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ABSTRACT 
Objectives: This study aimed to identify novel antimalarial compounds based on allosteric inhibitor of prolyl-
tRNA synthetase using hierarchical virtual screening.  
Materials and Methods: Pharmacophore model was designed initially, based on the structure-activity 
relationships data between several pyrazole-urea analogues and their IC50 enzymatic value. The model obtained 
was applied to screen ZINC15 database, after which followed by drug-likeness, toxicophore, and PAINS filter. 
The hit compounds were docked against P. falciparum prolyl-tRNA synthetase enzyme, using validated docking 
method. The resulting docking poses were ranked based on the docking score and re-evaluated based on the 
pharmacophore criteria. Top five compounds were obtained from this step and then evaluated using molecular 
dynamics simulation to verify its stability and hydrogen bond dynamics over 50 nanoseconds. MM-PBSA analysis 
was also performed to estimate their binding free energy. Ultimately, their potential bioactivity as antimalarial 
candidates have been verified against 3D7 strain.  
Results: The results showed that all five compounds obtained from virtual screening possess micromolar potency 
in vitro. Two compounds (ZINC 1029449 and ZINC1029453), yield high antimalarial activity (0.44 and 0.72 μM, 
respectively)  
Conclusions: Overall, the virtual screening approach has successfully produced lead compounds which can be 
further optimized to be antimalarial agents. 
Keywords: Antimalarial, Molecular dynamics, Plasmodium falciparum, Prolyl-tRNA synthetase, Virtual 

screening. 

 

1. INTRODUCTION 
Malaria is a global public health concern, particularly 

in developing countries worldwide1. This infectious 
disease is caused by Plasmodium species, specifically P. 
falciparum and P. vivax. In 2020, an estimated total of 241 
million cases occurred globally, resulting in a 12% 

mortality rate2. Furthermore, several reported case of drug 
resistances against common antimalarial agent2 has 
underlined the necessity to search for alternative 
therapeutic candidate which is safe and more effective.    

High-throughput screening is an integral part of the 
early drug discovery and development process, allowing 
the simultaneous assay of multiple compounds at a rate of 
up to tens of thousands of compounds per week3. Due to 
advancements in computer science and technology, this 
process can now be simulated in silico, significantly 
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reducing the time and resources spent on trial and error in 
the laboratory while increasing the hit probability for 
bioactivity screening4. This approach, known as virtual 
screening, has been widely applied with success in 
generating hits for various biological targets, including the 
identification of potential compounds with antimalarial 
activity5,6. Virtual screening encompasses various 
computational tools from different approaches, such as 
ligand-based methods (pharmacophore, similarity)7, 
structure-based method (molecular docking, molecular 
dynamics)8–10 or artificial intelligence-based method11,12. 
These tools can be employed subsequently or in parallel to 
identify the best compounds, which are then tested in vitro. 
Moreover, this process can be integrated with high-
throughput screening to yield more potent lead 
compounds4. 

Aminoacyl-tRNA synthetases (aaRs) are a family of 
enzyme which are responsible for esterification of amino 
acid with cognate tRNA in two-step reaction. Firstly, 
amino acid will react with ATP to produce amino acid-
AMP complex with pyrophosphate anion as side product. 
Subsequently, hydroxyl group of tRNA attack carbonyl 
group of amino acid-AMP complex, thus displacing AMP 
in the complex. The reaction ultimately yields amino acid-
tRNA complex, which then delivered to ribosome to take 
part in protein synthesis. There are 20 aaRS enzymes, 
which correspond to the total of amino acid in nature13. 
This enzyme has garnered some interest recently, notably 
as potential druggable target in various infectious diseases 

such as malaria14. To date, 36 aminoacyl-tRNA 
synthetases are known to reside inside apicoplast, 
mitochondria, or cytoplasm of Plasmodium falciparum, of 
which five enzymes have been structurally characterized14. 
Prolyl-tRNA synthetase (PfPRS) is one of the examples. 
Its significance was first known in the 2010s as the main 
target of febrifugine, halofuginone, and their other 
derivates activity 15–18. Crystallographic data shows that 
febrifugine and its analogues inhibit PfPRS by occupying 
tRNA and L-proline binding site 16,18. 

This dual site binding mechanism is observed not only 
in Plasmodium falciparum but also in human orthologue 
(HsPRS) 18,19, due to the very high homology between the 
two. Upon examination, it can be observed that PfPRS 
shares around 54% similarities with HsPRS. The 
difference lies in the zinc binding motif, which exists only 
in HsPRS. A slight deviation can also be found in 
anticodon binding domain 18. Nevertheless, it is shown that 
febrifugin-like compound binds in the same manner on 
both orthologues, making their selectivity questionable. 

