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ABSTRACT One of the possibilities for developing non-invasive computerized diagnostic tools for
Parkinson’s disease (PD) is to detect changes in the voice, known as Parkinsonian dysarthria. Numerous
classification models have been developed to diagnose PD based on voice features. However, the
performance of models developed and trained only using voice features extracted from people with PD and
healthy people might be affected when tested on individuals with other voice-related pathological conditions.
Therefore, we investigated the reliability of voice-based machine-learning models that were developed only
using datasets of people with PD and healthy people for accurately identifying people without PD when
they have other voice-related pathological conditions (i.e. dysphonia and laryngitis). Three different support
vector machines (SVMs) were developed and tested on voice features extracted from healthy people and
those with PD, dysphonia, and laryngitis. The results confirmed that a voice-based SVM classifier only
trained on the dataset of people with PD and healthy people was equally reliable in classifying other
voice-related pathological conditions, such as dysphonia and laryngitis, as non-PD cases.

INDEX TERMS Dysphonia, laryngitis, Parkinson’s disease, support vector machine, voice features.

I. INTRODUCTION
Parkinson’s disease (PD) ranks as the second most preva-
lent neurodegenerative condition following Alzheimer’s dis-
ease [1], and its incidence is expected to increase owing
to the aging population. PD is characterized by a range of
motor and non-motor deficits [2]. The prevailing method for
PD diagnosis involves a clinical assessment employing either
the Unified Parkinson Disease Rating Scale (UPDRS) [3]
or the Hoehn and Yahr (H&Y) scale [4]. These assessments
examine the presence of symptoms such as tremors, rigidity,
bradykinesia, or postural impairment, as well as non-motor
symptoms such as dysarthria, functional limitations, and
cognitive decline [5].
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To create portable, automated, and intelligent diagnostic
tools for PD, it is essential to rely on non-invasive PD
biomarkers. One of the early indicators of PD is a change
in speech known as Parkinsonian hypokinetic dysarthria [6].
This symptom is present in approximately 90%of PD patients
and is characterized by reduced voice intensity, increased
voice nasality, heightened acoustic noise, alterations in
speech prosody, imprecise articulation, a narrower pitch
range, monotonous loudness, longer pauses, vocal tremors,
harsh and breathy voice quality, and speech disfluency [7].

Voice features extracted from sustained vowels have been
evaluated as potential parameters for both the diagnosis and
monitoring of PD in several studies [8], [9], [10], [11],
[12], [13], [14], [15]. These features cover various aspects,
including issues related to glottal vibration, the harmonics-
to-noise ratio (HNR), the control of glottal pressure through
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the respiratory mechanism, and vocal tract control [16].
The effectiveness of these voice features has been assessed
through a range of statistical analyses, including calculations
of mean values, standard deviations, effect sizes, and p-values
derived from statistical tests such as t-tests and the analysis
of variance (ANOVA).

Many classification models have been developed to
diagnose PD [17]. Pah et al. [16], [18] and Motin et al. [19]
developed support vector machine (SVM) models to identify
people with PD and distinguish the effect of levodopa in PD
patients. Ali et al. [20] developed an intelligent system that
uses linear discriminant analysis (LDA) for dimensionality
reduction and a genetic algorithm (GA) to detect people with
PD. Sakar et al. [11], [21] investigated machine-learning and
wavelet-based models to diagnose PD. Ensemble random
forest and SVM were developed by Tsanas et al. [22] to
classify people with PD, obtaining significant accuracy.

The previous classification models aimed to distinguish
people with PD from people without PD. However, the
models were developed and trained on voice features
extracted from people with PD and people without any
voice-related pathological condition. The performance of
the developed models was not tested considering people
with other voice-related pathological conditions. Thus,
the models may identify people with other voice-related
pathological conditions as PD. Dysphonia [23], [24] is a
pathological condition that alters the voice features. Teixeira
and Fernandes [25] analyzed the voice features of people
with four types of dysphonia and concluded that there were
particular changes in the voice parameters such as jitter
and shimmer due to dysphonia. In the other work, Teixeira
et al. [26] analyzed commonly used voice features, such
as jitter, shimmer, harmonic-to-noise ratio (HNR), noise-to-
harmonic ratio (NHR), and autocorrelation, extracted from
the sound of sustained vowels (/a/, /i/ and /u/) of people with
chronic laryngitis to identified statistical differences due to
the pathological condition.

