilepsi Menggunakan [18] Singular Spectrum Analysis , Power Spectral Density Dan Convolution Neural Network," pp. 185-194.
- [19] Y. S. and S. T. Hannah Bend, Sathish Kumar, "Detecting epileptic seizures from EEG signals," Github, 2016. .
- [20] D. M. Ballesteros, A. E. Gaona, and L. F. Pedraza, "Discrete Wavelet Transform in Compression and Filtering of Biomedical Signals," no. June, 2015, doi: 10.5772/19529.
- [21] R. V. Yuliantari, R. Hidayat, and O. Wahyunggoro, "Ekstraksi Ciri Dan Pengenalan Tutur Vokal Bahasa Indonesia Menggunakan Metode Discrete Wavelet Transform (Dwt) Dan Dynamic Time Warping (Dtw) Secara Realtime," Proc. Natl. Semin. Sci. Technol. 7th Fac. Eng. Wahid Hasyim Univ. Semarang, pp. 173–178, 2016. M. Mulimani and S. G. Koolagudi, "Segmentation and
- [22] characterization of acoustic event spectrograms using singular value decomposition," Expert Syst. Appl., vol. 120, pp. 413-425, 2019, doi: https://doi.org/10.1016/j.eswa.2018.12.004
- [23] D. Sunaryono, C. Z. Mukhlishah, S. Rochimah, and I. A. Sabilla, "Information Systems Of School Financial Management With Digital Signature Recognition Using MobileNet Algorithm," in 2021 IEEE International Conference on Health, Instrumentation Measurement, and Natural Sciences (InHeNce), Jul. 2021, pp. 1-6, doi: 10.1109/InHeNce52833.2021.9537258.
- [24] D. Sunaryono et al., "Enhanced Gradient Boosting Machines Fusion based on the Pattern of Majority Voting for Automatic Epilepsy Detection," IJACSA) Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 7, p. 2022, Accessed: Oct. 19, 2022. [Online]. Available: www.ijacsa.thesai.org.
- [25] D. Sunaryono, R. Sarno, and J. Siswantoro, "Gradient boosting machines fusion for automatic epilepsy detection from EEG signals based on wavelet features," J. King Saud Univ. - Comput. Inf. Sci., Dec. 2021, doi: 10.1016/J.JKSUCI.2021.11.015.
- H. Khan, L. Marcuse, M. Fields, K. Swann, and B. Yener, "Focal onset seizure prediction using convolutional networks," *IEEE* [26] Trans. Biomed. Eng., vol. 65, no. 9, pp. 2109-2118, 2018, doi: 10.1109/TBME.2017.2785401.
- [27] N. D. Truong et al., "Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram," Neural Networks, vol. 105, pp. 104-111, 2018. doi: 10.1016/j.neunet.2018.04.018.
- [28] A. R. Ozcan and S. Erturk, "Seizure Prediction in Scalp EEG Using 3D Convolutional Neural Networks with an Image-Based Approach," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 11, pp. 2284-2293, 2019, doi: 10.1109/TNSRE.2019.2943707.
- [29] S. Ryu and I. Joe, "A hybrid densenet-LSTM model for epileptic seizure prediction," Appl. Sci., vol. 11, no. 16, 2021, doi: 10.3390/app11167661.
- [30] D. Sunaryono et al., "Enhanced Salp Swarm Algorithm Based On Convolutional Neural Network Optimization For Automatic Epilepsy Detection," J. Theor. Appl. Inf. Technol., vol. 15, p. 19, 2022, Accessed: Oct. 19, 2022. [Online]. Available: www.jatit.org.
- [31] D. Sunaryono et al., "Optimized One-Dimension Convolutional Neural Network for Seizure Classification from EEG Signal based on Whale Optimization Algorithm" International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.25

DRPM

PROCEEDING

The 24th International Seminar on Intelligent Technology and its Applications (ISITIA 2023) 26-27 July 2023

Advanced Innovations of Electrical Systems for Humanity

IEEE Conference Number #59021 ISBN: 979-8-3503-1395-6 ISSN: 2769-5492

2023 International Seminar on Intelligent Technology and Its Applications (ISITIA)

"Leveraging Intelligent Systems to Achieve Sustainable Development Goals"

Proceeding

Surabaya, Indonesia *(Hybrid Conference)* 26 – 27 July 2023

IEEE Conference Number:59021IEEE Catalog Number:CFP23ISBN:979-8-ISSN (online):2769-3

: 59021 : CFP23TIA-ART : 979-8-3503-1395-6 : 2769-5492

Technical Co-Sponsor

ISITIA 2023 Organizing Committee

GENERAL CHAIR

Muhammad Attamimi, B.Eng., M.Eng., Ph.D.

VICE-CHAIR

Dr. Ir. Puji Handayani, MT

TECHNICAL PROGRAM

Dr.techn. Prasetiyono Hari Mukti, S.T., M.T. (Chair) Vita Lystianingrum BP, S.T., M.Sc., Ph.D (Co-chair)

PUBLICATION

Mohamad Abdul Hady, S.T., M.T. (Chair) Eka Iskandar, S.T., M.T. (Co-chair)

SECRETARIAT

Dr. I Gusti Ngurah Satriyadi Hernanda, ST, MT Dr. Devy Kuswidiastuti, S.T., M.Sc.

TREASURER

Dr. Dimas Fajar Uman Putra, ST, MT Dr. Suwito, S.T., M.T.

CONTACT DETAILS:

Department of Electrical Engineering Gedung B, C dan AJ Kampus ITS Sukolilo Surabaya, Jawa Timur, Indonesia, 60111 Phone: (+62 31) 5947302; (+62 31) 593 1237 Email: <u>isitia@its.ac.id</u> Website: <u>http://isitia.its.ac.id/</u>