Recent study showed novel binding mode of PfPRS via 
allosteric regulation, which yield higher selectivity against 
HsPRS. Based on high-throughput screening result, it was 
found that pyrazole-urea based compound possess 
selective activity towards PfPRS and promisingly potent 
scaffold against Plasmodium falciparum 20 (Figure 1). 
This allosteric ligand is in the vicinity of ATP binding site, 
specifically in the TXE loop. In the process, it displaces 
the loop from the conservative conformation 18 (Figure 2).  
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Figure 1. Chemical structure of febrifugine (a) and TCMDC-124506 (b), an orthosteric and allosteric inhibitor 

of PfPRs enzyme, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Overlay image of two PfPRS crystal structure containing halofuginone-AMPPNP and TCMDC-
124506, respectively. (A=halofuginone; B=AMPPNP, an ATP analogue; C=TCMDC-124506) 

 
In addition, several plant-based compounds have been 

predicted to possess specific enzymatic activity toward 
PfPRS using virtual screening and molecular dynamics21. 
In this study, a similar approach was implemented in 
attempt to identify potential selective PfPRS inhibitor 
among commercially available compounds in ZINC 

database22. Ultimately, antimalarial activity of the 
compounds obtained through this process were verified by 
in vitro assay against Plasmodium falciparum strain 3D7. 

 
2. METHODS 
2.1. Phamacophore Modelling and Screening 
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Pharmit webserver (https://pharmit.csb.pitt.edu/) was 
used for virtual screening23. Our protocol commenced with 
structure-based pharmacophore modeling using 
crystallographic data of PfPRS with allosteric inhibitor 
(PDB ID: 4WI1) 20. The predetermined pharmacophore 
query from webserver was then modified according to 
known information of their structure-activity 
relationship20. Resulting pharmacophore model was then 
applied to screen 13,190,317 compounds from ZINC 
purchasable database22. This procedure yielded 248 hit 
molecules, which were proceeded to the next step. 

2.2. Drug-likeness, Toxicophore, and PAINS 
Filtering  

The obtained compounds from previous step were 
filtered based on Lipinski rule of five24 to assess their drug-
likeness. In addition, possessing unwanted moieties, such 
as toxicophores and PAINS, were targeted for exclusion. 
This step was performed using FAF-Drugs 4 webserver 
(https://mobyle.rpbs.univ-paris-diderot.fr/cgi-
bin/portal.py#forms::FAF-Drugs4)25 The aim was to 
ensure that the obtained compounds are drug-like, free of 
toxic functional groups, and potentially not possessing 
promiscuous bioactivity. Criteria for defining toxic and 
unwanted moieties are explained in 25, while for definition 
of PAINS substructure are according to 26. Notably, no 
compounds were found to violate all the rules. 
Consequently, 248 molecules proceeded to the next step. 

2.3. Molecular Docking 
Molecular docking step was performed using the 

filtered compounds from previous step and the same 
protein from pharmacophore modelling process (PDB ID: 
4WI1) 20. Prior to performing molecular docking, ligand 
and protein preparation was performed to ensure both of 
protein ligand represent the real condition as accurate as 
possible. This preparatory step includes adding hydrogen 
atom and partial charges of Amberff14 27 and Gasteiger 28 
for protein and ligand, respectively. The whole process of 
protein preparation was done in Chimera 1.14 29 while 
ACC2 was used to compute partial charge of all ligands 30.  

The following process was validation step. This was 
done to ensure the reliability of the docking method. Our 
approach was to evaluate the best combination of docking 
score and placement algorithm available in Molegro 7 
Trial Version (http://molexus.io/molegro-virtual-docker/)  
which was used as docking software. There were two 
procedures of validation took place in this step. Firstly, the 
native ligand (TCMDC-124506) of the enzyme was 
removed and subsequently re-docked into the enzyme (i.e. 
self-docking/re-docking). The resulting docking pose was 
then superimposed to the original conformation and 
calculated their RMSD value, which ideally should not be 
over 2.0 Å31. Afterwards, molecular docking was 
performed against data set of ligands which contained both 
known active and inactive compounds from literature 20. 
The lowest docking score obtained from each ligand was 
sorted ascendingly and the overall ranking was evaluated 
based on its area under curve (AUC) value of ROC curve 
32, BEDROC 33, and standardized total gain score 34. This 
calculation was done in Screening Explorer webserver 35. 
The docking process was conducted in 15 Å-radius 
spherical region centered on native ligand.  