The present study aimed to investigate the reliability of
voice-based machine-learning models that were developed
only using datasets of people with PD and healthy people for
accurately identifying people who have other voice-related
pathological conditions (i.e., dysphonia and laryngitis).

II. METHODS
A. PATHOLOGICAL CONDITIONS
In addition to PD patients and healthy subjects, two
pathological conditions were included in this work, namely
dysphonia [23], [24], and laryngitis [27]. These pathological
conditions were selected because of their close relation to
voice production mechanisms.

Dysphonia is a medical condition characterized by abnor-
mal alterations in vocal quality, pitch, loudness, or vocal
effort. This condition can lead to difficulties in communica-
tion and have a detrimental impact on an individual’s overall
voice-related quality of life [23]. The root cause of dysphonia

TABLE 1. Participants’ demographics.

TABLE 2. SNR of PC-GITA and SVD dataset.

can be attributed to irregular vocal fold oscillations, which
may stem from factors such as abnormalities in muscle
tone, hypertonicity, incomplete closure of the glottis during
speaking, changes in vocal fold mass, or the presence of a
vocal fold lesion or tumor [24], [28].

Laryngitis [27] is a medical condition characterized by
inflammation of the larynx. It can present in different
forms, either acute or chronic, and may have infectious or
inflammatory causes. Laryngitis can occur independently or
as a component of a broader systemic ailment. Hoarseness is a
common symptom associated with laryngitis. This condition
is frequently linked to upper respiratory tract infections and
can have a substantial impact on an individual’s physical
health, quality of life, and even psychological well-being and
ability to work if the symptoms persist.

B. DATASETS
The voice features analyzed in this work were extracted
from two datasets, namely the PC-GITA dataset provided
by Orozco-Arroyave et al. [29] and the Saarbrücken Voice
Database (SVD) [30], [31]. Both datasets were generated
following approval from their respective ethics committees,
ensuring compliance with the principles outlined in the
Helsinki Declaration.

The PC-GITA dataset consists of recordings of sustained
vowels (/a/, /e/, /i/, /o/, and /u/) obtained from 100 native
Colombian-Spanish speakers. Among these participants,
50 were diagnosed with PD, whereas the remaining 50 served
as healthy control (HC) subjects. The control group was
matched with the PD group in terms of age and gender.
These voice recordings were conducted in a noise-controlled
soundproof booth and saved as.wav files with a sampling rate
of 44.1 kHz and 16-bit data resolution. Each subject provided
three repetitions of each sustained vowel, but for our analysis,
we only used one recording from each participant.

The SVD is a freely downloadable database provided
by the Institute of Phonetics at Saarland University in
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Saarbrücken, Germany [30], [31]. The database contains
voice recordings from more than 2000 people with 71 dif-
ferent pathological conditions, including recordings from
healthy subjects. The dataset includes the recordings of
sustained vowels (/a/, /i/, and /u/) at normal, high, and low
pitch, and the recordings of a sentence in Germany. The
vowels were recorded as.wav files in a noise noise-controlled
environment for 1 to 3 seconds at a 50 kHz sampling rate with
16-bit resolution. For the present work, only recordings of the
sustained vowels at normal pitch were considered.

The recordings of subjects with dysphonia and laryngitis
were obtained from the SVD dataset. The sustained vowel
recordings of individuals with PD were sourced from
the PC-GITA dataset, owing to the limited availability
of PD recordings in the SVD dataset. To ensure dataset
compatibility, the SVD dataset was restricted to individuals
between the ages of 51 and 90 years. The demographic
information for the participants included in this study is
presented in Table 1. ANOVA was conducted to confirm the
similarity between the age ranges of the groups, yielding a
p-value of 0.848.

Before extracting features from the recordings, the ampli-
tudes of all the recordings were normalized to 1. Furthermore,
the signal-to-noise ratio (SNR) of the two datasets was
compared using a t-test to ensure compatibility, as detailed
in Table 2. Notably, all the p-values from the t-test were
above 0.05, indicating the similarity in SNR between the two
datasets.