TT/AP CHAPTER

DRPM

Dr. Ir. Achmad Mauludiyanto, M.T. Prof. Adit Kurniawan, M.Eng, Ph.D Dr. Agfianto Eko Putra, M.Si. Dr. Agung Wahyu Setiawan, S.T, M.T. Dr. Agus Indra Gunawan, S.T., M.Sc Ahmad Ridha, S.Kom., M.S. Ahmad Zaini, S.T., M.Sc. Aji Akbar Firdaus, S.T., M.T. Aji Gautama Putrada, S.T., M.T. Amang Sudarsono, S.T., Ph.D Prof. Dr. Ir. Andani Achmad, M.T. Prof. Dr. Ir. Andi Adriansyah, M.Eng Annisaa Sri Indrawanti, S. Kom., M. Kom Anugerah Persada, S.T., M.Eng. Prof. Dr. Ir. Arif Djunaidy, M.Sc. Arthur Mourits Rumagit, S.T., M.T., Ph.D. Ary Mazharuddin Shiddiqi, S.Kom., M.Comp.Sc., Ph.D Atar F. Babgei, S.T., M.Sc. Auzi Asfarian, S.Kom., M.kom. Dr. Azmi Saleh, S.T., M.T. Baskoro Adi Pratomo, S.Kom., M.Kom., Ph.D. Prof. Dr. Eng. Chastine Fatichah, S.Kom., M.Kom. Dani Adhipta, S.Si., M.T. Daniar Fahmi, S.T., M.T., Ph.D., Dean Apriana Ramadhan, S.Kom., M.kom. Dr. Devy Kuswidiastuti., S.T., M.Sc. Dr. Dhany Arifianto, S.T., M.Eng. Dr. Diana Purwitasari, S.Kom., M.Sc. Dimas Anton Asfani, ST., MT., Ph.D Dr. Dimas Fajar Uman Putra, ST, MT Dion Hayu Fandiantoro, S.T., M.T. Dr. Ir. Djoko Purwanto, M.Eng Dr. Ir. Endroyono, DEA Eka Iskandar, ST., MT. Fanhui Zeng Dr. Fannush Shofi Akbar, S.ST. Feby Agung Pamuji, ST., MT., PhD. Dr. Florentinus Budi Setiawan, ST., MT Dr. Ir. F. Danang Wijaya, S.T., M.T. Prof. Dr. Ir. Gamantyo Hendrantoro, Ph.D. Hana Abdull Halim, B.Eng., M.Eng., Ph.D.

IEEE

Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Bandung (Indonesia) Universitas Gadjah Mada (Indonesia) Institut Teknologi Bandung (Indonesia) Politeknik Elektronika Negeri Surabaya (Indonesia) Institut Pertanian Bogor (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Universitas Airlangga (Indonesia) Telkom University (Indonesia) Politeknik Elektronika Negeri Surabaya (Indonesia) Universitas Hasanuddin (Indonesia) Universitas Mercu Buana (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Universitas Gadjah Mada (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Universitas Sam Ratulangi (Indonesia)

Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Pertanian Bogor (Indonesia) Jember University (Indonesia)

Institut Teknologi Sepuluh Nopember (Indonesia)

Institut Teknologi Sepuluh Nopember (Indonesia) Universitas Gadjah Mada (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Pertanian Bogor (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Google (USA) Institut Teknologi Telkom Surabaya (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Soegijapranata Catholic University (Indonesia) Universitas Gadjah Mada (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia)

Universiti Malaysia Perlis (Malaysia)

Handy Wicaksono, S.T., M.T., Ph.D. Ir. Hanny Hosiana Tumbelaka, M.Sc., Ph.D. Dr. Hasballah Zakaria, S.T., M.Sc. Hatma Suryotrisongko, S.Kom., M.Eng., Ph.D. Assoc. Prof. Ir. Dr. Hazlee Azil Illias Dr. Ir. Hendra Kusuma, M.Eng.Sc. Henning Titi Ciptaningtyas, S.Kom, M.Kom. Heri Suryoatmojo, ST., MT., Ph.D Herlambang Setiadi, S.T., M.Sc., Ph.D Dr. Hindarto, S.Kom., MT Hongyi Liang Hudan Studiawan, S.Kom., M.Kom., Ph.D Dr. I Gede Puja Astawa, ST., MT Dr. I Gusti Ngurah Satriyadi, ST., MT. Prof. Dr.Eng. I Made Yulistya Negara, ST., M.Sc. Dr. Eng. Imam Wahyudi Farid, S.T., M.T. Dr. Indar Chaerah Gunadin, S.T, M.T. Dr. Indra Kharisma Raharjana, S.Kom., M.T. Dr. Ir. Ingrid Nurtanio, M.T. Irwan Alnarus Kautsar, S.Kom. M.Kom. Ph.D Ir. Josaphat Pramudijanto, M.Eng. Dr. Kalvein Rantelobo, ST., MT Ir. Khairul Anam, S.T., M.T., Ph.D. Dr. Ir. Lie Jasa, MT Dr. Mahirah Binti Jahari Dr. Mahmud Dwi Sulistyo, S.T., M.T. Prof. Makoto Ohki Dr. Eng. Marwan Rosyadi, ST, MT Dr. Mat Syai'in, S.T., M.T., Ph. D.

Mayanda Mega Santoni, S.Komp, M.Kom. Dr. Medria Hardhienata, S.Kom., M.Kom. Mochammad Sahal, S.T., M.Sc. Mohamad Abdul Hady, ST., MT.

Dr. Mohammad Teduh Uliniansyah Dr. Mohd Ashraf Ahmad, B.Eng, M.Eng Dr. Eng. Muhammad Abdillah, S.T., M.T. Muhammad Attamimi, B.Eng, M.Eng, Ph.D Muhammad Hilman Fatoni, S.T., M.T., Muhammad Arief Nugroho, S.T., M.T. Dr. Muhammad Rivai, S.T., MT. Muhtadin, S.T., M.T. Petra Christian University (Indonesia) Petra Christian University (Indonesia) Institut Teknologi Bandung (Indonesia)

Institut Teknologi Sepuluh Nopember (Indonesia) University of Malaya (Malaysia) Institut Teknologi Sepuluh Nopember (Indonesia)

Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Universitas Airlangga (Indonesia) University Muhammadiyah Of Sidoarjo (Indonesia) Google (USA)

Institut Teknologi Sepuluh Nopember (Indonesia) Politeknik Elektronika Negeri Surabaya (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia)

Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Hasanuddin University (Indonesia)

Universitas Airlangga (Indonesia) Hasanuddin University (Indonesia)

Universitas Muhammadiyah Sidoarjo (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Universitas Nusa Cendana (Indonesia) University of Jember (Indonesia) Udayana University (Indonesia) Universiti Putra Malaysia (Malaysia) Telkom University (Indonesia) Graduate School of Tottori University (Japan) Universitas Muhammadiyah Surabaya (Indonesia) Politeknik Perkapalan Negeri Surabaya (Indonesia) Universitas Pembangunan Nasional Veteran Jakarta (Indonesia) Institut Pertanian Bogor (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) National Research and Innovation Agency (Indonesia) Universiti Malaysia Pahang (Malaysia) Universitas Pertamina (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Telkom University (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia)