Afterwards, the selected best method was applied to 
dock 248 hit molecules. The result was ranked ascendingly 
and evaluated subsequently according to the SAR report 
20. Five of the compounds who met the criteria, in addition 
to possess low docking score were selected to be 
processed. 

2.4. Molecular Dynamics and MM-PBSA 
Calculation 

The selected compounds from molecular docking step 
and the native ligand (TCMDC-12506)  were then 
simulated using Gromacs 2016.3 simulation pack 36. 
Similar forcefield and partial charge (Amberff14 27 and 
Gasteiger 28) was applied in the preparatory stage, before 
the docked complexes were subjected to 50 ns simulation 
in water and counterions (Na+ & Cl-). TIP3P rigid water 
model 37 was used in this study for its computational speed 
and reasonable accuracy in protein-ligand simulation 38.  
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Long-range electrostatic force was determined by Particle 
Mesh Ewald 39. Velocity rescaling thermostat 40 and 
Parrinello-Rahman barostat 41 were used during NVT and 
NPT equilibration for 500 ps, respectively. In these 
processes, system temperature was adjusted to 310 K, 
while maintaining the pressure at 1 bar. Molecular 
dynamics production run was performed in a 2 fs timestep 
for 50 ns. The stability of the system was verified by 
analysis of the energy, temperature, pressure, and root-
mean-square deviation (RMSD).  

Afterwards, MM-PBSA calculation was performed 
using the G_MMPBSA package integrated in the Gromacs 
2016.3 software42. Polar desolvation energy was 
calculated with the Poisson-Boltzmann equation with a 
grid size of 0.5 Å. The dielectric constant of the solvent 
was set to 80, which represents water as the solvent. Non-
polar contribution was determined by calculation of the 
solvent-accessible surface area with the solvent radii of 1.4 
Å. The binding free energy of the complex was determined 
based on 50 snapshots taken from the beginning to the end 
of the molecular dynamic simulation trajectories of the 
complexes. 

2.5. Antimalarial Bioassay 
The compounds obtained from virtual screening 

process were purchased from MolPort (Riga, Latvia) to be 
tested for their antimalarial potency. Antimalarial assay 
was conducted against Plasmodium falciparum strain 3D7. 
Parasites were bred in human erythrocyte using Trager-
Jensen method with slight modification 43,44. Each assay 
compounds were dissolved in DMSO to make 10 ppm 
solution. This stock solution was diluted into four other 
concentrations (1, 0.1, 0.01, and 0.001 ppm). 500 μL 

aliquot of solution was mixed with the equal amount of 
parasite culture in a 96 well plate, then incubated for 48 h 
at 37oC. This process was conducted for all five different 
concentrations. Chloroquine diphosphate was used as 
positive control. In addition, negative control was also 
measured using parasite culture only. Plasmodium growth 
was evaluated in microscope using thin blood smears 
preparation with Giemsa stain. Inhibition percentage can 
be calculated using the following equation:  

  44. 
 
Where A and B refers to the growth percentage of 
compounds and negative control, respectively. Ultimately, 
IC50 values were calculated by transforming the 
concentration-response curve using the Probit 
Transformed Responses regression model. The values 
were expressed as a mean value with standard deviation. 

 
3. RESULTS AND DISCUSSION 
Virtual screening is currently becoming one of the 

most powerful tools to aid drug discovery process in cost 
and time-efficient manner. The method combines various 
drug design tools into a systematic workflow which act as 
a filter for the chemicals in library. This will increase the 
probability of finding hit and eliminate likely inactive 
compound4. There are several types of virtual screening 
algorithm based on their level of integration, one of which 
is hierarchical or classical virtual screening as 
implemented in this study45. Here we applied 
pharmacophore modelling, molecular docking, and 
molecular dynamics in a sequential order to obtain the 
most potentially active compounds against PfPRS enzyme. 
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Figure 3. Workflow of virtual screening used in this study 
 

In the beginning, pharmacophore model was built 
based on structure-activity relationships of pyrazole-urea 
analogues against PfPRS enzyme. The model was built 
using TCMDC-124506 as a template 20. It consists of two 
aromatic ring queries on pyrazole and phenyl moiety 
attached to it, one hydrogen bond acceptor and two 
hydrogen bond donors on urea moiety, and two 
hydrophobic queries on N-substituent position of pyrazole 
and ring moiety attached to urea group. The purpose of 
implementing hydrophobic query instead of aromatic ring 
for the latter is due to the fact that glibenclamide, which 
contains a hydrophobic moiety, also known to possess 
activity against PfPRS, comparable to the TCMDC-
124506 20 (Figure 4). The resulting pharmacophore model 

was then used to screen ZINC database. This process has 
yielded 248 molecules. All of these compounds were also 
passed FAF-Drugs 4 filter of toxicophore and PAINS 
substructure 25, ensuring the absence of potentially toxic 
and/or frequent-hitter compound 26. 