C. FEATURES EXTRACTION
Before the feature extraction process, all the recordings
from the SVD dataset were down-sampled from 50 kHz to
44.1 kHz with a 16-bit resolution to match the sampling
rate of the recordings from the PC-GITA dataset. The
down-sampling process was performed using MATLAB.
A voice segment of 1.5 seconds was extracted from each
recording to be used as the input to the feature extraction
process. A total of 18 voice features were extracted from
the recordings as shown in Table 3. The features were
related to three aspects of speech production controls in PD:
(i) the glottal vibration control (jitter [32], shimmer [32],
standard deviation (SD) of pitch frequency, and the harmonics
features [33]), (ii) the lung control (voice intensity), and
(iii) the vocal tract control (the mean and standard deviation
of formants F1 to F4 [34] and the first five coefficients of
MFCCs [35]). The first five MFCC coefficients represent
vocal tract impulse responses in the range of low to medium
frequency [36], [37]. The features were extracted using a code
developed on Praat [38], a publicly available speech analysis
software.

D. STATISTICAL ANALYSIS
Before developing the SVM classifiers, the statistical distri-
bution of the features was calculated. The normality of the
extracted features was examined using the Anderson-Darling

TABLE 3. List of extracted features.

FIGURE 1. The experimental setting.

test [39]. As the majority of the features were not normally
distributed, the Wilcoxon Rank-Sum test [40] was used to
compare the differences between the features of PD and the
other three groups (HC, dysphonia, and laryngitis). The 95%
confidence level was considered for the analysis and a p-value
of less than 0.05 indicated a significant difference between
the compared groups.

The probability density distributions of the features [41]
were calculated and analyzed to examine the degree of
overlap between the features. The two-dimensional (d = 2)
probability density distribution function, f̂ (x), was calculated
using the ‘kdensity’ function inMATLAB 2022 that performs
the scaledGaussian kernel,K, density estimation as expressed
in Equation (1).

f̂h(x) =
1

nhd (n)

n∑
i=1

K
(
x − xi
h(n)

)
, x ∈ Rd (1)

E. EXPERIMENTAL SETTING
Three experimental settings were conducted to investigate
the effectiveness of various machine-learning development

144298 VOLUME 11, 2023



N. D. Pah et al.: Voice-Based SVM Model Reliability for Identifying Parkinson’s Disease

TABLE 4. Experimental settings.

strategies in differentiating people with PD from people
without PD (healthy people or people with other pathological
conditions) based on voice features (Fig. 1).

In each experiment, an SVM [42] with a Gaussian kernel
was developed and optimized based on the given training
dataset. A total of 54 features (18 features from each of the
three phonemes /a/, /i/, and /u/) were provided as inputs to
the SVM. All input features were normalized to their mean
and SD. The Relief-F algorithm [43] was applied as the
feature selection process. The Relief-F algorithm ranks the
features based on k= 10 nearest hits and misses and averages
their contribution to the weights of each feature. The optimal
number of ranked features was selected to achieve the highest
classification (i.e., F1-score) using the leave-one-subject-out
(LOSO) cross-validation method [44]. The trained model
was then tested using the selected features extracted from
the vowels of the testing dataset. The performance of the
SVM in each experimental setting was evaluated based on its
accuracy, recall, specificity, and F1-score. To avoid training
bias toward the classes with a large number of recordings,
each class was only represented by 44-50 randomly selected
instances. A summary of the three experimental settings is
presented in Table 4.

1) EXPERIMENT 1
The binary SVM was trained to differentiate two classes (PD
and non-PD). During the training phase, the non-PD class was
only represented by features from healthy people. The trained
SVM was then tested with a non-PD class that contained
healthy subjects and people with dysphonia or laryngitis. This
setting was designed to investigate the ability of the SVM to
recognize people with dysphonia and laryngitis as the non-PD
class if the classifier was only trained with healthy people.

2) EXPERIMENT 2
In this experiment, the non-PD class consisted of healthy
people and people with the two non-PD pathological
conditions in both the training and testing phases. This setting
was designed to determine whether there is any improvement
in the binary SVM model if all the non-PD pathological
conditions were included in the training dataset.

3) EXPERIMENT 3
The training and testing datasets in this experiment were
similar to experiment 2. However, amulticlass SVMclassifier

was developed. This setting was designed to compare
the effectiveness of binary and multiclass SVM models
in classifying people with PD. The multiclass classifier
comprised an ensemble of six binary SVM models (with a
Gaussian kernel and normalized input) implemented using
error-correcting output codes (ECOC) and the one-vs-one
method [45], [46].