Dr. Muladi, ST, MT Munawar Agus Riyadi, ST., MT., Ph.D. Nada Fitrieyatul Hikmah, S.T., M.T. Prof. Dr. Ir. Nasaruddin, S.T., M.Eng. Nasyith Hananur Rohiem, S.ST., M.T. Prof. Nathalie Raveu TS. DR. Nazrulazhar Bahaman Nemuel Daniel Pah, S.T., M.Eng., Ph.D. Dr. Ir. Ni Ketut Aryani, MT. Dr. Nor Asrina binti Ramlee Dr. Norma Hermawan, S.T., M.Sc. Nunung Nurul Qomariyah, S.Kom., M.T.I., Ph.D Dr. Othman Inayatullah Dr.Eng. Panca Mudjirahardjo, ST., MT. Dr.techn. Prasetiyono Hari Mukti, ST, MSc Dr. Prima Kristalina, ST., MT. Dr. Ir. Puji Handavani, M.T. Dr. Eng. Puput Dani Prasetyo Adi, S.Kom., M.T Dr. Radi, STP., M.Eng. Dr. Ir. Ramadoni Syahputra, ST, MT Dr. Ratheesh Kumar Meleppat Dr. Ratna Wardani, MT Reza Fuad Rachmadi, S.T., M.T., Ph.D Rezki El Arif, S.T., M.T., Ph.D Dr. Ridho Hantoro, S.T., M.T. Dr. Ir. Ridi Ferdiana, S.T., M.T., IPM. Robertus Setiawan Aji Nugroho, ST., MCompIT., PhD Ronny Mardiyanto, ST., MT., Ph.D Dr. Rudy Dikairono, S.T., M.T. Rui Bian Dr. Ir. Sri Wahjuni, M.T. Sritrusta Sukaridhoto, ST., Ph.D Dr. Suwito, S.T., M.T. Teguh Prakoso, S.T., M.T., Ph.D Tianrui Liu Dr. Ir. Titiek Suryani, M.T. Dr. Ir. Totok Mujiono, MIKom Dr. Trihastuti Agustinah, S.T., M.T. Prof. Tsuyoshi Usagawa Udhaya Kumar Dayalan, Computer Science Ph.D. Vita Lystianingrum, ST, MT, PhD Dr. Wahyu Pamungkas, S.T., M.T.

State University of Malang (Indonesia) Diponegoro University (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Syiah Kuala University (Indonesia) Institut Teknologi Adhi Tama Surabaya (Indonesia) University of Toulouse - UPS - INPT - LAPLACE -CNRS (France) Universiti Teknikal Malaysia Melaka (Malaysia) Universitas Surabaya (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) University of Technology Sarawak (Malaysia) Institut Teknologi Sepuluh Nopember (Japan) Bina Nusantara University (Indonesia) University of Technology Sarawak (Malaysia) University of Technology Sarawak (Malaysia)

Institut Teknologi Sepuluh Nopember (Indonesia) Politeknik Elektronika Negeri Surabaya (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) National Research and Innovation Agency (BRIN-RI) (Indonesia)

Universitas Gadjah Mada (Indonesia) Universitas Muhammadiyah Yogyakarta (Indonesia)

University of California Davis (USA) Yogyakarta State University (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Universitas Gadjah Mada (Indonesia)

Soegijapranata Catholic University (Australia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Expatiate Communications (USA) Institut Pertanian Bogor (Indonesia) Politeknik Elektronika Negeri Surabaya (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Diponegoro University (Indonesia) Google (USA) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia)

Trane Technologies (USA)

Kumamoto University (Japan)

Institut Teknologi Sepuluh Nopember (Indonesia) Institut Teknologi Telkom Purwokerto (Indonesia)

Wardani Muhamad, S.T., M.T. Wayan Gede Ariastina, S.T., M.Eng.Sc., Ph.D. Dr. Ir. Wirawan, DEA Dr. Ir. Yohannes Kurniawan, S.Kom., S.E.,

MMSI.

Yurid Eka Nugraha, S.T., M.Eng, Ph.D. Dr. Ir. Zahir Zainuddin, M.Sc Zulkifli Hidayat, ST., M.Sc Telkom University (Indonesia)

Udayana University (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia)

Bina Nusantara University (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia) Hasanuddin University (Indonesia) Institut Teknologi Sepuluh Nopember (Indonesia)

Table of Contents

Title Page	i
Copyright	iii
Message from the General Chair	v
Message from the Dean of the Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) - ITS Indonesia	vii
ISITIA 2023 Organizing Committee	ix
ISITIA 2023 Technical Program Committee and Reviewer	xi
Table of Contents	xvi
ISITIA 2023 General Program Schedule	xli
Technical Session Schedule	xliii
Technical Session 1	xlv
Technical Session 2	lii
Technical Session 3	xlviii
Keynote Lecturer	
Prof. Takamichi Nakamoto	lxv
Dr. Ir. Hendra Kusuma	lxvii
Dr. Fei Teng	lxix
Technical Paper	
S101 - 1570901157	
Driver Fatigue Detection Based on Face Mesh Features Using Deep Learning	1
(Imam Nuralif; Eko Mulyanto Yuniarno; Yoyon Suprapto; Alif Aditya Wicaksono)	
<mark>\$102</mark> - <i>1570898356</i>	
Driver Visual Distraction Detection Based on Face Mesh Feature Using Deep Learning	6
(Niko Christian Budi Putra; Eko Mulyanto Yuniarno; Reza Fuad Rachmadi)	

S103 - 1570898690

OpenStack Implementation Using Multinode Deployment Method for Private Cloud 12 Computing Infrastructure

(Henning Titi Ciptaningtyas; Ridho Rahman Hariadi; Muchammad Husni; Khakim Ghozali; Rizka Sholikah; I Made Dindra Setyadharma)

S104 - 1570898543

Blockchain Technology for Implementation of Vehicle Tax Payment Digital Receipt18Authentication Using IPFS and Hyperledger Fabric18

(Anggi Malanda Yoga Putra; Erika Maulidiya; Laeila Marddhatillah; Muhammad Hakiki; Reza Iqra Nugraha; Hudan Studiawan; Ary Mazharuddin Shiddiqi)

S105 - 1570898209

Design Science Research in Developing Traffic Urgency Model From Text for Determining 25 Transportation Complaint Priority - an Initial Investigation

(Berlian Rahmy Lidiawaty; Erma Suryani; Retno A Vinarti)

S106 - 1570897752

A Proposed Model for Integration of University Course Timetabling and Vehicle Routing 31 Problems: An Initial Investigation

(Dihin Muriyatmoko; Arif Djunaidy; Ahmad Muklason)

S107 - 1570901110

Survival Information System Using ReliefF Feature Selection and Backpropagation in37Hepatocellular Carcinoma Disease

(Umi Meganinditya Wulandari; Budi Warsito; Farikhin Farikin)

S108 - 1570895190

Istio API Gateway Impact to Reduce Microservice Latency and Resource Usage on43Kubernetes

(Laurentius Nathaniel; Gilang Virga Perdana; Mochamad Rafli Hadiana; Ridha Muldina Negara; ; Sofia Hertiana)