Subsequently, molecular docking process was 
performed towards those compounds. Validation of this 
process was carried out to select the best algorithms 
available in Molegro 7. This docking software has three 
placement scorings and four docking scores. Initially, we 
evaluated those 12 combinations according to their RMSD 
value. The result showed that all but one algorithm 
produced docking pose with acceptable RMSD value 
(Figure 5). 
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Figure 4. Pharmacophore queries of PfPRS inhibitor according to 18 (top) and its three-dimensional 
visualization using Pharmit webserver (bottom) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. RMSD values calculated for 12 algorithms against PfPRS enzyme (PDB ID: 4WI1) and the superimposed 
ligand conformations of all the algorithm (yellow: native ligand; red: re-docking result with RMSD > 2.0 Å 
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The next step was to evaluate whether a method could 
discriminate between active and inactive compounds based 
on docking score-based ranking. In this context, we 
conducted molecular docking against analogs of pyrazole-
urea whose enzymatic activity had been determined 
previously20. An alternative approach involved using putative 
inactive compounds, i.e., decoy compounds, as substitutes 
due to insufficient data on inactive compounds46. The 
evaluation was carried out based on the area under the curve 
values of ROC and BEDROC, as well as the Total Gain value. 
The ROC curve has been widely used in numerous studies as 
a validation tool in virtual screening campaigns32,47,48. This 
metric ranges from 0 to 1, representing the complete inability 
and perfect capability of a method to separate active and 
inactive compounds, respectively49. BEDROC is a 
modification of the ROC curve that applies Boltzmann 

distribution to enhance its ability to discriminate early hits in 
virtual screening 31. Meanwhile, Total Gain is a statistical tool 
used to quantify the score of the virtual screening process in 
explaining compound bioactivity. This parameter is akin to 
the determination coefficient, where the value ranges from 0 
to 1, representing the explanatory power of the virtual 
screening method34,50. From this validation step, it was found 
that only one algorithm (MolDock Score-MolDock 
Optimizer) works best to enrich active molecule and in accord 
with all validation metrics (Table 1). MolDock Score is a 
docking score based on piecewise linear potential (EPLP) with 
additional terms namely hydrogen bonds direction 51. 
MolDock Optimizer is a placement algorithm based on 
differential evolution algorithm. This method is identical to 
genetic algorithm, albeit the result is more guided by addition 
of weighted difference of previous calculation 51. 

 
Table 1. AUC ROC, Total Gain, and BEDROC values calculated for 11 algorithms against PfPRS enzyme (PDB 

ID: 4WI1) 
Algorithms AUC ROC Total Gain BEDROC 

MolDock Score- MolDock Optimizer 0.710 0.310 0.819 
MolDock Score- MolDock SE 0.562 0.090 0.205 
MolDock Score- Iterated Simplex 0.432 0.067 0.280 
MolDock Score (Grid)- MolDock Optimizer 0.615 0.157 0.161 
MolDock Score (Grid)- MolDock SE 0.568 0.188 0.136 
MolDock Score (Grid)- Iterated Simplex 0.574 0.081 0.720 
PLANTS Score- MolDock Optimizer 0.651 0.171 0.343 
PLANTS Score- MolDock SE 0.568 0.170 0.150 
PLANTS Score- Iterated Simplex 0.408 0.148 0.201 
PLANTS Score (Grid)- MolDock SE 0.645 0.233 0.312 
PLANTS Score (Grid)- Iterated Simplex 0.503 0.074 0.618 
Acceptable Threshold >0.50 >0.25 >0.50 

 
The virtual screening output can be further enhanced 

by applying a consensus scoring approach52. In this 
context, we incorporated the Rerank Score in addition to 
the MolDock Score to increase the discriminative power 
between active and inactive compounds. This method falls 
under the category of weighted sum ranking52, where the 

existing docking score is modified by the Lennard-Jones 
12-6 potential to better depict steric factors51. The results 
showed a significant improvement based on both AUC-
ROC and BEDROC values (Figure 6), signifying better 
early recognition of active compounds32,33. 
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Figure 6. Validation result of MolDock Score-MolDock Optimizer (left) and MolDock Score-MolDock 
Optimizer with the implementation of Rerank Score (right) 