In all three experimental settings, the features of the PD
recordings were extracted from the PC-GITA dataset, and
the features of dysphonia and laryngitis were extracted from
the SVD dataset. The HC features were extracted from the
combination of PC-GITA and SVD datasets.

III. RESULTS
A. STATISTICAL ANALYSIS
Tables 5, 6, and 7 depict the statistical distribution and
outcomes of the Wilcoxon Rank-Sum test for voice features
associated with glottal vibration, vocal tract control, and lung
control, respectively. Notably, there is a significant difference
in the statistical distribution of PD features compared with the
other three groups, particularly concerning features related
to glottal vibration. Table 6 shows the effectiveness of
vocal tract features related to frequency modulation (such as
formants and MFCC) for distinguishing PD from dysphonia
or laryngitis when examining /a/. Furthermore, Table 7
demonstrates that lung control features associated with /i/
and /u/ are effective for differentiating individuals with PD,
dysphonia, or laryngitis.

To visualize the distribution of the features, Fig. 2
illustrates the probability density contour line of the four
groups for Jitter-abs and Shimmer-abs. The 60.65% contour
line represents the SD of the respective distribution. The
distributions show that the features extracted from PD
were significantly distinct from those extracted from HC,
dysphonia, and laryngitis. In contrast, the distributions of the
non-PD features were more overlapped.

B. SVM CLASSIFICATION
In the first experiment, the SVM was optimally trained with
34 selected features (Table 8). The SVMachieved an F1-score
of 74.60%, with an accuracy of 77.46%, recall of 94.00%, and
selectivity of 68.48%. Fig. 3 (a) shows the confusion matrix
of the SVM model trained with PD and non-PD classes that
only consisted of features from healthy people. The confusion
matrices in Fig. 3 (b)-(c) show the performance of the trained
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TABLE 5. The statistical analysis of features related to glottal vibration control.

FIGURE 2. The 60.65% contour line of the probability density distribution of Jitter-abs and Shimmer-abs.

SVMwhen tested with non-PD classes using people who had
dysphonia and laryngitis, respectively. Fig. 3 (d) shows the
overall performance of the SVM by accumulating the results
from Fig. 3 (a)-(c). The results show that although the non-PD
class in the training set was only represented by healthy
people, the SVM properly recognized people with dysphonia
or laryngitis as non-PD, with a selectivity percentage of
77.27% to 79.55%.

In the second experimental setting, the optimally trained
SVM achieved an F1-score of 64.34%, with an accuracy
of 77.83%, recall of 92.00%, and selectivity of 73.89%.
A total of 12 features were selected for the SVM model
(Table 8). Fig. 4 (a) presents the confusion matrix of the
SVMmodel when it was trained with PD and non-PD classes
that contained features from individuals with HC, dysphonia,
and laryngitis. Fig. 4 (b) to (d) display the testing confusion
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TABLE 6. The statistical analysis of features related to vocal tract control.

matrices for each of the three non-PD pathological groups.
The results indicate that the SVM exhibited significantly
high performance when trained with all possible non-PD
conditions.

The highest F1-score of the multiclass SVM trained in the
third experiment was significantly low (40.46%) as shown
in Fig. 5 (a). A total of 4 features were optimized for the
SVM model (Table 8). The results indicate that the SVM

did not properly classify the four classes, especially the
non-PD classes. Fig. 5 (b) presents the same result from
a different perspective. The HC, dysphonia, and laryngitis
classes were accumulated into one group of non-PD. The
accuracy of the SVM from this perspective (PD versus
non-PD) was 80.60% (recall of 86.00%, selectivity of
79.12%, and F1-score of 65.65%). This result shows that
by accumulating the prediction of the three non-PD classes,
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TABLE 7. The Statistical analysis of features related to lung control.

TABLE 8. The optimal features selected by relief-f algorithm for each experiment (marked with ‘x’).

the multiclass SVM performed as well as the previous
two SVMs.