J101 - *1570901147*

Implementation of Faster R-CNN Inception ResNet V2 Algorithm for Human Body Pieces Detection	48
(Nabilah Hanun; Moechammad Sarosa; Rosa Andrie Asmara)	
J102 - <i>1570894924</i>	
Depthwise Over-Parameterized CNN for Voxel Human Pose Classification	54
(Oddy Virgantara Putra; Riandini Riandini; Eko Mulyanto Yuniarno; Mauridhi Hery Purnomo)	
J103 - <i>1570898706</i>	
Source Code Statement Classification Using ANTLR and Random Forest	60
(Hanson Prihantoro Prihantoro Putro; Umi Laili Yuhana; Eko Mulyanto Yuniarno; Mauridhi Hery Purnomo)	
J104 - <i>1570898746</i>	
An Improved Performance of Convolutional Neural Network for Infant Pose Estimation by Evaluating Hyperparameter	66
(Endah Suryawati Ningrum; Eko Mulyanto Yuniarno; Mauridhi Hery Purnomo)	
J105 - <i>1570899059</i>	
Word Syllabification for Indonesian Language Using Transformer	72
(Muhammad Haykal Kamil; Suyanto Suyanto; Moch Arif Bijaksana)	
J106 - <i>1570893544</i>	
3100 1370033344	

(Ahmad Farizal; Adhi Dharma Wibawa; Diah Wulandari; Yuri Pamungkas)

J107 - 1570894813

Detecting Egg's Condition by Using Pixy Camera Based on Shell-Color Filtering	83
(Moch. Kholil; Ismanto Ismanto; Ibnu Athaillah; Heri Waspada;Rafika Akhsani ; Muchamad Saiful Muluk)	
J108 - 1570900922	
Ball Detection Based on Color and Shape Features Captured by Omni-Directional Camera	87
(Bagus Hikmahwan; Fakhriy Hario; Panca Mudjirahardjo)	
B101 - 1570894866	
Fine-Tuning IndoBERT Model for Big Five Personality Prediction From Indonesian Social Media	93
(Gede Aditra Pradnyana; Wiwik Anggraeni; Eko Mulyanto Yuniarno; Mauridhi Hery Purnomo)	
B102 - 1570895238	
Prediction of Human Body Orientation Based on Voxel Using 3D Convolutional Neural Network	99
(Mochammad Iskandar Riansyah; Tri Sardjono; Eko Mulyanto Yuniarno; Mauridhi Hery Purnomo)	
B103 - 1570898623	
Multi-Human Pose Detection Based on EELAN-Blazepose Model	105
(Dion Setiawan; Mauridhi Hery Purnomo; Eko Mulyanto Yuniarno)	
B104 - 1570900908	
Movement Classification for Hand Telerobot Based on Electromyography Signal Using Convolutional Neural Networks	110
(Adi Sulistiono; Triwahju Hardianto; Khairul Anam; Bambang Sujanarko; Naufal Ainur Rizal)	

B105 - 1570901002

Pixel-Based Weight Estimation of Vannamei Shrimp Using Digital Image Processing: A115Solution for Precise Feeding Management in Aquaculture

(Husni Mubarak; Zahir Zainuddin; Muhammad Niswar)

B106 - 1570901027

Semantic Role Labeling for Information Extraction on Indonesian Texts: A Literature 119 Review

(Amelia Devi Putri Ariyanto; Chastine Fatichah; Diana Purwitasari)

B107 - 1570901155

Calorie Burn Estimator on Stationary Bike Using Human Body Pose Detector	125

(Iwap Saputra Batan; Eko Mulyanto Yuniarno; Mauridhi Hery Purnomo; Ahmad Ramadhani)

B108 - 1570894808

Evaluation and Recommendations for Improvements to the Security and Speed of the ITS 130 RFID Gate System

(Hatma Suryotrisongko; Ridho Rahman Hariadi; Muh Reza Aisyi; Khakim Ghozali; Rizka Sholikah)

K101 - *1570898589*

Design a Log-Periodic Microstrip Antenna for Partial Discharge Detection in the VHF and 136 UHF Frequency Bands

(Ahwan Muru; Eko Setijadi)

K102 - 1570901128

Design Flat Lens Based on Metamaterial Structure at S-Band	142
(Candra Putri Rizkivah Ramadhani: Eko Setijadi)	

K103 - <i>1570891332</i>	
Object Detection in Car Blind Spot Area	148
(M Ismad Ikhsan; Heroe Wijanto; Antonius Setiawan)	
K104 - 1570894996	
LHCP and RHCP Enhancement on 30-Pointed Star Antenna With Cross Slot	154
(Azizurrahman Rafli; Muhammad Fauzan Edy Purnomo; Rahmadwati Rahmadwati)	
K105 - 1570901061	
Microstrip Leaky-Wave Antenna Design With E-Slot and Double U-Slot for Bandwidth Enhancement	160
(Muhamad Wahyu Iqbal; Fitri Yuli Zulkifli)	
P101 - 1570889242	
Virtual Plant Design: Automatic Sortation and Warehouse System for Distribution Intralogistics Based on Petri-Net Method	164
(Eka Iskandar; Ali Fatoni; Aqil Rabbani Nurhadi)	
P102 - <i>1570898670</i>	
The Design of Pressure Vessel Failure Risk Estimation Program Due to Uniform Corrosion Based on Machine Learning With Artificial Neural Networks	170
(Helya Chafshoh Nafisah; Fernanda Hartoyo; Jaka Fajar Fatriansyah; Donanta Dhaneswara; Harry Joni Varia)	
P103 - 1570894413	
Optimized Kinematic Control for a 3DOF Robot Manipulator	175
(Erwin Susanto; Sony Sumaryo; Basuki Rahmat)	
P104 - <i>1570895005</i>	
Nano Quadcopter for Autonomous Heat Source Detection	180
(Egar Pambudi; Atar Fuady Babgei; Mohamad Abdul Hady; Rudy Dikairono)	

P105 - 1570898409

Marker-Based Detection and Pose Estimation of Custom Pallet Using Camera and Laser Rangefinder	186
(Muhammad Fijar Aswad; Pranoto Hidaya Rusmin; Rini Nur Fatimah)	
P106 - 1570900875	
The Use of Invasive and Non-Invasive Electrodes in Novel Technology of Upper Limb Prostheses: A Current Review	192
(Dana Terrazas-Rodas; Joanna Carrión-Pérez)	
P107 - <i>1570898668</i>	
Study of a Noninvasive Nonenzymatic rGO Based Disposable Sweat Glucose Sensor	200
(Inasdiah Farras Fauziyyah; Totok Mujiono; Darminto Darminto)	
P108 - 1570898696	
Duty-Cycle Optimization Method for Improving Battery-Powered DC Sensor Node Lifetime in Wireless Sensor Networks	205
(Yopi Sopian; Faizal Arya Samman; Ansar Suyuti; Muhammad Niswar)	
L101 - <i>1570898285</i>	
Development of Inter-Vehicle Communication for Electric Bus	211
(Dimas Fajar Uman Putra; Aji Akbar Firdaus; Atar Fuady Babgei; Imam Wahyudi Farid; Novian Patria Uman Putra; Nasyith Hananur Rohiem; Vicky Andria Kusuma; Shafira Zahra; Eunike Widya Adinda)	
L102 - 1570900989	
Pose Estimation of Household Objects Using RGB-D-NIR Camera	216
(Muhammad Attamimi; Delonix Senjaya; Djoko Purwanto; Ditya Garda Nugraha)	