 
This method was then applied to dock 248 compounds 

obtained from pharmacophore screening. However, post-
docking evaluation revealed that several high-ranked 
compounds possess a free NH pyrazole moiety. We 
decided not to select these compounds since they 
contradict the pharmacophore model, which specifies a N-
substituted pyrazole ring. Therefore, a manual inspection 
was performed to choose five compounds in an ascending 
manner that conform to the pharmacophore model. It can 
be observed that most of the obtained compounds possess 
a pyrazole-urea moiety, with only one compound 
containing an isoxazole scaffold in place of pyrazole 

(Table 2). Overall, the compound bearing the pyrazole-
urea group ranked better than the isoxazole-urea based on 
their MolDock Score. These five docked compounds and 
TCMDC-124506 were then subjected to a 50 ns molecular 
dynamics simulation and MM-PBSA analysis to evaluate 
their conformational dynamics, structural stability, and 
free binding energy with the solvation model. Several 
parameters were evaluated post the molecular dynamics 
process, such as the RMSD value of the protein, RMSF 
plot of amino acids, and hydrogen bond occupancy of all 
protein complexes. 
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Table 2. Docking score and ligand interaction result of selected compounds 

Compounds 

MolDoc
k Score 

+Rerank 
Score 

Ligand Interaction* 

ZINC1029449 

 

 

-130.94 

 

ZINC1029453 

 

 

-129.35 
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Compounds 

MolDoc
k Score 

+Rerank 
Score 

Ligand Interaction* 

ZINC96133636 

 

 

 

 

 

 

-126.72 

 

 

ZINC263640015 

 

 

-121.68 
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Compounds 

MolDoc
k Score 

+Rerank 
Score 

Ligand Interaction* 

ZINC3135340 

 

 

-120.17 

 

 

* Ligand interaction was evaluated using LigPlot+ 2.2.4 [45] (Laskowski and Swindells, 2011). 
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Figure 7. RMSD (above) and RMSF (below) plot of protein during 50 ns simulation 
 

The RMSD values of the protein observed during the 
10-50 ns simulation indicated the stability of all 
complexes. The RMSD fluctuation plot over simulation 
time suggested that all protein systems had reached 
convergence by the end of the molecular dynamics process 
(Figure 6). Subsequently, RMSF plots were evaluated to 
observe protein residue flexibility during molecular 
dynamics simulation. The results showed high peaks, 
notably in the β-hairpin structure (residue 279-283) in the 
catalytic domain region (CD) and the loop-α-helix 
structure (residue 547-554) in the anti-codon binding 
domain (ABD) (Figure 7). 

Hydrogen bond occupancy percentage was 
calculated to illustrate the dynamic process of hydrogen 
bond interaction during the 50 ns simulation. The 
calculation was performed using HBonds 1.2, an 
integrated plugin from VMD53. The results, calculated as a 
percentage, indicate the frequency of hydrogen bond 
formation during molecular dynamics simulation. It was 
observed that, similar to the amino acid interaction in the 
molecular docking process, interactions with Glu404 and 

Tyr266 were consistently found in almost all ligand-
protein complexes. The occupancy values sometimes 
exceeded 100%, as seen in Glu404 interaction with 
ZINC102949 (116.87%). This type of interaction was also 
observed in the native ligand (TCMDC-124506), 
emerging as the only distinctive hydrogen bond interaction 
during the 50 ns simulation, underscoring its significance 
in ligand-protein interaction. 

Several novel hydrogen bond interactions were also 
elucidated during the simulation process, such as in 
ZINC3135340, which formed a hydrogen bond with 
Thr513 and Phe405. On the other hand, it appears that two 
of the ligands (ZINC96133636 and ZINC263640015) 
showed lower values of hydrogen bond occupancy 
compared to the rest of the compounds, indicating a 
different type of ligand-amino acid interaction could take 
place (Table 3). Observation of the final MD snapshots 
also indicated several changes in ligand interaction, 
namely new hydrogen bond formation between 
ZINC3135340 and Phe405 or the absence of hydrogen 
bond interaction in ZINC 96133636 (Table 3). This result 
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generally aligns with the hydrogen bond occupancy values 
during the 50 ns (Table 2), where hydrogen bonds with 
high percentage values will be observed more frequently 
than the lesser ones. 

Afterward, we also calculated the binding free energy 
of all ligands using the MM-PBSA approach. It is one of 
the commonly used methods to estimate ligand free energy 
values, aside from MM-GBSA, LIE, and alchemical 
binding54–56.  This approach is an amalgamation of energy 

calculation based on molecular mechanics and implicit 
solvent-based free energy calculation, as explained in the 
following equation.  