IV. DISCUSSION
Previous studies have developed machine learning models
to identify people with PD based on the voice features
extracted from sustained phonemes [17]. The models aimed
to distinguish people with PD from people without PD.
However, the models were mainly developed based on
sustained phonemes recorded from people with PD and HC
subjects. The ability of the models to selectively identify
people with PD might be affected if the people without PD
have other pathological conditions, such as dysphonia and
laryngitis, that affect the voice production mechanism. In this
work, the performance of SVM models developed based

on datasets of PD and HC was evaluated considering voice
features extracted from people with dysphonia or laryngitis.

The statistical analyses show that the glottal vibration
features of PD were different from the non-PD groups (HC,
dysphonia, and laryngitis). People with PD have much higher
amplitude perturbation (shimmer) compared with people
without PD, indicating the inability to control the glottal
resistance that results in voice modulations correlated with
the presence of noise emission and breathiness [33]. This
condition was also demonstrated by the relatively higher
NHR and lower HNR for PD compared with those for the
other groups.

The ability to control vocal tract frequencymodulation was
significantly altered by PD comparedwith other voice-related
pathological conditions. The formant frequencies of people
with PD were higher than those for people with dysphonia
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FIGURE 3. The confusion matrices obtained from the SVM created in experiment 1.

FIGURE 4. The confusion matrices obtained from the SVM created in experiment 2.

FIGURE 5. The confusion matrices obtained from the multiclass SVM created in experiment 3.

or laryngitis when pronouncing the vowel /a/. The MFCC
coefficients of /a/ were lower for PD compared with those
for the other groups. People with PD exhibited lower levels
of voice intensity, resulting in low levels of voice loudness,
compared with the other groups [7]. The results also show
that people with PD had a much higher SD in voice intensity,
which indicates higher instability in controlling the vocal tract

and lung pressurewhile pronouncing the phonemes /i/ and /u/.
The production of /i/ and /u/ requires precise control of the
tongue, the shape/position of the lips, and the pressure of the
airflow [47]. In contrast, the vowel /a/ is a back-open cardinal
vowel that requires less precise control; therefore, PD affects
the production of /i/ and /u/ more than the production of /a/.
The effectiveness of these features was also consistent with
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the optimal features selected by the Relief-F algorithm for
SVM classification as shown in Table 8.

People with dysphonia showed higher jitter, shimmer, and
NHRs compared with healthy people, indicating the effect
of the pathological condition on the glottal vibration. These
results were consistent with the previous findings reported
by Teixeira and Fernandes [25], and similar results were
observed in people with laryngitis [26]. The differences
between dysphonia or laryngitis with HC, however, were
not significant, as shown in Fig. 2. The probability density
distribution of jitter and shimmer in people with dysphonia
and laryngitis overlapped with the HC group.

The major finding of this study was that the SVM classifier
developed based on voice features of the PD and HC
groups was sufficient to recognize people with dysphonia or
laryngitis as non-PD, with a significant selectivity of 77.27%
to 79.55%, which was slightly higher than the selectivity of
HC. This result suggests that the machine-learning models
developed based on a dataset of PD and HCs were equally
reliable when being implemented on people without PD who
had other voice-related pathological conditions, particularly
dysphonia or laryngitis. The probability density distribution
of PD was significantly distinct from the other groups,
whereas the distributions of dysphonia and laryngitis mostly
overlapped with the HC distribution.

Additionally, this work demonstrates that including all the
possible pathological conditions in the non-PD dataset might
improve the performance of the SVM classifier. However,
considering the limitations in collecting recordings from all
the possible non-PD conditions, the SVM trained with only
healthy people representing the non-PD class has a reliable
performance. The multiclass classifier may also be used to
distinguish PD and non-PD classes but is not effective in
distinguishing the pathological conditions within the non-PD
class.

V. CONCLUSION
This study confirmed that a voice-based SVM classifier
trained only on the datasets of PD and HCs was equally
reliable in classifying other voice-related pathological con-
ditions, such as dysphonia and laryngitis, as non-PD,
compared with the SVM classifier trained using datasets of
additional pathological conditions. The statistical analyses
reveal that the HC, dysphonia, and laryngitis distributions
mostly overlapped and were significantly separated from
the distribution of PD. The results also show that training
the SVM with all possible non-PD conditions increased the
overall performance of the SVM, but the multiclass classifier
was not able to distinguish the non-PD classes. Overall, our
findings confirm the reliability of the previously developed
voice-based classifiers in cases where the non-PD group
includes other voice-related pathological conditions.
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