L103 - 1570900994

Design of Interface Module on Service Robot for Identification of Human Voice Direction 222 (Muhammad Attamimi; Gilbert E Prabowo; Hendra Kusuma; Ditya Garda Nugraha)

L104 - 1570901035

Real-Time 3D Modeling and Visualization Based on RGB-D Camera Using RTAB-Map228Through Loop Closure228

(Syahri Muharom; Tri Sardjono; Ronny Mardiyanto)

L105 - 1570895318

A Study of the Performance of Solar Cell Powered IoT-Based Air Pollution Sensor Node in 234 Indoor Environment

(Moch Bilal Zaenal Asyikin; C. Bambang Dwi Kuncoro)

L106 - 1570898091

A Comparative Analysis of Sensor Fusion Algorithms for Miniature IMU Measurements 239

(Kristel Çoçoli; Leonardo Badia)

L107 - 1570898365

Performance Analysis of Fog Architecture to Monitor Solar Panel for Smart Home245(Nur Insaan Muhammad Adzan Akbar Syafari; Zulkifli Tahir; Andani Achmad)245

M101 - 1570898134

Design and Implementation of MPPT for Solar Powered BLDC Water Pumps With Water 251 Flow Rate Parameters

(Feby Agung Pamuji; Mohamad Angga Faurahmansyah; Heri Suryoatmojo; Nurvita Arumsari; Brilliant Alfan Syafi'i)

M102 - 1570895375

Computational Analysis of Passive Cooling System to Improve Solar Photovoltaic Module 257 Performance

(Raisa Syahida Salsabila; Burhanuddin Halimi)

M103 - 1570897933

Technical Analysis of Solar Electric Water Pumping System in Gadon Village, Blora, Central 261 Java

(Erna Utami; Heri Suryoatmojo; Totok Ruki Biyanto)

M104 - 1570898599

Biomass Pre-Treatment Site Suitability Assessment Using GIS - MCDA Method in267Pandeglang, Indonesia267

(Ahmad Burhani; Ruri Agung Wahyuono)

M105 - 1570900984

Performance of Paraffin in a Hexagonal Finned Backsheet as a Passive Cooling System for 273 Solar Panels: A Case Study in the Tropics

(Julia Agung Rahmawati; Suyanto; Ruri Wahyuono)

M106 - 1570894448

Analysis of BESS Virtual Inertia Controller Effect on Frequency Stability Using DIgSILENT 280 PowerFactory Modelling

(Yoshiko Ricky Ananda; Dimas Anton Asfani; Ardyono Priyadi; Herlambang Setiadi)

M107 - 1570894900

EV Charging Scheduling With Genetic Algorithm as Intermittent PV Mitigation in286Centralized Residential Charging Stations286

(Syarifah Muthia Putri; Mochamad Ashari; Endroyono; Heri Suryoatmojo)

S201 - 1570895171

Fuzzy Neural Network (FNN) Control for Restoration System of Wrist Joint Movement by 292 Functional Electrical Stimulation (FES)

(Rotania Kumalasari; Achmad Arifin; Josaphat Pramudijanto)

S202 - 1570895193

Design Fuzzy Logic Controller for Electrical Stimulation Restoration of Shoulder Joint298Movement Using Functional Electrical Stimulation

(Desy Kusuma Anggraini; Achmad Arifin; Josaphat Pramudijanto; Norma Hermawan)

S203 - 1570895212

Design of an Interactive Learning System Using a Wearable Sensor Glove to Help Special 304 Needs Student

(Athif Lanang Untoro; Achmad Arifin; Eko Agus Suprayitno)

S204 - 1570895301

Development of Elbow Joint Exoskeleton Control System Using FUZZY-PID Control 310 Method for Post-Stroke Rehabilitation

(Sintong Mangaraja Sidabalok; Achmad Arifin; Josaphat Pramudijanto; Hendra Kusuma; Andra Risciwan; Moh. Ismarintan Zazuli)

S205 - 1570898567

Adaptive PID Controller Based on Sliding Surface for Controlling Elbow Joint Robot 316 Rehabilitation

(Laily Asna Safira; Achmad Arifin; Hendra Kusuma; Andra Risciwan; Moh Ismarintan Zazuli)

S206 - 1570898763

Electric Wheelchair Performance Testing With Joystick Control Command for Cerebral 322 Palsy Subject

(Febi Eka Fradasari; Achmad Arifin; Norma Hermawan)

S207 - 1570900877

Novel Technologies of Exoskeleton Systems Applied to Rehabilitation for Hand Therapies: 328 A Technological Review

(Tania Barreda-Galvez; Dana Terrazas-Rodas)

S208 - 1570901351

Finger Movements Classification Using Autonomous Transfer Learning	336
(Faruq Sandi Hanggara; Khairul Anam; Dedy Kurnia Setiawan; Bambang Sujanarko)	

J201 - 1570894568

Handwriting Classification Based on Hand Movement Using ConvLSTM	341

(Awang Karisma As'ad Adi Asta; Eko Mulyanto Yuniarno; Supeno Mardi Susiki Nugroho; Cries Avian)

J202 - 1570894627

Modelling of Type-2 Fuzzy System in m-Learning Usage Behavior Based on Electricity 347 Availability in Institut Teknologi Sepuluh Nopember- Indonesia

(Syamsul Arifin; Aulia Siti Aisjah;)

J203 - 1570895183

Emotion Recognition From Video Frame Sequence Using Face Mesh and Pre-Trained353Models of Convolutional Neural Network353

(Derry Pramono Adi; Eko Mulyanto Yuniarno; Diah Wulandari)

J204 - 1570895225

Impersonation Attacks Detection in Online Exams Through Static Photo Analysis With359Similarity Score

(Muhammad Arief Nugroho; Maman Abdurohman; Bayu Erfianto; Mahmud Dwi Sulistiyo)

J205 - 1570898669

Factors Driving the Students' Adoption of IT Enabled- MOOCS in Business Education365(Sujoy Sen; Ravi Kumar V v)

J206 - 1570895552

Knowledge Distillation for a Lightweight Deep Learning-Based Indoor Positioning System 370 on Edge Environments

(Aji Gautama Putrada; Nur Alamsyah; Syafrial Fachri Pane; Mohamad Nurkamal Fauzan; Doan Perdana)

J207 - 1570896346

Comparing Various Combined Techniques at Seasonal Autoregressive Integrated Moving 376 Average (SARIMA) for Electrical Load Forecasting

(Mega Silfiani; Happy Aprilia; Yustina Fitriani)