 

 

 
Table 3. Hydrogen bond occupancy analysis post-molecular dynamics simulation 

Compounds Hydrogen Bond Donor Occupancy* Hydrogen Bond Acceptor Occupancy* 
ZINC1029449 Tyr266 (s) (46.08%) 

Phe405 (m) (0.16%) 
Arg403 (s) (0.04%) 

Glu404 (s) (116.87%) 
Arg403 (m) (0.02%) 

ZINC1029453 Tyr266 (s) (57.30%) Glu404 (s) (0.26%) 
ZINC96133636 Gly283 (m) (3.22%) 

Tyr285 (s) (2.38%) 
Arg403 (s) (0.32%) 
Thr513 (s) (0.26%) 
Phe405 (m) (0.02%) 

Thr513 (m) (0.02%) 
Tyr285 (s) (0.02%) 

 

ZINC263640015 Tyr266 (s) (13.49%) 
Tyr278 (s) (7.84%) 
Arg514 (s) (0.02%) 

Glu404 (s) (3.12%) 
 

ZINC3135340 Thr513 (s) (29.93%) 
Phe405 (m) (23.57%) 
Tyr266 (s) (5.76%) 
Tyr285 (s) (0.16%) 

Leu406 (m) (0.06%) 

Glu404 (s) (52.64%) 
Tyr285 (s) (5.42%) 
Arg403 (m) (1.84%) 

 

TCMDC-124506 Tyr266 (s) (58.76%) Glu404 (s) (63.5%) 
* s = side-chain hydrogen bond; m = main hydrogen bond 
 

The first three variables in the equation refer to 
molecular mechanic energy (MM), which consists of 
bonded and non-bonded interactions (electrostatic and van 
der Waals). Meanwhile, the free energy terms are made up 
of the total polar and non-polar contributions. In the 
g_mmpbsa module, these are obtained from the Poisson-
Boltzmann equation (PB) and solvent-accessible surface 

area (SA) value, respectively42. MM-PBSA approach is 
arguably time efficient54 and has been implemented 
numerous times in virtual screening approaches to 
improve the reliability of protein-ligand interaction 
evaluation55. Based on the MM-PBSA calculation for 50 
ns, it is observed that the compound ZINC1029449 from 
molecular docking possesses better binding free energy 
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than the rest of the compounds, including the native ligand 
(Table 4). We argue that hydrogen bond interaction with 
Glu404 plays an important role in yielding better binding 
free energy, followed by the Tyr266 hydrogen bond.  

Ultimately, the compounds were tested for their 
antimalarial potency in vitro against Plasmodium 
falciparum chloroquine-sensitive strain (3D7). This 
parasite strain was chosen as it is known to express PfPRS 

enzyme16,57. According to the previous study20, it can be 
expected that pyrazole-urea analogs yield antimalarial 
activity. The results we obtained indicate that all our 
assayed compounds possess micromolar inhibitory 
activity (Figure 8), with the top two compounds from in 
silico evaluation (ZINC 1029449 and ZINC1029453) 
being the most potent inhibitors with IC50 values of 0.44 
and 0.72 μM, respectively.  

 
Table 4. Binding free energy of protein-ligand interaction calculated by MM-PBSA 

Compounds ΔGbinding ΔEvan der Waals ΔEelectrostatic ΔGpolar solvation SASA 
ZINC1029449 -137.146 ± 

14.941 
-212.072 ± 

12.999 
-84.083 ± 

9.288 
180.192 ± 

16.496 
-21.183 ± 

0.713 
ZINC1029453 -116.017 ± 

15.494 
-199.007 ± 

15.776 
-31.093 ± 

13.597 
135.192 ± 

22.750 
-21.108 ± 

1.036 
ZINC96133636 -102.922 ± 

15.112 
-209.159 ± 

12.609 
-5.622 ± 
11.764 

131.976 ± 
16.185 

-20.117 ± 
0.868 

ZINC263640015 -109.242 ± 
17.206 

-175.256 ± 
15.315 

-23.208 ± 
16.997 

107.706 ± 
26.512 

-18.483 ± 
1.180 

ZINC3135340 -109.879 ± 
16.684 

-180.185 ± 
15.465 

-93.073 ± 
23.940 

181.694 ± 
24.243 

-18.315 ± 
1.153 

TCMDC-
124506 

-117.262 ± 
13.454 

-187.746 ± 
12.215 

-79.158 ± 
11.680 

169.302 ± 
17.442 

-19.660       
± 0.813 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Antimalarial activity of five tested compounds against Plasmodium falciparum 3D7 
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All compounds bearing the pyrazole-urea scaffold 
perform better than the isoxazole-urea one. It is also worth 
noting that the in vitro assay result was generally in line 
with the docking score value, and the top two ranked 
compounds in terms of binding free energy are identical to 
the antimalarial assay. Compounds ZINC 1029449 and 
ZINC1029453 have a similar scaffold to TCMDC-124506 
and its analogs, which have been tested for their 

antimalarial potency against both PfPRS enzyme and the 
3D7 strain20. On the other hand, it is also found that several 
modifications of the ‘head’ and phenyl ‘tail’ group of the 
pyrazole-urea analogue slightly lower the antimalarial 
bioactivity. We also found that the substitution of the 
pyrazole moiety with the isoxazole ring has significantly 
reduced its potency, as shown by compound 
ZINC3135340 (Figure 9).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Common structure of pyrazole-urea based PfPRS inhbitors. Both compound ZINC96133636 and 
ZINC263640015 are modified at the head and tail group, respectively, from the previous SAR study 18 

 

4. CONCLUSION 
The study conducted a hierarchical virtual screening 

process to identify potential antimalarial candidates 
through PfPRS enzyme inhibition. This method combines 
pharmacophore modeling, undesirable moiety filtering, 
molecular docking, molecular dynamics, and MM-PBSA 
evaluation, arranged in a sequential manner. Five 
compounds were discovered from this process, with four 
possessing a pyrazole-urea scaffold, and the fifth having 
an isoxazole ring in place of pyrazole. All compounds 
were tested for antimalarial activity against Plasmodium 
falciparum 3D7 and exhibited micromolar inhibitory 
concentrations. Two of the compounds (ZINC 1029449 
and ZINC1029453) showed IC50 values of 0.44 and 0.72 
μM, respectively. Further studies are still needed to verify 

whether the compounds inhibit the PfPRS enzyme via 
allosteric mechanisms. 
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تي آر إن إǻه الʸʯʲʸل عʙʮ الفʝʲ الافʙʯاضي والȁʙʱʯة في الʙʮʯʳʸ ضʗ -كʵʯاف مȊॺʰ إسʙʯوزȏ لأنʤȂʚ بʙوȂلا

 الʮلاسʦʸديʦم فالॺʻʴاروم
 

 4، دوȏ سॻاه فʙʯʻا رمʷان3، راسʯʻا هانʗاǻاني2، تʦفȖʻ مʗʸʲ فॻɿه1*، إȏ غȏʗʻ أرȏ سʦمارتا1أحʗʹʴو يʦنॻارتاتॻغار 

 
 ، إنʙونॽʶॽاʙʽʸلة، جامعة سʨراǼاǽا، سʨراǼاǽاقʦʶ الॽʺॽؔاء الʙʽʸلانॽة، ؗلॽة ال1
 ، إنʙونॽʶॽاامعة Ǽانʙونج الإسلامॽة، Ǽانʙونجقʦʶ الʙʽʸلة، ؗلॽة الȄʛاضॽات والعلʨم الॽɻॽʰʢة، ج2
 ، إنʙونॽʶॽاʙʽʸلة، جامعة أيʛلانʳا، سʨراǼاǽاقʦʶ العلʨم الʙʽʸلانॽة، ؗلॽة ال3
 ، إنʙونॽʶॽاعهʙ الʴʸي لʨزارة الʴʸة، ماكاسارقʦʶ الʙʽʸلة، الʺ4

  
ʝـʳمل 

ॼات مʹادة للʺلارȄا الʙʳيʙة بʻاءً على مʢॼʲات مʨقع مʱʵلف للʛʰولʽل الأهʗاف: ʛؗم ʙيʙʴراسة إلى تʙه الʚه ʗفʙتي-ه-
 إǽه سǼ ʜʽʱʽʲʻʽاسʙʵʱام الفʛز الافʛʱاضي الʶʱلʶلي الهʛمي.-آر

تʦ تʦॽʺʸ نʺʨذج الفارماكʨفʨر في الʙʰاǽة، بʻاءً على بॽانات العلاقة بʧʽ الॽʻʰة والʷʻاȋ بʧʽ عʙة مʽʲلات  الʦʸاد والʙʠق:
، تلʽها عʺلॽة ZINC15بॽانات  تʦ تȘʽʰʢ الʨʺʻذج الʺʸʴل علॽه على قاعʙة .IC50الʨʽرȄا وʱʺॽʀها الإنॽʺȄʜة -للʛʽʰازول