J208 - 1570897588

Classification of Human Gender Through Machine Learning Analysis of Gait	382
(Jocelyn Thiojaya; Nunung Nurul Qomariyah)	

B201 - 1570895158

Internet of Things-Based Telemonitoring System Design for Wrist Rehabilitation	388
(I Made Yudhistira Dharma Satyana; Achmad Arifin; Norma Hermawan)	

B202 - 1570897119

Telerehabilitation Information System for Lower Limb With FES Based on Website394Application

(Fauzi Naufal Muhammad; Achmad Arifin; Norma Hermawan)

B203 - 1570897508

Information Systems for Remote Rehabilitation With Live Video Streaming Using A Pan 399 Tilt Zoom Camera

(Seno Aji Darmawan; Achmad Arifin; Norma Hermawan)

B204 - 1570894820

A Vital Sign Monitoring System Exploiting BT/BLE on Low-Cost Commercial Smartwatch 405 for Home Care Patients

(Nursyifa Azizah; Mohammad Reza Faisal; Friska Abadi; Irwan Budiman; Muhammad Itqan Mazdadi; Rudy Herteno; Dodon Turianto Nugrahadi)

B205 - 1570887979

Epilepsy Detection Using Combination DWT and Convolutional Neural Networks Based on 411 Electroencephalogram

(Dwi Sunaryono; Joko Siswantoro; Riyanarto Sarno; Rahadian Indarto Susilo; Shoffi Izza Sabilla)

B206 - 1570895197

Deep Learning-Based Approaches for ECG Signal Arrhythmia: A Comprehensive Review 417

(Jaenal Arifin; Tri Arief Sardjono; Hendra Kusuma)

B207 - 1570895245

Assistive Robot Manipulator Pose Prediction Based on Object Orientation Using CNN 422

(Nuryono Widodo; Eko Mulyanto Yuniarno; Mauridhi Hery Purnomo; Ronny Mardiyanto)

K201 - 1570885603

An Information-Dense Summary and Prediction Model Based on Machine Learning for 427 the Atherosclerotic Heart Disease

(Eka Miranda; Evaristus Didik Madyatmadja; Albert Verasius Sano; Khalfani Alvand; Marcel Wijaya; Valen Pretycia)

K202 - 1570892034

Detection and Intervention Engagement Service Development for New Normal Distance Learning	433
(Bayu Setyawan; Wardani Muhamad; Suhardi Suhardi)	
K203 - 1570894336	
Text Recognition for Socioeconomic Data Survey Sheet Using OCR Tesseract	438
(Risky Fajar Afrianto; Aviv Yuniar Rahman; Fitri Marisa)	
<mark>K204</mark> - <i>1570898715</i>	
Implementation of Fuzzy C-Means and Self-Organizing Map for Data Clustering of Palm Oil	444
(Siti Sarah; Mustakim; Rice Novita; Nesdi Evrilyan Rozanda)	
K205 - 1570898740	
Comparison of TDNN and Factorized TDNN Approaches for Indonesian Speech Recognition	450
(Gunarso; Agus Buono; Mushthofa ; M. Teduh Uliniansyah)	
K206 - 1570900916	
Identification of Poultry Reproductive Behavior Using Faster R-CNN With MobileNet V3 Architecture in Traditional Cage Environment	456
(Andi Saenong; Zahir Zainuddin; Muhammad Niswar)	
K207 - 1570894794	
Design and Implementation of Smart Surveillance System Using Deep Learning Method	462

(Edi Johan Syah Djula; Emir Husni; Rahadian Yusuf)

K208 - 1570901146

Detection of Indonesian Fishing Vessels on Unmanned Aerial Vehicle Images Using 468 YOLOv5s

(Gramandha Wega Intyanto; Khairul Anam; Berlian Juliartha Martin Putra; Heri Prasetyo)

P201 - 1570901032

Deep Reinforcement Learning Control Strategy at Roundabout for i-CAR Autonomous Car 473

(Muhtadin ; Muhammad Roychan Meliaz; Rudy Dikairono; I Ketut Eddy Purnama; Mauridhy Hery Purnomo)

P202 - 1570890473

Hardware-In-The-Loop Simulation for Safety Robustness Analysis of 3D Trajectory Model479(Farhan Dwi Cahyo; Muhammad Zakiyullah Romdlony; Erwin Susanto)

P203 - 1570894573

Neighborhood Controller-Local Observer in Adaptive Control Approach for484Heterogeneous Vehicle Platoon Formation484

(Agung Prayitno; Veronica Indrawati; Yohanes Gunawan Yusuf)

P204 - 1570894850

Autonomous Quadcopter Trajectory Tracking and Stabilization Using Control System489Based on Sliding Mode Control and Kalman Filter

(Nilla Perdana Agustina; Purwadi Agus Darwito)

P205 - 1570899509

Design and Simulation of Environment Indoor Air Quality Monitoring and Controlling 494 System Using IoT Technology

(Brainvendra Widi Dionova; Dwiana Hendrawati; Mohammed N. Abdulrazaq; Devan Junesco Vresdian; Anindya Ananda Hapsari; Muhammad Irsyad Abdullah; Legenda Prameswono Pratama)

P206 - 1570901054

Asymptotic Sliding Mode Control Design for Ship Dynamic Positioning System	500
(Harry Septanto; Hendra Adinanta; Edi Kurniawan; Ahmad Syafiul Mujahid; Arga Iman Malakani; Mohamad Imam Afandi; Chandra Permana; Nurhadi Nurhadi)	
P207 - 1570895673	
Evaluation Performance of Contention Window on the Impact Hidden Node Vehicle to Vehicle	505
(Rasna ; Indrabayu ; Dewiani; Andani Achmad)	
P208 - 1570901237	
Study on Alternative Communication Technology for Pilot Cable Communication for SCADA System in TNB Distribution	511
(Muhammad Hanif bin Abdul Aziz; Farah Adilah Mohd. Kasran; Azlan Abdul Rahim; Fathinah Mohd Bakri; Mohd Ridzuan Mahat; Ridwan Mohamad)	
L201 - <i>1570901148</i>	
Comparison of MPPT Performance Between Firefly Algorithm and Particle Swarm Optimization on PV Systems Under Partial Shading Conditions	516
(Eva Jamiyanti; Dedy Kurnia Setiawan; Bambang Sujanarko)	
L202 - 1570901074	
Distribution Network Dynamic Reconfiguration Using Grasshopper Optimization Algorithm With Wind Turbine Injection to Minimize Power Loss	522
(Dimas Fajar Uman Putra; Aji Akbar Firdaus; Ni Ketut Aryani; Shafira Zahra; Eunike Widya Adinda; Muhammad Rangga Dwi Agustian; Riky Tri Yunardi; Nanda Roby Dwiajeng)	
L203 - 1570889155	F 2 0
Dynamic Distribution Network Reconfiguration Considering Distributed Generator and Energy Storage System Using Hybrid SPSO-IPOPT Method	528
(Sievlong Suk; Rony Seto Wibowo; Vita Lystianingrum)	

L204 - 1570893765

Enhancement of Overcurrent Relay Coordination in Modern Industrial Distribution System Using Adaptive Modified Firefly Algorithm	534
(Ou Seng; Margo Pujiantara; Ardyono Priyadi; Vincentius Raki Mahindara)	
L205 - 1570894677	
Optimal Setting of Overcurrent Relay Coordination on Real Power System PT. Pupuk Sriwidjaja Using Modified Particle Swarm Optimization Algorithm	540
(Sopanha Khan; Margo Pujiantara; Ardyono Priyadi)	
L206 - 1570897947	
Improvement of Critical Clearing Time by Combination of SFCL and SCES Using Critical Trajectory Method	546
(Hanif Rifai Adha; Ardyono Priyadi; Vita Lystianingrum; Isa Hafidz; Rafin Aqsa Izza Mahendra; Naoto Yorino)	
L207 - <i>1570898561</i>	
Adaptive Hysteresis Band Current Control Using Fuzzy for Bidirectional H-Bridge DC-DC Converter for EV's Battery Charging	552
(Alwy Muhammad Ravi; Dedet Candra Riawan; Heri Suryoatmojo)	
L208 - 1570898580	
Placements of Capacitors and BESS for the Power Quality Distribution System With Minimum Cost Consideration	558
(Ni Ketut Aryani; Rony Seto Wibowo; Theofilus Christio Priambodo Priambodo; Dhimas Khamim Eka Putra)	
S301 - <i>1570893776</i>	
Gabor Filter and Canny Edge Detection for Ear Biometrics Identification	564
(Doni Rubiagatra; Adhi Dharma Wibawa; Marianus Yakobus Lili Lejap; Bima Gerry Pratama; Rizky Oktavian)	

S302 - 1570897937

Detection of Pulmonary Tuberculosis Using Neural Network With Feature Extraction of Gray Level Run-Length Matrix Method on Lung X-Ray Images	570
(Togi Simarmata; R Rizal Isnanto; Aris Triwiyatno)	
S303 - <i>1570898300</i>	
Development of Efficient Brain Tumor Classification on MRI Image Results Using EfficientNet	575
(Faiz Ainur Razi; Alhadi Bustamam; Arnida L Latifah)	
S304 - <i>1570898695</i>	
Nuclei Segmentation Using UNet on Breast Hematoxylin and Eosin Stained Histopathology Images	581
(Nisa Mardhatillah; Ingrid Nurtanio; Syafaruddin Syafaruddin)	
S205 1570999902	
S305 - 1570888892	
The Design of Korotkoff Sound Detection Using Amplitude Parameter and Oscillation Beat to Estimate Non-Invasive Blood Pressure	587
(Nurdina Gita Pratiwi; Agung W. Setiawan; Dziban Naufal; Linlin Lindayani)	
S306 - 1570900954	
Analysis of Movement Patterns Based on Electroencephalograph Signals Using Pearson Correlation Coefficient	593
(Bima Wahyu Maulana; Khairul Anam; Satryo Utomo; Iwanah Bilfaqih)	
S307 - 1570897880	
Data Analyzes and Conversion of Patient's Respiratory FMCW Radar to the Internet of Things	598
(Suisbiyanto Prasetya; Arief Budi Santiko; Puput Dani Prasetyo Adi; Yuyu Wahyu; Rizky Rahmatullah; B. Berlian Surya Wicaksana; Stevry Yushady CH Bissa; Riyani Jana Yanti; Aloysius Adya Pramudita)	

S308 - 1570895006

Evaluation of Subject Intention Speed Control Electric Wheelchairs With Myoelectric6Signal Control for Users With Disabilities6	504
(Fatih Nurul Izzah; Achmad Arifin; Norma Hermawan)	
J301 - <i>1570898382</i>	
Quality Detection of Export Purple Sweet Potatoes Using Yolov4-Tiny6	510
(Sri Lestari; Aviv Yuniar Rahman; I Istiadi)	
J302 - <i>1570898413</i>	
Multi Detection and Segmentation Coconut Shell for Charcoal Briquette Using Mask R- 6 CNN	515
(Andi Anzanul Zikra; Amil Ahmad Ilham; Ingrid Nurtanio; Norbertus Tri Suswanto Saptadi)	
J303 - <i>1570898565</i>	
The Effect of Channel Size on Performance of 1D CNN Architecture for Automatic6Detection of Self Reported COVID-19 Symptoms on Twitter	521
(Muhammad Khairie; Mohammad Reza Faisal; Rudy Herteno; Irwan Budiman; Friska Abadi; Muhammad Itqan Mazdadi)	
J304 - 1570898644	
Implementation of Modified K-Nearest Neighbor Algorithm in Electronic Nose System to 6 Detect Gastroesophageal Reflux Disease	526
(Ade Moehammad Fajrin; Muhammad Niswar; Ady Wahyudi Paundu)	
J305 - <i>1570898651</i>	
Performance Comparison of Support Vector Machine and Random Forest Using Delta TF- IDF on Sentiment Classification of Tiket.com Reviews	532

(Rizky Adhi Nugroho; Budi Warsito; Arief Rachman Hakim)

J306 - 1570898683

The Scientific Progress and Prospects of Artificial Intelligence for Cancer Detection: A Bibliometric Analysis	638
(Fairuz Iqbal Maulana; Puput Dani Prasetyo Adi; Dian Lestari; Sandy Vikki Ariyanto; Agung Purnomo)	
J307 - 1570898702	
Classification Facial Expressions of Children With Special Needs Using CNN	643
(Rivaldo Tito Lamberto Da Silva; Aviv Yuniar Rahman; Fitri Marisa)	045
J308 - <i>1570900516</i>	
Sentiment Analysis of Public Opinion Regarding Fuel Oil on Twitter by Comparing Classification Algorithms	648
(Gita Widarma; Rice Novita; Mustakim Mustakim; Nesdi Evrilyan Rozanda)	
B301 - 1570893743	
Analysis of the Factors Influencing Electronic Wallet User Satisfaction Based on the Self- Awareness	654
(Surjandy Surjandy; Stefanus Rumangkit; Abdullah Billman; Zaldy Gunawan)	
B302 - 1570890509	
Risk Assessment Model Development in GX PMBOK Using Checklist Scenario Analysis and Simple Additive Weighting	660
(Arian Nurrifqhi; Jaka Sembiring)	
B303 - 1570901099	
Portable Malware Scanner Based on Embedded Devices	666
(Agus Reza Aristiadi Nurwa; Dimas Febriyan Priambodo; Daffa Akbar Putra; Muhammad Hasbi; Wawan Laksito Yuly Saptomo; Setiyowati Setiyowati)	