ॼات الʺʻʸفة Ǽاسʙʵʱام Ȅʛʡقة الPAINS.   ʗʽʰʲʱفلʛʱة الʺʛشʴات الʺʱعلقة ʰʷǼهات العقاقʛʽ والʦʺʶʱ و  ʛؗʺال ʗʽʰʲت ʦت
تʦ تʛتʖʽ مʨاضع الʗʽʰʲʱ الʻاتʳة بʻاءً على   .P. falciparumإǽه سʜʽʱʽʲʻʽ لـ -آر-تي-الʺʸادق علʽها ضʙ إنʦȄʜ بʛولʽل

ʗʽʰʲʱدرجة ال  ʧة ومʨʢʵه الʚه ʧات مॼ ʛؗة مʶʺل على أفʹل خʨʸʴال ʦر. تʨفʨالفارماك ʛʽاءً على معايʻب ʦॽʽقʱعادة الȂو
 ʧم ʛʲة لأكॽʻʽروجʙʽاله ȌǼواʛات الॽامʻاتها وديॼث ʧم Șقʴʱة للॽʯȄʜʳة الॽȞॽامʻيʙاكاة الʴʺام الʙʵʱاسǼ هاʺॽʽتق ʦت ʦ50ث 

ا إجʛاء تʴلʽل  ً́ ǽأ ʦة. تॽثانʨنانMM-PBSA  ʛيʙقʱل ȑʨʽʴال ȋاʷʻال ʧم Șقʴʱال ʦا، تʛًʽات. وأخॼ ʛؗʺة للʛʴال Ȍȃʛاقة الʡ
ॼات ؗʺʛشʴات مʹادة للʺلارȄا ضʙ الʶلالة  ʛؗʺ3للD7.  

ॼات الʝʺʵ الʺʸʴل علʽها مʧ الفʛز الافʛʱاضي تʺʱلʥ فعالॽة مʛȞॽومʨلارȄةالʹʯائج ʛؗʺع الॽʺائج أن جʱʻت الʛهʣان  : أ وؗ
ʧمin vitro.   

 .إǽه سʜʽʱʽʲʻʽ، فʛز افʛʱاضي-آر-تي-ديʻامȞॽا جॽʯȄʜة، بلاسʺʨديʨم فالॼʽʶاروم، بʛوȄلمʹاد للʺلارȄا،  الؒلʸات الʗالة:
  

 
 ॻʯغار أحʗʹʴو يʦنॻارتالʓʸلف الʙʸاسل *

tegar.achsendo@staff.ubaya.ac.id       

ʘʴॼلام الʱخ اسȄله 19/3/2023 :تارʨʰخ قȄوتار ʛʷʻ15/10/2023 لل. 
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Evolution of the number of published documents. All types
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documents from a journal and divides them by the total
number of documents published in that journal. The chart
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documents published in a journal in the past two, three and
four years have been cited in the current year. The two
years line is equivalent to journal impact factor ™
(Thomson Reuters) metric.
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same journal.
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Evolution of the number of total citation per document and
external citation per document (i.e. journal self-citations
removed) received by a journal's published documents
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documents.
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Dear Deepak,

Thank you very much for your comment.

All the metadata have been provided by Scopus /Elsevier in their last update sent to

SCImago, including the Coverage's period data. The SJR for 2022 was released on 1st

May 2023. We suggest you consult the Scopus database directly to see the current index

status as SJR is a static image of Scopus, which is changing every day.

The Scopus’ update list can also be consulted here:

https://www.elsevier.com/solutions/scopus/how-scopus-works/content

Best Regards, SCImago Team

SCImago Team
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Dear Asri,

Thank you for contacting us.

The Coverage data shown above indicates the period in which the journal has been

indexed in Scopus database according to the latest update sent by Scopus (April 2020).

A paper will be considered as Scopus indexed as long as it has been published in the

same period in which Scopus has indexed the journal.

Best Regards, SCImago Team

SCImago Team
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5 years ago

Dear Shatha,

thank you for contacting us.

We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a

portal with scientometric indicators of journals indexed in Elsevier/Scopus.

Unfortunately, we cannot help you with your request, we suggest you visit the journal's

homepage (See submission/author guidelines) or contact the journal’s editorial staff , so

they could inform you more deeply.

Best Regards, SCImago Team

SCImago Team
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6 years ago

Dear Bakli, thank you very much for your comment, unfortunately we cannot help you with

your request. We suggest you look for author's instructions/submission guidelines in the

journal's website. Best Regards, SCImago Team

SCImago Team
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