B304 - 1570894540

Gaming Behaviors and Its Correlation With Internet Gaming Disorder Among Indonesian 672 Young Adults

(Flourensia Rahayu; Lukito Edi Nugroho; Ridi Ferdiana)

B305 - 1570894799

Design of Data Transfer Efficiency on Smart Street Light Based on Long Range Wide Area 679 Network Protocol

(Rizka Sholikah; Muhammad Hilmi Ramadhan; Ridho Rahman Hariadi; Hatma Suryotrisongko; Henning Titi Ciptaningtyas)

B306 - 1570896999

Novel Extreme Point Estimation and Normalization for Many-Objective Evolutionary 685 Algorithms

(Towa Kawaguchi; Makoto Ohki)

B307 - 1570898992

Evaluation of Learning Management Systems Based on Usability and User Experience: A 691 Systematic Literature Review

(Emil Agusalim Habi Talib; Paulus Insap Santosa; Sunu Wibirama)

B308 - 1570894191

The Probabilistic Programming Approach for Procurement and Production Planning in697Recovery Time After a Pandemic

(Sutrisno Sutrisno; Purnawan Adi Wicaksono; Solikhin Solikhin; Abdul Aziz)

K301 - *1570890513*

Performance LoRa Technology for Autonomous Vehicles

703

(Puput Dani Prasetyo Adi; Iwan Purnama; Arfanda Anugrah Siregar; Angga Putra Juledi; Firman Edi; Abdul Karim; Yuyu Wahyu; Fairuz Iqbal Maulana; Suhardi Atmoko Budi Susilo; Toni; Ilham Maliki Harahap; Lintang Patria)

K302 - 1570895226

Multi-Target Detection Method on FMCW Radar for Non-Contact Breathing Measurement	710
(Aditya Rifky Ramadhan; Aloysius Adya Pramudita; Fiky Y. Suratman)	
K303 - 1570895228	
Clutter Reduction in Detecting Trapped Human Respiration Under Rubble for FMCW Radar System	716
(Queen Hesti Ramadhamy; A. Adya Pramudita; Fiky Y. Suratman)	
K304 - <i>1570897543</i>	
NOO - 1070897045	
Performance Analysis of Underground Mines Visible Light Communication in Various Modulation	722
(Yasyfa Rifiani Putri; Endika Satrio Wibowo; Dharu Arseno; Dharu Arseno; Brian Pamukti)	
K305 - <i>1570894834</i>	
Binary Semantic Segmentation of Dolphin on UAV Image Using U-Net	728
(Putu Zasya Eka Satya Nugraha; I Made Gede Sunarya; I Md Dendi Maysanjaya)	
K306 - 1570895241	
Space-Time Adaptive Processing for Target Detection on Transceiver-Subarray-MIMO Radar	734
(Syahfrizal Tahcfulloh; Nur Hasmur Jamal)	
K307 - <i>1570901113</i>	
Analysis of Driving Safety With Distance Detection Systems for Motorized Vehicles Using	738

(Ainun Machvira Addarani; Erfan Rohadi; Moechammad Sarosa)

Ultrasonic Sensors

P301 - 1570895336

Wireless Power Transfer in Electric Vehicles Using Single Phase Matrix Converter744(Bella Octavia Nurul Hidayah; Heri Suryoatmojo; Feby Agung Pamuji)744

P302 - 1570898168

The Effect of Rotational Speed on the Thermal Characteristics of a Wheel Hub Motor on 749 an Electric Scooter

(Muhammad Hasan Albana; Harus Laksana Guntur; Ary Bachtiar Khrisna Putra)

P303 - 1570890139

Agglomeration Effect of Fe3O4 and TiO2 Based Nanofluids on Dielectric Strength of Liquid 755 Insulation

(Reza Sarwo Widagdo; Dimas Anton Asfani; I Made Yulistya Negara)

P304 - 1570895026

Voltage Output Characteristic of Solid-State Tesla Coil Based on Duty Cycle and Frequency 759 Model

(I Gusti Ngurah Satriyadi Hermanda; Dimas Anton Asfani; I Made Yulistya Negara; Daniar Fahmi; Arief Budi Ksatria; Bagus Septianto)

P305 - 1570895128

Bow-Tie Antenna With Low-Noise Amplifier for Partial Discharge Detection in Oil764Insulation

(Lasro Sihite; Umar Khayam; Deny Viviantoro; Muhammad Kodrat; Mukhtar Hadi)

P306 - 1570895230

Pulse Shape Analysis of Partial Discharge in Air Insulation Using Commercial HFCT Sensor 770

(Muhammad Kodrat; Umar Khayam)

P307 - 1570898524

Breakdown Voltage Characteristic of Cellulose Impurities on Conductive Nanofluid	774
(Hadiqul Musyaddad Nur Muhammad; Dimas Anton Asfani; I Made Yulistya Negara; Daniar Fahmi)	
P308 - 1570898547	
Effect of Cellulose Impurities on Breakdown Voltage Characteristic in Semiconductive Nanofluid	780
(Hakim Subekti; I Made Yulistya Negara; Dimas Anton Asfani; Daniar Fahmi)	
L301 - <i>1570892589</i>	
Prediction of Ship Fuel Consumption Due to the Effect of Weather Conditions	786
(Sintia Megawati; Aulia Siti Aisjah; Sjarief Widjaja)	
L302 - 1570894416	
Modified Grey Wolf Optimization Algorithm for Directional Overcurrent Relays Coordination in Distribution Network With Distributed Generations	792
(R. Reski Eka Putra; Margo Pujiantara; Vita Lystianingrum)	
L303 - 1570895258	
Optimal Tuning for Power System Stabilizer Using Arithmetic Optimizer Algorithm in Interconnected Two-Area Power System	798
(Mohamad Almas Prakasa; Imam Robandi)	
L304 - <i>1570897139</i>	
Overcurrent Relay Coordination Setting on Distribution Power System Using Grasshopper Optimization Algorithm	804

(Riko Satrya Fajar Jaelani Putra; Margo Pujiantara; Vita Lystianingrum)

L305 - 1570898099

OCR Optimization Setting on Industry System PT. Petrokimia Gresik Considering Inrush 810 Current Using Adaptive Modified Firefly Algorithm

(Maratus Shalikhah Nur Fitri; Margo Pujiantara; Vita Lystianingrum)

L306 - 1570898635

Economic Dispatch Steam Power Plant Jeranjang and Sambelia Using Hybrid Algorithm 816 Particle Swarm Optimization and Simulated Annealing

(Muhammad Rivaldi Harjian; Ontoseno Penangsang; Ni Aryani)

L307 - 1570898676

Optimization of Overcurrent Relay in Radial Networks Using Adaptive Modified Firefly822Algorithm Considering Inrush Current Transformers and Motor Start821

(Chandra Agung R; Margo Pujiantara; Ardyono Priyadi)

Author Index

828